Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 933
Filter
1.
Anal Methods ; 16(20): 3240-3248, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38726550

ABSTRACT

Currently, Nernstian-response-based polymeric membrane potentiometric sensors using molecularly imprinted polymers (MIPs) as receptors have been successfully developed for determination of organic ionic species. However, the preparation of these MIP receptors usually involves tedious and time-consuming template-removal procedures. Herein, a template-removal-free MIP is proposed and used as a receptor for fabrication of a potentiometric sensor. The proposed methodology not only significantly shortens the preparation time of MIP-based potentiometric sensors but also improves the batch-to-batch reproducibility of these sensors. By using antibiotic vancomycin as a model, the new concept offers a linear concentration range of 1.0 × 10-7 to 1.0 × 10-4 mol L-1 with a detection limit of 2.51 × 10-8 mol L-1. It can be expected that the template-removal-free MIP-based sensing strategy could lay the foundation for simple fabrication of electrochemical sensors without the need for template removal such as potentiometric and capacitive sensors and ion-sensitive field-effect transistors.


Subject(s)
Anti-Bacterial Agents , Molecularly Imprinted Polymers , Potentiometry , Vancomycin , Potentiometry/methods , Potentiometry/instrumentation , Anti-Bacterial Agents/analysis , Molecularly Imprinted Polymers/chemistry , Vancomycin/chemistry , Vancomycin/analysis , Membranes, Artificial , Molecular Imprinting/methods , Limit of Detection , Polymers/chemistry , Reproducibility of Results
2.
Anal Chem ; 96(21): 8641-8647, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38716697

ABSTRACT

Pathogenic bacterial infections, even at extremely low concentrations, pose significant threats to human health. However, the challenge persists in achieving high-sensitivity bacterial detection, particularly in complex samples. Herein, we present a novel sandwich-type electrochemical sensor utilizing bacteria-imprinted polymer (BIP) coupled with vancomycin-conjugated MnO2 nanozyme (Van@BSA-MnO2) for the ultrasensitive detection of pathogenic bacteria, exemplified by Staphylococcus aureus (S. aureus). The BIP, in situ prepared on the electrode surface, acts as a highly specific capture probe by replicating the surface features of S. aureus. Vancomycin (Van), known for its affinity to bacterial cell walls, is conjugated with a Bovine serum albumin (BSA)-templated MnO2 nanozyme through EDC/NHS chemistry. The resulting Van@BSA-MnO2 complex, serving as a detection probe, provides an efficient catalytic platform for signal amplification. Upon binding with the captured S. aureus, the Van@BSA-MnO2 complex catalyzes a substrate reaction, generating a current signal proportional to the target bacterial concentration. The sensor displays remarkable sensitivity, capable of detecting a single bacterial cell in a phosphate buffer solution. Even in complex milk matrices, it maintains outstanding performance, identifying S. aureus at concentrations as low as 10 CFU mL-1 without requiring intricate sample pretreatment. Moreover, the sensor demonstrates excellent selectivity, particularly in distinguishing target S. aureus from interfering bacteria of the same genus at concentrations 100-fold higher. This innovative method, employing entirely synthetic materials, provides a versatile and low-cost detection platform for Gram-positive bacteria. In comparison to existing nanozyme-based bacterial sensors with biological recognition materials, our assay offers distinct advantages, including enhanced sensitivity, ease of preparation, and cost-effectiveness, thereby holding significant promise for applications in food safety and environmental monitoring.


Subject(s)
Manganese Compounds , Oxides , Polymers , Staphylococcus aureus , Vancomycin , Staphylococcus aureus/isolation & purification , Manganese Compounds/chemistry , Oxides/chemistry , Vancomycin/chemistry , Polymers/chemistry , Serum Albumin, Bovine/chemistry , Electrochemical Techniques/methods , Single-Cell Analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Animals , Limit of Detection , Molecularly Imprinted Polymers/chemistry , Humans
3.
Biomater Adv ; 161: 213896, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795473

ABSTRACT

Surgical site infection (SSI) is a common issue post-surgery which often prolongs hospitalization and can lead to serious complications such as sternal wound infection following cardiac surgery via median sternotomy. Controlled release of suitable antibiotics could allow maximizing drug efficacy and safety, and therefore achieving a desired therapeutic response. In this study, we have developed a vancomycin laden PEGylated fibrinogen-polyethylene glycol diacrylate (PF-PEGDA) hydrogel system that can release vancomycin at a controlled and predictable rate to be applied in SSI prevention. Two configurations were developed to study effect of the hydrogel on drug release, namely, vancomycin laden hydrogel and vancomycin solution on top of blank hydrogel. The relationship between the rigidity of the hydrogel and drug diffusion was found to comply with a universal power law, i.e., softer hydrogels result in a greater diffusion coefficient hence faster release rate. Besides, vancomycin laden hydrogels exhibited burst release, whereas the vancomycin solution on top of blank hydrogels exhibited lag release. A mathematical model was developed to simulate vancomycin permeation through the hydrogels. The permeation of vancomycin can be predicted accurately by using the mathematical model, which provided a useful tool to customize drug loading, hydrogel thickness and stiffness for personalized medication to manage SSI. To evaluate the potential of hydrogels for bone healing applications in cardiovascular medicine, we performed a proof-of-concept median sternotomy in rabbits and applied the hydrogels. The hydrogel formulations accelerated the onset of osteo-genetic processes in rabbits, demonstrating its potential to be used in human.


Subject(s)
Anti-Bacterial Agents , Delayed-Action Preparations , Fibrinogen , Hydrogels , Polyethylene Glycols , Vancomycin , Vancomycin/administration & dosage , Vancomycin/chemistry , Vancomycin/pharmacokinetics , Polyethylene Glycols/chemistry , Fibrinogen/chemistry , Animals , Hydrogels/chemistry , Delayed-Action Preparations/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Drug Liberation , Rabbits , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Humans
4.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Article in English | MEDLINE | ID: mdl-38720939

ABSTRACT

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Staphylococcus aureus , Vancomycin , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Drug Carriers/chemistry , Collagen/chemistry , Collagen/pharmacology , Particle Size , Drug Liberation , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Microbial Sensitivity Tests , Biofilms/drug effects
5.
Mikrochim Acta ; 191(6): 305, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38713444

ABSTRACT

A multifunctional surface-enhanced Raman scattering (SERS) platform integrating sensitive detection and drug resistance analysis was developed for Gram-positive bacteria. The substrate was based on self-assembled Ti3C2Tx@Au NPs films and capture molecule phytic acid (IP6) to achieve specific capture of Gram-positive bacteria and different bacteria were analyzed by fingerprint signal. It had advantages of good stability and homogeneity (RSD = 8.88%). The detection limit (LOD) was 102 CFU/mL for Staphylococcus aureus and 103 CFU/mL for MRSA, respectively. A sandwich structure was formed on the capture substrate by signal labels prepared by antibiotics (penicillin G and vancomycin) and non-interference SERS probe molecules (4-mercaptobenzonitrile (2223 cm-1) and 2-amino-4-cyanopyridine (2240 cm-1)) to improve sensitivity. The LOD of Au NPs@4-MBN@PG to S. aureus and Au NPs@AMCP@Van to MRSA and S. aureus were all improved to 10 CFU/mL, with a wide dynamic linear range from 108 to 10 CFU/mL (R2 ≥ 0.992). The SERS platform can analyze the drug resistance of drug-resistant bacteria. Au NPs@4-MBN@PG was added to the substrate and captured MRSA to compare the SERS spectra of 4-MBN. The intensity inhomogeneity of 4-MBN at the same concentrations of MRSA and the nonlinearity at the different concentrations of MRSA revealed that MRSA was resistant to PG. Finally, the SERS platform achieved the determination of MRSA in blood. Therefore, this SERS platform has great significance for the determination and analysis of Gram-positive bacteria.


Subject(s)
Anti-Bacterial Agents , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Staphylococcus aureus , Titanium , Spectrum Analysis, Raman/methods , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Vancomycin/pharmacology , Vancomycin/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Penicillin G/pharmacology , Penicillin G/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
6.
Biomacromolecules ; 25(5): 3190-3199, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38693753

ABSTRACT

Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Nitric Oxide , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Animals , RAW 264.7 Cells , Nanoparticles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Immunotherapy/methods , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/administration & dosage , Bacterial Infections/drug therapy , Trehalose/chemistry , Trehalose/pharmacology
7.
Mikrochim Acta ; 191(5): 293, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38691169

ABSTRACT

To address the need for facile, rapid detection of pathogens in water supplies, a fluorescent sensing array platform based on antibiotic-stabilized metal nanoclusters was developed for the multiplex detection of pathogens. Using five common antibiotics, eight different nanoclusters (NCs) were synthesized including ampicillin stabilized copper NCs, cefepime stabilized gold and copper NCs, kanamycin stabilized gold and copper NCs, lysozyme stabilized gold NCs, and vancomycin stabilized gold/silver and copper NCs. Based on the different interaction of each NC with the bacteria strains, unique patterns were generated. Various machine learning algorithms were employed for pattern discernment, among which the artificial neural networks proved to have the highest performance, with an accuracy of 100%. The developed prediction model performed well on an independent test dataset and on real samples gathered from drinking water, tap water and the Anzali Lagoon water, with prediction accuracy of 96.88% and 95.14%, respectively. This work demonstrates how generic antibiotics can be implemented for NC synthesis and used as recognition elements for pathogen detection. Furthermore, it displays how merging machine learning techniques can elevate sensitivity of analytical devices.


Subject(s)
Anti-Bacterial Agents , Copper , Gold , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Gold/chemistry , Copper/chemistry , Silver/chemistry , Drinking Water/microbiology , Drinking Water/analysis , Neural Networks, Computer , Spectrometry, Fluorescence/methods , Machine Learning , Bacteria/isolation & purification , Fluorescent Dyes/chemistry , Vancomycin/chemistry , Water Microbiology , Kanamycin/analysis
8.
Int J Biol Macromol ; 269(Pt 1): 131808, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697439

ABSTRACT

Injectable hydrogels, providing sustained release as implanted materials, have received tremendous attention. In this study, chitosan-based hydrogels were prepared via Schiff base reaction of the aldehyde groups on Poly(NIPAM-co-FBEMA) and the amine groups on chitosan. Owing to the dynamic covalent linkage, the SC/PNF hydrogels exhibit pH-responsive, reversible sol-gel transition, injectable, and self-healing capacity. The mechanical strength of SC/PNF hydrogels can be operated simply by switching the composition or solid content of Poly(NIPAM-co-FBEMA) copolymers. Rheological analyses, including frequency sweeps, strain sweep scanning, and dynamic time sweeps, were employed to demonstrate the relationship between storage modulus (G'), loss modulus (G″), and composition of the SC/PNF hydrogels. In vitro release behaviors reveal that vancomycin-loaded SC/PNF hydrogel could contribute to both the initial burst release (over 1000 ppm within 4 h) and the sustained release (3000 ppm for at least 30 days). Pristine SC/PNF hydrogel holds good biocompatibility toward L929 cells and S. aureus that it degrades as incubated with S. aureus. However, vancomycin-wrapped SC/PNF hydrogel possesses a rapid bacterial-killing effect with a clear inhibition zone. In short, the SC/PNF hydrogels deliver not only sustainable release ability but also tunable physical properties, which are expected to be an outstanding candidate for non-invasive, anti-infection applications.


Subject(s)
Anti-Bacterial Agents , Chitosan , Delayed-Action Preparations , Hydrogels , Schiff Bases , Staphylococcus aureus , Chitosan/chemistry , Schiff Bases/chemistry , Hydrogels/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Delayed-Action Preparations/pharmacology , Mice , Animals , Drug Liberation , Injections , Cell Line , Rheology , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Hydrogen-Ion Concentration , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Drug Carriers/chemistry
9.
J Mater Chem B ; 12(21): 5248-5260, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38712662

ABSTRACT

Intracellular bacteria are considered to play a key role in the failure of bacterial infection therapy and increase of antibiotic resistance. Nanotechnology-based drug delivery carriers have been receiving increasing attention for improving the intracellular antibacterial activity of antibiotics, but are accompanied by disadvantages such as complex preparation procedures, lack of active targeting, and monotherapy, necessitating further design improvements. Herein, nanoparticles targeting bacteria-infected macrophages are fabricated to eliminate intracellular bacterial infections via antibiotic release and upregulation of intracellular reactive oxygen species (ROS) levels and proinflammatory responses. These nanoparticles were formed through the reaction of the amino group on selenocystamine dihydrochloride and the aldehyde group on oxidized dextran (ox-Dex), which encapsulates vancomycin (Van) through hydrophobic interactions. These nanoparticles could undergo targeted uptake by macrophages via endocytosis and respond to the bacteria-infected intracellular microenvironment (ROS and glutathione (GSH)) for controlled release of antibiotics. Furthermore, these nanoparticles could consume intracellular GSH and promote a significant increase in the level of ROS in macrophages, subsequently up-regulating the proinflammatory response to reinforce antibacterial activity. These nanoparticles can accelerate bacteria-infected wound healing. In this work, nanoparticles were fabricated for bacteria-infected macrophage-targeted and microenvironment-responsive antibiotic delivery, cellular ROS generation, and proinflammatory up-regulation activity to eliminate intracellular bacteria, which opens up a new possibility for multifunctional drug delivery against intracellular infection.


Subject(s)
Anti-Bacterial Agents , Immunotherapy , Macrophages , Nanoparticles , Reactive Oxygen Species , Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Animals , Mice , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Dextrans/chemistry , Dextrans/pharmacology , Vancomycin/pharmacology , Vancomycin/chemistry , Bacterial Infections/drug therapy , Microbial Sensitivity Tests , Cystamine/chemistry , Cystamine/pharmacology , Staphylococcus aureus/drug effects , Drug Carriers/chemistry , Particle Size
10.
J Med Chem ; 67(5): 3778-3794, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482826

ABSTRACT

It is an urgent need to tackle the global crisis of multidrug-resistant bacterial infections. We report here an innovative strategy for large-scale screening of new antibacterial agents using a whole bacteria-based DNA-encoded library (DEL) of vancomycin derivatives via peripheral modifications. A bacterial binding affinity assay was established to select the modification fragments in high-affinity compounds. The optimal resynthesized derivatives demonstrated excellently enhanced activity against various resistant bacterial strains and provided useful structures for vancomycin derivatization. This work presents the new concept in a natural product-templated DEL and in antibiotic discovery through bacterial affinity screening, which promotes the fight against drug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Vancomycin , Vancomycin/pharmacology , Vancomycin/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Drug Resistance, Multiple, Bacterial , DNA , Microbial Sensitivity Tests
11.
Int J Pharm ; 656: 124056, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38548072

ABSTRACT

Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.


Subject(s)
Administration, Ophthalmic , Amikacin , Anti-Bacterial Agents , Delayed-Action Preparations , Drug Liberation , Nanofibers , Polyesters , Polyvinyl Alcohol , Pseudomonas aeruginosa , Staphylococcus aureus , Vancomycin , Animals , Rabbits , Nanofibers/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcus aureus/drug effects , Polyesters/chemistry , Pseudomonas aeruginosa/drug effects , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Vancomycin/chemistry , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Amikacin/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Male
12.
Adv Healthc Mater ; 13(14): e2303654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38387090

ABSTRACT

Oral delivery of peptide therapeutics faces multiple challenges due to their instability in the gastrointestinal tract and low permeation capability. In this study, the aim is to develop a liposomal nanocarrier formulation to enable the oral delivery of the vancomycin-peptide derivative FU002. FU002 is a promising, resistance-breaking, antibiotic which exhibits poor oral bioavailability, limiting its potential therapeutic use. To increase its oral bioavailability, FU002 is incorporated into tetraether lipid-stabilized liposomes modified with cyclic cell-penetrating peptides on the liposomal surface. This liposomal formulation shows strong binding to Caco-2 cells without exerting cytotoxic effects in vitro. Pharmacokinetics studies in vivo in rats reveal increased oral bioavailability of liposomal FU002 when compared to the free drug. In vitro and in vivo antimicrobial activity of FU002 are preserved in the liposomal formulation. As a highlight, oral administration of liposomal FU002 results in significant therapeutic efficacy in a murine systemic infection model. Thus, the presented nanotechnological approach provides a promising strategy for enabling oral delivery of this highly active vancomycin derivative.


Subject(s)
Anti-Bacterial Agents , Liposomes , Vancomycin , Vancomycin/chemistry , Vancomycin/pharmacokinetics , Vancomycin/administration & dosage , Vancomycin/pharmacology , Liposomes/chemistry , Animals , Administration, Oral , Caco-2 Cells , Humans , Rats , Mice , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Drug Carriers/chemistry , Nanoparticles/chemistry , Rats, Sprague-Dawley , Male , Biological Availability
13.
Anal Chim Acta ; 1294: 342309, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38336411

ABSTRACT

BACKGROUND: Glycopeptide antibiotics (GPAs) represented by vancomycin (VAN) are clinically used as a first-line treatment for serious infections caused by Gram-positive pathogens. The use and dosing methods of GPAs are rigorously managed for safety considerations, which calls for fast and accurate quantification approaches. RESULT: A new sort of fluorescent probes for GPAs has been proposed, each of which was integrated by a fluorescein-based reporter and a GPAs' recognition peptide D-alanyl-D-alanine (D-Ala-D-Ala). These probes work as dynamic molecular switches, which mainly exist as non-fluorescent spirolactam forms in the absence of GPAs. GPAs binding with the dipeptide regulates the dynamic balance between fluorescence OFF lactam form and fluorescence ON ring-opened form, rendering these probes capable of GPAs detecting. The most promising one P1 exhibits excellent sensitivity and selectivity towards GPAs detection. SIGNIFICANCE: Different to previous developments, P1 consists of a single fluorophore without the need of a fluorescence-quenching group or a secondary dye, which is the smallest fluorescent probe for GPAs up to now. P1 realizes direct VAN quantification from complex biological samples including real serums, dispensing with additional drug extraction. More interestingly, both P1 and P6 can distinguish GPAs with different peptide backbones, which has not been achieved previously.


Subject(s)
Anti-Bacterial Agents , Glycopeptides , Fluorescence , Anti-Bacterial Agents/chemistry , Glycopeptides/chemistry , Vancomycin/chemistry , Alanine
14.
J Chromatogr A ; 1715: 464611, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38181629

ABSTRACT

Hydroxy acids (HAs) are ubiquitous in nature and play significant roles in various industrial and biological processes. Most HAs harbor at least one chiral center, therefore the development of efficient chiral analysis techniques for HA stereoisomers is of crucial importance across a wide range of fields. A capillary electrophoresis (CE) method was developed for the chiral analysis and quantification of aliphatic and aromatic α­hydroxy acid (AHA) enantiomers, aliphatic ß­hydroxy acid (BHA) enantiomers and aliphatic polyhydroxy acid (PHA) stereoisomers. Using a modified partial filling-counter current method with indirect UV detection, high resolution (Rs) was achieved with vancomycin as a chiral selector added to the background electrolyte composed of 10 mM of benzoic acid/L-histidine at pH 5 using a polyacrylamide-coated capillary. This method could be readily applied to the determination of the enantiomers of 12 aliphatic AHAs, 4 aromatic AHAs, 3 aliphatic BHAs, as well as to the determination of the stereoisomers of tartaric acid, 2,3-dihydroxybutanoic acid, 2,3,4,5-tetrahydroxypentanoic acid, and 2,3,4,5,6-pentahydroxyhexanoic acid without the need for sample derivatization. Finally, our study provides a robust and versatile strategy for the chiral and stereoselective analysis of a broad range of hydroxy acid compounds.


Subject(s)
Hydroxy Acids , Vancomycin , Vancomycin/chemistry , Electrophoresis, Capillary/methods , Stereoisomerism
15.
J Am Chem Soc ; 145(38): 21002-21011, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37721386

ABSTRACT

The biosynthesis of glycopeptide antibiotics such as vancomycin and other biologically active biaryl-bridged and diaryl ether-linked macrocyclic peptides includes key enzymatic oxidative phenol macrocyclization(s) of linear precursors. However, a simple and step-economical biomimetic version of this transformation remains underdeveloped. Here, we report highly efficient conditions for preparing biaryl-bridged and diaryl ether-linked macrocyclic peptides based on multicopper(II) clusters. The selective syntheses of ring models of vancomycin and the arylomycin cyclic core illustrate the potential of this technology to facilitate the assembly of complex antibiotic macrocyclic peptides, whose syntheses are considered highly challenging. The unprecedented ability of multicopper(II) clusters to chelate tethered diphenols and promote intramolecular over intermolecular coupling reactions demonstrates that copper clusters can catalyze redox transformations that cannot be accessed by smaller metal catalysts.


Subject(s)
Phenol , Vancomycin , Vancomycin/chemistry , Peptides/chemistry , Phenols , Oxidation-Reduction , Ethers , Ethyl Ethers , Oxidative Stress , Peptides, Cyclic/chemistry
16.
J Med Chem ; 66(15): 10226-10237, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37477249

ABSTRACT

Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.


Subject(s)
Mycobacterium , Vancomycin , Vancomycin/pharmacology , Vancomycin/chemistry , Peptidoglycan/chemistry , Arginine/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
17.
J Med Chem ; 66(15): 10238-10240, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37477251

ABSTRACT

Vancomycin-like drugs target peptidoglycan (PG) via binding to C-terminal d-Ala-d-Ala dipeptide. An engineered vancomycin has enhanced affinity for the PG stem peptide, due to probable interactions with a third residue, meso-diaminopimelic acid, in the PG. This engineered vancomycin displays enhanced killing of mycobacteria.


Subject(s)
Peptidoglycan , Vancomycin , Vancomycin/chemistry , Peptidoglycan/chemistry , Vancomycin Resistance , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
18.
ACS Chem Biol ; 18(7): 1473-1479, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37405871

ABSTRACT

The emergence of multidrug-resistant pathogens poses a threat to public health and requires new antimicrobial agents. As the archetypal glycopeptide antibiotic (GPA) used against drug-resistant Gram-positive pathogens, vancomycin provides a promising starting point. Peripheral alterations to the vancomycin scaffold have enabled the development of new GPAs. However, modifying the core remains challenging due to the size and complexity of this compound family. The recent successful chemoenzymatic synthesis of vancomycin suggests that such an approach can be broadly applied. Herein, we describe the expansion of chemoenzymatic strategies to encompass type II GPAs bearing all aromatic amino acids through the production of the aglycone analogue of keratinimicin A, a GPA that is 5-fold more potent than vancomycin against Clostridioides difficile. In the course of these studies, we found that the cytochrome P450 enzyme OxyBker boasts both broad substrate tolerance and remarkable selectivity in the formation of the first aryl ether cross-link on the linear peptide precursors. The X-ray crystal structure of OxyBker, determined to 2.8 Å, points to structural features that may contribute to these properties. Our results set the stage for using OxyBker broadly as a biocatalyst toward the chemoenzymatic synthesis of diverse GPA analogues.


Subject(s)
Anti-Bacterial Agents , Vancomycin , Vancomycin/chemistry , Anti-Bacterial Agents/chemistry , Glycopeptides/chemistry , Cytochrome P-450 Enzyme System/metabolism , Peptides
19.
ACS Appl Mater Interfaces ; 15(31): 37174-37183, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37525332

ABSTRACT

Periprosthetic infections are one of the most serious complications in orthopedic surgeries, and those caused by Staphylococcus aureus (S. aureus) are particularly hard to treat due to their tendency to form biofilms on implants and their notorious ability to invade the surrounding bones. The existing prophylactic local antibiotic deliveries involve excessive drug loading doses that could risk the development of drug resistance strains. Utilizing an oligonucleotide linker sensitive to micrococcal nuclease (MN) cleavage, we previously developed an implant coating capable of releasing covalently tethered vancomycin, triggered by S. aureus-secreted MN, to prevent periprosthetic infections in the mouse intramedullary (IM) canal. To further engineer this exciting platform to meet broader clinical needs, here, we chemically modified the oligonucleotide linker by a combination of 2'-O-methylation and phosphorothioate modification to achieve additional modulation of its stability/sensitivity to MN and the kinetics of MN-triggered on-demand release. We found that when all phosphodiester bonds within the oligonucleotide linker 5'-carboxy-mCmGTTmCmG-3-acrydite, except for the one between TT, were replaced by phosphorothioate, the oligonucleotide (6PS) stability significantly increased and enabled the most sustained release of tethered vancomycin from the coating. By contrast, when only the peripheral phosphodiester bonds at the 5'- and 3'-ends were replaced by phosphorothioate, the resulting oligonucleotide (2PS) linker was cleaved by MN more rapidly than that without any PS modifications (0PS). Using a rat femoral canal periprosthetic infection model where 1000 CFU S. aureus was inoculated at the time of IM pin insertion, we showed that the prophylactic implant coating containing either 0PS- or 2PS-modified oligonucleotide linker effectively eradicated the bacteria by enabling the rapid on-demand release of vancomycin. No bacteria were detected from the explanted pins, and no signs of cortical bone changes were detected in these treatment groups throughout the 3 month follow-ups. With an antibiotic tethering dose significantly lower than conventional antibiotic-bearing bone cements, these coatings also exhibited excellent biocompatibility. These chemically modified oligonucleotides could help tailor prophylactic anti-infective coating strategies to meet a range of clinical challenges where the risks for S. aureus prosthetic infections range from transient to long-lasting.


Subject(s)
Staphylococcal Infections , Vancomycin , Rats , Mice , Animals , Vancomycin/chemistry , Micrococcal Nuclease/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control
20.
J Med Chem ; 66(13): 9006-9022, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37315221

ABSTRACT

The continued efficacy of glycopeptide antibiotics (GPAs) against Gram-positive bacteria is challenged by the emergence and spread of GPA-resistant pathogens, particularly vancomycin-resistant enterococci (VRE). The growing frequency of GPA resistance propels the need for innovative development of more effective antibiotics. Unlike canonical GPAs like vancomycin, Type V GPAs adopt a distinct mode of action by binding peptidoglycan and blocking the activity of autolysins essential for cell division, rendering them a promising class of antibiotics for further development. In this study, the Type V GPA, rimomycin A, was modified to generate 32 new analogues. Compound 17, derived from rimomycin A through N-terminal acylation and C-terminal amidation, exhibited improved anti-VRE activity and solubility. In a VRE-A neutropenic thigh infection mouse model, compound 17 significantly lowered the bacterial load by 3-4 orders of magnitude. This study sets the stage to develop next-generation GPAs in response to growing VRE infections.


Subject(s)
Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Glycopeptides/pharmacology , Glycopeptides/therapeutic use , Glycopeptides/chemistry , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests , Synthetic Biology , Vancomycin/pharmacology , Vancomycin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...