Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.245
Filter
1.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732229

ABSTRACT

Oxidovanadium(V) complexes, [(+)VOL1-5] and [(-)VOL1-5], with chiral tetradentate Schiff bases, which are products of monocondensation of S(‒)-3-amino-1,2-propanediol or R(+)-3-amino-1,2-propanediol with salicylaldehyde derivatives, have been synthesized. Different spectroscopic methods, viz. 1H and 51V NMR, IR, UV-Vis, and circular dichroism, as well as elemental analysis, have been used for their detailed characterization. Furthermore, the epoxidation of styrene, cyclohexene, and two monoterpenes, S(‒)-limonene and (‒)-α-pinene, using two oxidants, aqueous 30% H2O2 or tert-butyl hydroperoxide (TBHP) in decane, has been studied with catalytic amounts of all complexes. Finally, biological cytotoxicity studies have also been performed with these oxidovanadium(V) compounds for comparison with cis-dioxidomolybdenum(VI) Schiff base complexes with the same chiral ligands, as well as to determine the cytoprotection against the oxidative damage caused by 30% H2O2 in the HT-22 hippocampal neuronal cells in the range of their 10-100 µM concentration.


Subject(s)
Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Catalysis , Stereoisomerism , Animals , Vanadium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Oxidative Stress/drug effects , Mice , Humans
2.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791326

ABSTRACT

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Subject(s)
Manganese Compounds , Manganese , Mice, Inbred C57BL , Vanadium , Animals , Mice , Manganese/toxicity , Vanadium/toxicity , Male , Olfactory Bulb/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/pathology , Dopamine/metabolism , Vanadium Compounds , Oxidative Stress/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , alpha-Synuclein/metabolism , Chlorides/toxicity , Chlorides/metabolism , Tyrosine 3-Monooxygenase/metabolism , Aldehydes/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Disease Models, Animal , 3,4-Dihydroxyphenylacetic Acid/metabolism
3.
Genes (Basel) ; 15(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790155

ABSTRACT

This study utilized 16S rRNA high-throughput sequencing technology to analyze the community structure and function of endophytic bacteria within the roots of three plant species in the vanadium-titanium-magnetite (VTM) mining area. The findings indicated that mining activities of VTM led to a notable decrease in both the biodiversity and abundance of endophytic bacteria within the root systems of Eleusine indica and Carex (p < 0.05). Significant reductions were observed in the populations of Nocardioides, concurrently with substantial increments in the populations of Pseudomonas (p < 0.05), indicating that Pseudomonas has a strong adaptability to this environmental stress. In addition, ß diversity analysis revealed divergence in the endophytic bacterial communities within the roots of E. indica and Carex from the VTM mining area, which had diverged to adapt to the environmental stress caused by mining activity. Functional enrichment analysis revealed that VTM mining led to an increase in polymyxin resistance, nicotinate degradation I, and glucose degradation (oxidative) (p < 0.05). Interestingly, we found that VTM mining did not notably alter the endophytic bacterial communities or functions in the root systems of Dodonaea viscosa, indicating that this plant can adapt well to environmental stress. This study represents the primary investigation into the influence of VTM mining activities on endophytic bacterial communities and the functions of nearby plant roots, providing further insight into the impact of VTM mining activities on the ecological environment.


Subject(s)
Endophytes , Mining , Plant Roots , Titanium , Vanadium , Vanadium/pharmacology , Plant Roots/microbiology , Endophytes/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Biodiversity
4.
J Environ Manage ; 360: 121156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744211

ABSTRACT

With continuous mine exploitation, regional ecosystems have been damaged, resulting in a decline in the carbon sink capacity of mining areas. There is a global shortage of effective soil ecological restoration techniques for mining areas, especially for vanadium (V) and titanium (Ti) magnetite tailings, and the impact of phytoremediation techniques on the soil carbon cycle remains unclear. Therefore, this study aimed to explore the effects of long-term Pongamia pinnata remediation on soil organic carbon transformation of V-Ti magnetite tailing to reveal the bacterial community driving mechanism. In this study, it was found that four soil active organic carbon components (ROC, POC, DOC, and MBC) and three carbon transformation related enzymes (S-CL, S-SC, and S-PPO) in vanadium titanium magnetite tailings significantly (P < 0.05) increased with P. pinnata remediation. The abundance of carbon transformation functional genes such as carbon degradation, carbon fixation, and methane oxidation were also significantly (P < 0.05) enriched. The network nodes, links, and modularity of the microbial community, carbon components, and carbon transformation genes were enhanced, indicating stronger connections among the soil microbes, carbon components, and carbon transformation functional genes. Structural equation model (SEM) analysis revealed that the bacterial communities indirectly affected the soil organic carbon fraction and enzyme activity to regulate the soil total organic carbon after P. pinnata remediation. The soil active organic carbon fraction and free light fraction carbon also directly regulated the soil carbon and nitrogen ratio by directly affecting the soil total organic carbon content. These results provide a theoretical reference for the use of phytoremediation to drive soil carbon transformation for carbon sequestration enhancement through the remediation of degraded ecosystems in mining areas.


Subject(s)
Biodegradation, Environmental , Carbon , Soil , Vanadium , Carbon/metabolism , Soil/chemistry , Vanadium/metabolism , Soil Microbiology , Millettia/metabolism , Titanium/chemistry , Mining , Bacteria/metabolism , Soil Pollutants/metabolism
5.
Int J Biol Macromol ; 268(Pt 1): 131768, 2024 May.
Article in English | MEDLINE | ID: mdl-38663706

ABSTRACT

Copper(L2Cu) and vanadium(L2VOCl) complexes of N-p-tolylbenzohydroxamic acid (LH) ligand have been investigated for DNA binding efficacy by multiple analytical, spectral, and computational techniques. The results revealed that complexes as groove binders as evidenced by UV absorption. Fluorescence studies including displacement assay using classical intercalator ethidium bromide as fluorescent probe also confirmed as groove binders. The viscometric analysis too supports the inferences as strong groove binders for both the complexes. Molecular docking too exposed DNA as a target to the complexes which precisely binds L2Cu, in the minor groove region while L2VOCl in major groove region. Molecular dynamic simulation performed on L2Cu complex revealing the interaction of complex with DNA within 20 ns time. The complex stacked into the nitrogen bases of oligonucleotides and the bonding features were intrinsically preserved for longer simulation times. In-vitro cytotoxicity study was undertaken employing MTT assay against the breast cancer cell line (MCF-7). Potential cytotoxic activities were observed for L2Cu and L2VOCl complexes with IC50 values of showing 71 % and 74 % of inhibition respectively.


Subject(s)
Antineoplastic Agents , Copper , DNA , Hydroxamic Acids , Molecular Docking Simulation , Vanadium , Humans , Copper/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , DNA/chemistry , DNA/metabolism , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Vanadium/chemistry , Vanadium/pharmacology , Molecular Dynamics Simulation , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Ligands
6.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666341

ABSTRACT

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Subject(s)
Antineoplastic Agents , Coordination Complexes , DNA , Organophosphorus Compounds , Vanadium , Humans , Vanadium/chemistry , Vanadium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , DNA/metabolism , DNA/chemistry , Cell Survival/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Molecular Docking Simulation , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Molecular Structure , Ligands , Cell Line, Tumor , Drug Screening Assays, Antitumor
7.
Environ Sci Pollut Res Int ; 31(22): 32200-32211, 2024 May.
Article in English | MEDLINE | ID: mdl-38644427

ABSTRACT

F-doped V2O5-WO3/TiO2 catalyst has been confirmed to have excellent denitration activity at low temperatures. Since the V2O5-WO3/TiO2 catalyst is a structure-sensitive catalyst, the loading order of V2O5 and WO3 may affect its denitration performance. In this paper, a series of F-doped V2O5-WO3/TiO2 catalysts with different V2O5 and WO3 loading orders were synthesized to investigate the effect of denitration performance at low temperatures. It was found that the loading orders led to significant gaps in denitration performance in the range of 120-240 °C. The results indicated loading WO3 first better utilized the oxygen vacancies on the TiF carrier promoting the generation of reduced vanadium species. In addition, loading WO3 first facilitated the dispersion of V2O5 thus enhanced the NH3 adsorption capacity of VWTiF. In situ DRIFT verified the rapid reaction between NO2, nitrate, and nitrite species and adsorbed NH3 over the VWTiF, confirming that the NH3 selective catalytic reduction (NH3-SCR) reaction over VWTiF at 240 °C proceeded by the Langmuir-Hinshelwood (L-H) mechanism. This research established the constitutive relationship between the loading order of V2O5 and WO3 and the denitration performance of the F-doped VWTi catalyst providing insights into the catalyst design process.


Subject(s)
Titanium , Tungsten , Vanadium , Tungsten/chemistry , Catalysis , Titanium/chemistry , Vanadium/chemistry , Oxides/chemistry , Vanadium Compounds/chemistry , Adsorption
8.
Front Public Health ; 12: 1339755, 2024.
Article in English | MEDLINE | ID: mdl-38577275

ABSTRACT

Background: It has been reported that the disease-initiated and disease-mediated effects of aerosol pollutants can be related to concentration, site of deposition, duration of exposure, as well as the specific chemical composition of pollutants. Objectives: To investigate the microelemental composition of dust aggregates in primary schools of Vilnius and determine trace elements related to acute upper respiratory infections among 6-to 11-year-old children. Methods: Microelemental analysis of aerosol pollution was performed using dust samples collected in the classrooms of 11 primary schools in Vilnius from 2016 to 2020. Sites included areas of its natural accumulation behind the radiator heaters and from the surface of high cupboards. The concentrations of heavy metals (Pb, W, Sb, Sn, Zr, Zn, Cu, Ni, Mn, Cr, V, and As) in dust samples were analyzed using a SPECTRO XEPOS spectrometer. The annual incidence rates of respiratory diseases in children of each school were calculated based on data from medical records. Results: The mean annual incidence of physician-diagnosed acute upper respiratory infections (J00-J06 according to ICD-10A) among younger school-age children was between 25.1 and 71.3% per school. A significant correlation was found between vanadium concentration and the number of episodes of acute upper respiratory infections during each study year from 2016 to 2020. The lowest was r = 0.67 (p = 0.024), and the highest was r = 0.82 (p = 0.002). The concentration of vanadium in the samples of dust aggregates varied from 12.7 to 52.1 parts per million (ppm). No significant correlations between the other trace elements and the incidence of upper respiratory infections were found, which could be caused by a small number of study schools and relatively low concentrations of other heavy metals found in the samples of indoor dust aggregates. Conclusion: A significant and replicable correlation was found between the concentration of vanadium in the samples of natural dust aggregates collected in primary schools and the incidence of acute upper respiratory infections in children. Monitoring the concentration of heavy metals in the indoor environment can be an important instrument for the prevention and control of respiratory morbidity in children.


Subject(s)
Environmental Pollutants , Metals, Heavy , Respiratory Tract Infections , Trace Elements , Child , Humans , Dust/analysis , Vanadium/analysis , Incidence , Environmental Monitoring , Trace Elements/analysis , Respiratory Aerosols and Droplets , Metals, Heavy/analysis , Environmental Pollutants/analysis , Respiratory Tract Infections/epidemiology
9.
Talanta ; 275: 126110, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38631264

ABSTRACT

Considering that cancer has become the second leading cause of death in humans, it is essential to develop an analytical approach that can sensitively detect tumor markers for early detection. We report an attenuated photoelectrochemical (PEC) immunoassay based on the organic-inorganic heterojunction 10MIL-88B(FeV)/ZnIn2S4 (10M88B(FeV)/ZIS) as a photoactive material for monitoring carcinoembryonic antigen (CEA). The 10M88B(FeV)/ZIS heterojunctions have excellent light-harvesting properties and high electrical conductivity, which are attributed to the advantages of both organic and inorganic semiconductors, namely, remarkable photogenerated carrier separation efficiency and long photogenerated carrier lifetime. Horseradish peroxidase (HRP) in the presence of H2O2 can catalyze 3,3'-diaminofenamide (DAB) producing brown precipitates (oxDAB), which is then loaded onto the 10M88B(FeV)/ZIS heterojunction to reduce the photocurrent and enable the quantitative detection of CEA. Under optimal conditions, the photocurrent values of the PEC biosensor are linearly related to the logarithm of the CEA concentrations, ranging from 0.01 ng mL-1 to 100 ng mL-1 with a detection limit (LOD) of 4.0 pg mL-1. Notably, the accuracy of the PEC biosensor is in agreement with that of the human CEA enzyme-linked immunosorbent assay (ELISA) kit.


Subject(s)
Biomarkers, Tumor , Blood Chemical Analysis , Immunoassay , Metal-Organic Frameworks , Vanadium , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/ultrastructure , Vanadium/chemistry , Photochemistry/instrumentation , Electrochemical Techniques/instrumentation , Immunoassay/instrumentation , Immunoassay/methods , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Carcinoembryonic Antigen/analysis , Carcinoembryonic Antigen/blood , Humans , Blood Chemical Analysis/instrumentation , Blood Chemical Analysis/methods , Limit of Detection
10.
Chem Biol Interact ; 394: 110977, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548214

ABSTRACT

The applications of magnetic nanoparticles (MNPs) as biocatalysts in different biomedical areas have been evolved very recently. One of the main challenges in this field is to design affective MNPs surfaces with catalytically active atomic centres, while producing minimal toxicological side effects on the hosting cell or tissues. MNPs of vanadium spinel ferrite (VFe2O4) are a promising material for mimicking the action of natural enzymes in degrading harmful substrates due to the presence of active V5+ centres. However, the toxicity of this material has not been yet studied in detail enough to grant biomedical safety. In this work, we have extensively measured the structural, compositional, and magnetic properties of a series of VxFe3-xO4 spinel ferrite MNPs to assess the surface composition and oxidation state of V atoms, and also performed systematic and extensive in vitro cytotoxicity and genotoxicity testing required to assess their safety in potential clinical applications. We could establish the presence of V5+ at the particle surface even in water-based colloidal samples at pH 7, as well as different amounts of V2+ and V3+ substitution at the A and B sites of the spinel structure. All samples showed large heating efficiency with Specific Loss Power values up to 400 W/g (H0 = 30 kA/m; f = 700 kHz). Samples analysed for safety in human hepatocellular carcinoma (HepG2) cell line with up to 24h of exposure showed that these MNPs did not induce major genomic abnormalities such as micronuclei, nuclear buds, or nucleoplasmic bridges (MNIs, NBUDs, and NPBs), nor did they cause DNA double-strand breaks (DSBs) or aneugenic effects-types of damage considered most harmful to cellular genetic material. The present study is an essential step towards the use of these type of nanomaterials in any biomedical or clinical application.


Subject(s)
Ferric Compounds , Humans , Ferric Compounds/chemistry , Ferric Compounds/toxicity , Hep G2 Cells , DNA Damage/drug effects , Cell Survival/drug effects , Hot Temperature , Vanadium/chemistry , Vanadium/toxicity , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity , Heating , Nanoparticles/chemistry , Nanoparticles/toxicity
11.
Mar Biotechnol (NY) ; 26(2): 338-350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451444

ABSTRACT

The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.


Subject(s)
Ciona intestinalis , Vanadium , Animals , Vanadium/metabolism , Ciona intestinalis/metabolism , Ciona intestinalis/microbiology , Pseudoalteromonas/metabolism , Vibrio/metabolism , Hydrogen-Ion Concentration , Intestines/microbiology , Culture Media/chemistry , RNA, Ribosomal, 16S/genetics
12.
Inorg Chem ; 63(11): 4997-5011, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38428015

ABSTRACT

We study active-site models of nonheme iron hydroxylases and their vanadium-based mimics using density functional theory to determine if vanadyl is a faithful structural mimic. We identify crucial structural and energetic differences between ferryl and vanadyl isomers owing to the differences in their ground electronic states, i.e., high spin (HS) for Fe and low spin (LS) for V. For the succinate cofactor bound to the ferryl intermediate, we predict facile interconversion between monodentate and bidentate coordination isomers for ferryl species but difficult rearrangement for vanadyl mimics. We study isomerization of the oxo intermediate between axial and equatorial positions and find the ferryl potential energy surface to be characterized by a large barrier of ca. 10 kcal/mol that is completely absent for the vanadyl mimic. This analysis reveals even starker contrasts between Fe and V in hydroxylases than those observed for this metal substitution in nonheme halogenases. Analysis of the relative bond strengths of coordinating carboxylate ligands for Fe and V reveals that all of the ligands show stronger binding to V than Fe owing to the LS ground state of V in contrast to the HS ground state of Fe, highlighting the limitations of vanadyl mimics of native nonheme iron hydroxylases.


Subject(s)
Iron , Vanadium , Vanadates , Electronics , Mixed Function Oxygenases
13.
Anal Chem ; 96(14): 5677-5685, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38533607

ABSTRACT

Reactive oxygen species (ROS) are closely associated with the redox balance of the physiological environment, and monitoring ROS can aid in the early diagnosis of many diseases, including cancer. In this study, chiral vanadium trioxide/vanadium nitride (V2O3/VN) nanoparticles (NPs) modified with an organic dye (cyanine 3 [Cy3]) were prepared for ROS sensing. Chiral V2O3/VN NPs were prepared with the "ligand-induced chirality" strategy and showed a g-factor of up to 0.12 at a wavelength of 512 nm. To the best of our knowledge, this g-factor is the highest value of all chiral ceramic nanomaterials. The very high g-factor of the nanoprobe confers very high sensitivity, because the higher g-factor, the higher sensitivity. In the presence of ROS, V3+ in the chiral V2O3/VN nanoprobe undergoes a redox reaction to form V2O5, reducing the circular dichroism and absorbance signals, whereas the fluorescence signal of Cy3 is restored. With this nanoprobe, the limits of detection for the circular dichroic and fluorescence signals in living cells are 0.0045 nmol/106 and 0.018 nmol/106 cells, respectively. This chiral nanoprobe can also monitor ROS levels in vivo by fluorescence. This strategy provides an innovative approach to the detection of ROS and is expected to promote the wider application of chiral nanomaterials for biosensing.


Subject(s)
Nanoparticles , Neoplasms , Humans , Reactive Oxygen Species , Vanadium
14.
Environ Pollut ; 347: 123804, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38493864

ABSTRACT

Industrial activities pose a significant ecological risk to water resources as they pollute surrounding waters with vanadium (V). Although the contribution of plants and substrates to V removal in constructed wetlands (CWs) has been reported, the role of arbuscular mycorrhizal fungi (AMF) is unclear. The aim of the present study was to investigate the role of AMF in V removal in CWs and to elucidate the underlying mechanisms. Reed plants (Phragmites australis) were inoculated with an AMF strain (Rhizophagus irregularis) in CW columns, creating AMF-inoculated (+AMF) and non-inoculated (-AMF) treatments. Three levels of influent V concentrations (low: 0.50 mg L-1, medium: 1.14 mg L-1 and high: 1.52 mg L-1) were examined. The + AMF treatment showed higher V removal (60%-98%) than the control (40%-82%) in all three conditions, although the difference was not significant in some cases. The mean mycorrhizal effects were 75%, 19%, and 28% for low, moderate, and high influent V concentrations, respectively. The +AMF treatment showed a higher GRSP-bonded V concentration (5.5 mg g-1) than the -AMF treatment (4.0 mg g-1). Furthermore, +AMF treatment showed larger plants with higher V concentrations in their tissues, accompanied by increased biological concentration factors and biological accumulation factors. Given the remarkable positive effect of AMF on V removal, our study suggests that treating AMF in CWs is a worthwhile approach.


Subject(s)
Mycorrhizae , Wetlands , Vanadium , Rivers , Fungi , Plants , Water , Plant Roots/microbiology
15.
Mar Pollut Bull ; 201: 116201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457876

ABSTRACT

The objective of this study is to assess the effect of petrochemical effluent on heavy metal pollutant in the Musa Estuary ecosystem in the North-western region of the Persian Gulf, through numerical modeling. The outfall of 30 petrochemical plants poses a potential threat to the estuary's seawater and sediment quality, environment, and public health. A combined hydrodynamic and ecologic modeling framework is applied to predict the spatial distribution of BOD and hazardous heavy metals in this estuary. MIKE 21 Flow Model (FM) CFD software is applied to simulate the tidal waves hydrodynamics, next to applying the MIKE ECO Lab models to predict the distribution of BOD and heavy metals in ambient water. The accuracy of the modeling framework is validated against measured water level, current speed, and water quality data. The results reveal that the level of lead concentration corresponds with the national standard, while the BOD, arsenic, molybdenum and vanadium exceed the limit in some areas, particularly in the tidal zone. The optimal outlet locations that effectively meet the standard concentrations of the heavy metals in the ambient water of the estuary are determined. The results confirm that the new outlet configuration corresponds with the standards: 0.198 µg/L for arsenic concentrations, 0.182 µg/L for molybdenum, 1.530 µg/L for vanadium, and 1.132 mg/L for BOD, at maximum. This study contributes to the perception of estuarine dynamics and provides practical implications for estuarine sustainable management and pollution control.


Subject(s)
Arsenic , Metals, Heavy , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring/methods , Estuaries , Geologic Sediments , Metals, Heavy/analysis , Molybdenum , Risk Assessment , Vanadium , Water Pollutants, Chemical/analysis , Water Quality
16.
Environ Sci Pollut Res Int ; 31(18): 26510-26526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446297

ABSTRACT

Vanadium (V) plays a crucial role in normal cells, but excess V causes multi-organ toxicity, including neurotoxicity. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a dynamic structure between endoplasmic reticulum (ER) and mitochondria that mediates ER quality control (ERQC). To explore the effects of excess V on MAM and ERQC in the brain, 72 ducks were randomly divided into two groups: the control group (basal diet) and the V group (30 mg V/kg basal diet). On days 22 and 44, brain tissues were collected for histomorphological observation and determination of trace element contents. In addition, the mRNA and protein levels of MAM and ERQC-related factors in the brain were analyzed. Results show that excessive V causes the imbalance of trace elements, the integrity disruption of MAM, rupture of ER and autophagosomes formation. Moreover, it inhibits IP3R and VDAC1 co-localization, down-regulates the expression levels of MAM-related factors, but up-regulates the expression levels of ERQC and autophagy related factors. Together, results indicate that V exposure causes disruption of MAM and activates ERQC, which is further causing autophagy.


Subject(s)
Brain , Ducks , Endoplasmic Reticulum , Mitochondria , Vanadium , Animals , Brain/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Vanadium/toxicity , Mitochondria/drug effects , Autophagy/drug effects
17.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398551

ABSTRACT

Bis(acetylacetonato)oxidovanadium(IV) [(VO(acac)2], generally known as vanadyl acetylacetonate, has been shown to be preferentially sequestered in malignant tissue. Vanadium-48 (48V) generated with a compact medical cyclotron has been used to label VO(acac)2 as a potential radiotracer in positron emission tomography (PET) imaging for the detection of cancer, but requires lengthy synthesis. Current literature protocols for the characterization of VO(acac)2 require macroscale quantities of reactants and solvents to identify products by color and to enable crystallization that are not readily adaptable to the needs of radiotracer synthesis. We present an improved method to produce vanadium-48-labeled VO(acac)2, [48V]VO(acac)2, and characterize it using high-performance liquid chromatography (HPLC) with radiation detection in combination with UV detection. The approach is suitable for radiotracer-level quantities of material. These methods are readily applicable for production of [48V]VO(acac)2. Preliminary results of preclinical, small-animal PET studies are presented.


Subject(s)
Hydroxybutyrates , Neoplasms , Pentanones , Radioisotopes , Vanadium , Animals , Chromatography, High Pressure Liquid , Vanadium/chemistry , Neoplasms/diagnostic imaging , Positron-Emission Tomography
18.
Ecotoxicol Environ Saf ; 272: 116075, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38325273

ABSTRACT

Although animal studies have shown the reproductive toxicity of vanadium, less is known about its effects on semen quality in humans. Among 1135 healthy men who were screened as potential semen donors, we investigated the relationships of semen quality with urinary and seminal plasma vanadium levels via inductively coupled plasma-mass spectrometry (ICP-MS). Spearman rank correlation tests and linear regression models were used to assess the correlations between average urinary and within-individual pooled seminal plasma vanadium concentrations (n = 1135). We utilized linear mixed-effects models to evaluate the associations of urinary and seminal plasma vanadium levels (n = 1135) with repeated sperm quality parameters (n = 5576). Seminal plasma vanadium concentrations were not significantly correlated with urinary vanadium concentrations (r = 0.03). After adjusting for possible confounders, we observed inverse relationships of within-individual pooled seminal plasma vanadium levels with total count, semen volume, and sperm concentration (all P values for trend < 0.05). Specifically, subjects in the highest (vs. lowest) tertile of seminal plasma vanadium concentrations had - 11.3% (-16.4%, -5.9%), - 11.1% (-19.1%, -2.4%), and - 20.9% (-29.0%, -11.8%) lower sperm volume, concentration, and total count, respectively; moreover, urinary vanadium levels appeared to be negatively associated with sperm motility. These relationships showed monotonically decreasing dose-response patterns in the restricted cubic spline analyses. Our results demonstrated a poor correlation between urinary and seminal plasma levels of vanadium, and elevated vanadium concentrations in urine and seminal plasma may be adversely related to male semen quality.


Subject(s)
Semen Analysis , Semen , Animals , Male , Humans , Semen/chemistry , Vanadium/toxicity , Vanadium/analysis , Sperm Motility , Sperm Count , Spermatozoa/physiology
19.
Anal Chem ; 96(12): 4825-4834, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38364099

ABSTRACT

Immunochromatographic assays (ICAs) have been widely used in the field detection of mycotoxin contaminants. Nevertheless, the lack of multisignal readout capability and the ability of signaling tags to maintain their biological activity while efficiently loading antibodies remain a great challenge in satisfying diverse testing demands. Herein, we proposed a novel three-in-one multifunctional hollow vanadium nanomicrosphere (high brightness-catalytic-photothermal properties)-mediated triple-readout ICA (VHMS-ICA) for sensitive detection of T-2. As the key to this biosensing strategy, vanadium was used as the catalytic-photothermal characterization center, and natural polyphenols were utilized as the bridging ligands for coupling with the antibody while self-assembling with formaldehyde cross-linking into a hollow nanocage-like structure, which offers the possibility of realizing a three-signal readout strategy and improving the coupling efficiency to the antibody while preserving its biological activity. The constructed sensors showed a detection limit (LOD) of 2 pg/mL for T-2, which was about 345-fold higher than that of conventional gold nanoparticle-based ICA (0.596 ng/mL). As anticipated, the detection range of VHMS-ICA was extended about 8-fold compared with the colorimetric signal alone. Ultimately, the proposed immunosensor performed well in maize and oat samples, with satisfactory recoveries. Owing to the synergistic and complementary interactions between distinct signaling modes, the establishment of multimodal immunosensors with multifunctional tags is an efficient strategy to satisfy diversified detection demands.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal Nanoparticles/chemistry , Immunoassay , Colorimetry , Gold/chemistry , Vanadium , Antibodies , Limit of Detection
20.
Environ Sci Pollut Res Int ; 31(14): 20983-20998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38381290

ABSTRACT

This work investigates the photocatalytic performance of V2O5 and V3O7 nanoparticles and their nanocomposites with rGO. The as-annealed V2O5 and V3O7 nanoparticles exhibited pure orthorhombic and monoclinic structures with an optical bandgap of 2.3 and 2.5 eV, respectively. The corresponding vibrational modes using Raman and FTIR spectroscopy analysis further confirm the form. The morphological studies reveal that V2O5 and V3O7 nanoparticles possess plate and petal-like morphology, respectively. Moreover, in the case of V2O5/V3O7-rGO nanocomposites, the plate/petal-like nanoparticles are embedded within rGO sheets. Incorporating nanoparticles within rGO sheets has quenched the green photoluminescence emission, enhancing their photocatalytic performance upon irradiation with white light of 100 mW/cm2. This is ascribed to the effective transport of interfacial electrons from vanadium oxide nanoparticles to the rGO surface, reducing the recombination of photogenerated charge carriers. These results indicate that the vanadium oxide/rGO nanocomposites have potential applications in wastewater treatment.


Subject(s)
Graphite , Methylene Blue , Nanocomposites , Methylene Blue/chemistry , Vanadium , Catalysis , Oxides/chemistry , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...