Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.818
Filter
1.
Euro Surveill ; 29(23)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847117

ABSTRACT

BackgroundVancomycin-resistant enterococci (VRE) are increasing in Denmark and Europe. Linezolid and vancomycin-resistant enterococci (LVRE) are of concern, as treatment options are limited. Vancomycin-variable enterococci (VVE) harbour the vanA gene complex but are phenotypically vancomycin-susceptible.AimThe aim was to describe clonal shifts for VRE and VVE in Denmark between 2015 and 2022 and to investigate genotypic linezolid resistance among the VRE and VVE.MethodsFrom 2015 to 2022, 4,090 Danish clinical VRE and VVE isolates were whole genome sequenced. We extracted vancomycin resistance genes and sequence types (STs) from the sequencing data and performed core genome multilocus sequence typing (cgMLST) analysis for Enterococcus faecium. All isolates were tested for the presence of mutations or genes encoding linezolid resistance.ResultsIn total 99% of the VRE and VVE isolates were E. faecium. From 2015 through 2019, 91.1% of the VRE and VVE were vanA E. faecium. During 2020, to the number of vanB E. faecium increased to 254 of 509 VRE and VVE isolates. Between 2015 and 2022, seven E. faecium clusters dominated: ST80-CT14 vanA, ST117-CT24 vanA, ST203-CT859 vanA, ST1421-CT1134 vanA (VVE cluster), ST80-CT1064 vanA/vanB, ST117-CT36 vanB and ST80-CT2406 vanB. We detected 35 linezolid vancomycin-resistant E. faecium and eight linezolid-resistant VVEfm.ConclusionFrom 2015 to 2022, the numbers of VRE and VVE increased. The spread of the VVE cluster ST1421-CT1134 vanA E. faecium in Denmark is a concern, especially since VVE diagnostics are challenging. The finding of LVRE, although in small numbers, ia also a concern, as treatment options are limited.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbon-Oxygen Ligases , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Multilocus Sequence Typing , Vancomycin Resistance , Vancomycin-Resistant Enterococci , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Humans , Denmark/epidemiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Linezolid/pharmacology , Vancomycin Resistance/genetics , Whole Genome Sequencing , Vancomycin/pharmacology , Vancomycin/therapeutic use , Genotype
2.
Protein Sci ; 33(6): e5002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723146

ABSTRACT

Bacteria that have acquired resistance to most antibiotics, particularly those causing nosocomial infections, create serious problems. Among these, the emergence of vancomycin-resistant enterococci was a tremendous shock, considering that vancomycin is the last resort for controlling methicillin-resistant Staphylococcus aureus. Therefore, there is an urgent need to develop an inhibitor of VanX, a protein involved in vancomycin resistance. Although the crystal structure of VanX has been resolved, its asymmetric unit contains six molecules aligned in a row. We have developed a structural model of VanX as a stable dimer in solution, primarily utilizing nuclear magnetic resonance (NMR) residual dipolar coupling. Despite the 46 kDa molecular mass of the dimer, the analyses, which are typically not as straightforward as those of small proteins around 10 kDa, were successfully conducted. We assigned the main chain using an amino acid-selective unlabeling method. Because we found that the zinc ion-coordinating active sites in the dimer structure were situated in the opposite direction to the dimer interface, we generated an active monomer by replacing an amino acid at the dimer interface. The monomer consists of only 202 amino acids and is expected to be used in future studies to screen and improve inhibitors using NMR.


Subject(s)
Bacterial Proteins , Protein Multimerization , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Vancomycin Resistance , Metalloendopeptidases/chemistry , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/metabolism , Catalytic Domain , Serine-Type D-Ala-D-Ala Carboxypeptidase
3.
Iran J Med Sci ; 49(5): 302-312, 2024 May.
Article in English | MEDLINE | ID: mdl-38751872

ABSTRACT

Background: Antibiotic resistance is a global public health concern that has been exacerbated by the overuse and misuse of antibiotics, leading to the emergence of resistant bacteria. The gut microbiota, often influenced by antibiotic usage, plays a crucial role in overall health. Therefore, this study aimed to investigate the prevalence of antibiotic resistant genes in the gut microbiota of Indonesian coastal and highland populations, as well as to identify vancomycin-resistant bacteria and their resistant genes. Methods: Stool samples were collected from 22 individuals residing in Pacet, Mojokerto, and Kenjeran, Surabaya Indonesia in 2022. The read count of antibiotic resistant genes was analyzed in the collected samples, and the bacterium concentration was counted by plating on the antibiotic-containing agar plate. Vancomycin-resistant strains were further isolated, and the presence of vancomycin-resistant genes was detected using a multiplex polymerase chain reaction (PCR). Results: The antibiotic resistant genes for tetracycline, aminoglycosides, macrolides, beta-lactams, and vancomycin were found in high frequency in all stool samples (100%) of the gut microbiota. Meanwhile, those meant for chloramphenicol and sulfonamides were found in 86% and 16% of the samples, respectively. Notably, vancomycin-resistant genes were found in 16 intrinsically resistant Gram-negative bacterial strains. Among the detected vancomycin-resistant genes, vanG was the most prevalent (27.3%), while vanA was the least prevalent (4.5%). Conclusion: The presence of multiple vancomycin resistance genes in intrinsically resistant Gram-negative bacterial strains demonstrated the importance of the gut microbiota as a reservoir and hub for the horizontal transfer of antibiotic resistant genes.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/drug effects , Indonesia , Vancomycin Resistance/genetics , Vancomycin/pharmacology , Vancomycin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Feces/microbiology , Male , Female , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Adult , Genes, Bacterial
4.
BMC Infect Dis ; 24(1): 494, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745289

ABSTRACT

BACKGROUND: Brain-heart infusion agar supplemented with 4 µg/mL of vancomycin (BHI-V4) was commonly used for the detection of heterogeneous (hVISA) and vancomycin-intermediate Staphylococcus aureus (VISA). However, its diagnostic value remains unclear. This study aims to compare the diagnostic accuracy of BHI-V4 with population analysis profiling with area under the curve (PAP-AUC) in hVISA/VISA. METHODS: The protocol of this study was registered in INPLASY (INPLASY2023120069). The PubMed and Cochrane Library databases were searched from inception to October 2023. Review Manager 5.4 was used for data visualization in the quality assessment, and STATA17.0 (MP) was used for statistical analysis. RESULTS: In total, eight publications including 2153 strains were incorporated into the meta-analysis. Significant heterogeneity was evident although a threshold effect was not detected across the eight studies. The summary receiver operating characteristic (SROC) was 0.77 (95% confidence interval [CI], 0.74-0.81). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic score and diagnostic odds ratio were 0.59 (95% CI: 0.46-0.71), 0.96 (95%CI: 0.83-0.99), 14.0 (95% CI, 3.4-57.1), 0.43 (95%CI, 0.32-0.57), 3.48(95%CI, 2.12-4.85) and 32.62 (95%CI, 8.31-128.36), respectively. CONCLUSION: Our study showed that BHI-V4 had moderate diagnostic accuracy for diagnosing hVISA/VISA. However, more high-quality studies are needed to assess the clinical utility of BHI-V4.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Vancomycin , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/diagnosis , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Vancomycin Resistance , Culture Media , Area Under Curve
5.
Lasers Med Sci ; 39(1): 144, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809462

ABSTRACT

Enterococcus faecalis is among the most resistant bacteria found in infected root canals. The demand for cutting-edge disinfection methods has rekindled research on photoinactivation with visible light. This study investigated the bactericidal activity of femtosecond laser irradiation against vancomycin-resistant Enterococcus faecalis V583 (VRE). The effect of parameters such as wavelength and energy density on the viability and growth kinetics of VRE was studied to design an optimized laser-based antimicrobial photoinactivation approach without any prior addition of exogenous photosensitizers. The most effective wavelengths were 430 nm and 435 nm at a fluence of 1000 J/cm2, causing a nearly 2-log reduction (98.6% and 98.3% inhibition, respectively) in viable bacterial counts. The colony-forming units and growth rate of the laser-treated cultures were progressively decreased as energy density or light dose increased at 445 nm but reached a limit at 1250 J/cm2. At a higher fluence of 2000 J/cm2, the efficacy was reduced due to a photobleaching phenomenon. Our results highlight the importance of optimizing laser exposure parameters, such as wavelength and fluence, in bacterial photoinactivation experiments. To our knowledge, this is the first study to report an optimized wavelength for the inactivation of VRE using visible femtosecond laser light.


Subject(s)
Enterococcus faecalis , Enterococcus faecalis/radiation effects , Enterococcus faecalis/growth & development , Enterococcus faecalis/drug effects , Humans , Vancomycin-Resistant Enterococci/radiation effects , Vancomycin-Resistant Enterococci/growth & development , Vancomycin-Resistant Enterococci/drug effects , Microbial Viability/radiation effects , Lasers , Kinetics , Vancomycin Resistance
6.
Mikrobiyol Bul ; 58(2): 125-134, 2024 Apr.
Article in Turkish | MEDLINE | ID: mdl-38676581

ABSTRACT

The World Health Organization has included the problem of antibiotic resistance among the top 10 important health problems in the world. Treatment of infectious diseases has become more difficult due to the spread of antibiotic resistance between bacteria via transposable elements. Vancomycin-resistant enterococci (VRE) are of critical medical and public health importance due to their association with serious nosocomial infections and high risk of death. One of the most important features of VREs is that they have multiple antibiotic resistance and treatment options are reduced. Therefore, new treatment methods are needed. The vanA gene constitutes the building block of the vancomycin resistance mechanism and causes high resistance to vancomycin. In this study, it was aimed to investigate the neutralization of the vancomycin resistance mechanism by creating vanA antisense RNA (asRNA). The vanA positive VRE50 strain in our culture collection which was isolated from the clinical sample, was used to amplify the vanA gene by polymerase chain reaction (PCR). The amplified vanA amplicon was inserted inversely into the pUC19 plasmid by means of the enzyme cutting sites in the primers used. The resulting plasmid was combined with the pAT392 plasmid which can replicate in gram-positive bacteria and a fusion plasmid was created. The fusion plasmid whose orientation was confirmed, was transferred to the wild strain VRE50 by electroporation method. Minimum inhibitory concentration (MIC) values of transformed VRE (tVRE50) and wild type VRE50 strains used as control were determined by the E-Test method. The vancomycin MIC value of the wild type VRE50 strain was determined as 1024 µg/mL and that of the tVRE50 strain was 32 µg/mL and it was determined that the vancomycin resistance of the tVRE50 strain decreased with asRNA (antisense RNA). Antisense RNA technology is an important method for neutralizing the expression of genes. This study showed that neutralization of the vancomycin resistance gene may provide a lower MIC value in a vancomycin-resistant enterococcus strain and lead to increased susceptibility. This new approach provides a new method for VRE treatment by neutralizing the vancomycin resistance mechanism. The result obtained in this study needs to be supported by in vivo tests.


Subject(s)
Bacterial Proteins , Carbon-Oxygen Ligases , RNA, Antisense , Vancomycin-Resistant Enterococci , Vancomycin , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Carbon-Oxygen Ligases/genetics , RNA, Antisense/genetics , Bacterial Proteins/genetics , Humans , Vancomycin/pharmacology , Plasmids/genetics , Vancomycin Resistance/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Gene Silencing
7.
Antimicrob Agents Chemother ; 68(5): e0143923, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38591854

ABSTRACT

Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.


Subject(s)
Bacteriophages , Enterococcus faecium , Host Specificity , Vancomycin-Resistant Enterococci , Enterococcus faecium/drug effects , Bacteriophages/genetics , Vancomycin-Resistant Enterococci/drug effects , Phage Therapy/methods , Gram-Positive Bacterial Infections/microbiology , Vancomycin Resistance , Vancomycin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology
8.
Int Immunopharmacol ; 132: 111780, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603853

ABSTRACT

BACKGROUND: Glycopeptide antibiotic vancomycin is a bactericidal antibiotic available for the infection to Staphylococcus aureus (SA), however, SA has a strong adaptive capacity and thereby acquires resistance to vancomycin. This study aims to illuminate the possible molecular mechanism of vancomycin resistance of SA based on the 16S rRNA sequencing data and microarray profiling data. METHODS: 16S rRNA sequencing data of control samples and urinary tract infection samples were retrieved from the EMBL-EBI (European Molecular Biology Laboratory - European Bioinformatics Institute) database. Correlation of gut flora and clinical indicators was evaluated. The possible targets regulated by SA were predicted by microarray profiling and subjected to KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. CXCL10 gene knockout and overexpression were introduced to evaluate the effect of CXCL10 on the virulence of SA and the resistance to vancomycin. SA strains were co-cultured with urethral epithelial cells in vitro. The presence of SA virulence factors was detected using PCR. Biofilm formation of SA strains was assessed using the microtiter plate method. Furthermore, the antibiotic sensitivity of SA strains was evaluated through vancomycin testing. RESULTS: Gut flora and its species abundance had significant difference between urinary tract infection and control samples. SA was significantly differentially expressed in urinary tract infection samples. Resistance of SA to vancomycin mainly linked to the D-alanine metabolism pathway. SA may participate in the occurrence of urinary tract infection by upregulating CXCL10. In addition, CXCL10 mainly affected the SA resistance to vancomycin through the TLR signaling pathway. In vitro experimental results further confirmed that the overexpression of CXCL10 in SA increased SA virulence and decreased its susceptibility to vancomycin. In vitro experimental validation demonstrated that the knockout of CXCL10 in urethral epithelial cells enhanced the sensitivity of Staphylococcus aureus (SA) to vancomycin. CONCLUSION: SA upregulates the expression of CXCL10 in urethral epithelial cells, thereby activating the TLR signaling pathway and promoting resistance to glycopeptide antibiotics in SA.


Subject(s)
Anti-Bacterial Agents , Chemokine CXCL10 , Staphylococcal Infections , Staphylococcus aureus , Urinary Tract Infections , Vancomycin Resistance , Vancomycin , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Vancomycin/pharmacology , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Vancomycin Resistance/genetics , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Biofilms/drug effects , Gastrointestinal Microbiome/drug effects , RNA, Ribosomal, 16S/genetics , Epithelial Cells/microbiology , Epithelial Cells/drug effects , Female , Male
9.
Int J Antimicrob Agents ; 63(6): 107154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599552

ABSTRACT

BACKGROUND: Vancomycin is frequently used as a last line of defence against infections due to multidrug-resistant Staphylococcus aureus (S. aureus). A recent finding described the acquisition of vancomycin-resistant S. aureus strains by the integration of an enterococcal plasmid containing the vanA operon into the S. aureus chromosome via homologous recombination involving a specific integration site called locus L2. METHODS: To characterise all mechanisms of acquisition of vanA, this study analysed the 15 706 S. aureus genomes to look for vanA and described its genetic environment. RESULTS: A complete vanA operon was found in 25 S. aureus strains isolated from 12 patients, including nine co-isolated with vancomycin-resistant Enterococcus strains. VanA was found within transposon Tn1546-like elements on 17 plasmids and eight chromosomes. VanA might be acquired through conjugation of enterococcal and staphylococcal plasmids, transposition of Tn1546 carrying vanA and plasmid integration into the chromosome. Further, L2 was detected in 2087 genomes (13.3%) of S. aureus strains across different continents. Six potential chromosomal hotspots for integration of the entire vanA-containing enterococcal plasmid were identified by homologous recombination via L2. CONCLUSIONS: These findings suggest that the recently described scenario in a New York patient could be reproduced anywhere. Surveillance of this possibility is mandatory, especially in patients with vancomycin-resistant Enterococcus infection or colonisation.


Subject(s)
Bacterial Proteins , Carbon-Oxygen Ligases , DNA Transposable Elements , Genome, Bacterial , Operon , Plasmids , Staphylococcal Infections , Staphylococcus aureus , Vancomycin Resistance , Humans , Plasmids/genetics , Vancomycin Resistance/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , DNA Transposable Elements/genetics , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Genome, Bacterial/genetics , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology
10.
Antimicrob Agents Chemother ; 68(5): e0115923, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38506549

ABSTRACT

Vancomycin heteroresistance is prone to missed detection and poses a risk of clinical treatment failure. We encountered one clinical Enterococcus faecium strain, SRR12, that carried a complete vanM gene cluster but was determined as susceptible to vancomycin using the broth microdilution method. However, distinct subcolonies appeared within the clear zone of inhibition in the E-test assay, one of which, named SRR12-v1, showed high-level resistance to vancomycin. SRR12 was confirmed as heteroresistant to vancomycin using population analysis profiling and displayed "revive" growth curves with a lengthy lag phase of over 13 hours when exposed to 2-32 mg/L vancomycin. The resistant subcolony SRR12-v1 was found to carry an identical vanM gene cluster to that of SRR12 but a significantly increased vanM copy number in the genome. Long-read whole genome sequencing revealed that a one-copy vanM gene cluster was located on a pELF1-like linear plasmid in SRR12. In comparison, tandem amplification of the vanM gene cluster jointed with IS1216E was seated on a linear plasmid in the genome of SRR12-v1. These amplifications of the vanM gene cluster were demonstrated as unstable and would decrease accompanied by fitness reversion after serial passaging for 50 generations under increasing vancomycin pressure or without antibiotic pressure but were relatively stable under constant vancomycin pressure. Further, vanM resistance in resistant variants was verified to be carried by conjugative plasmids with variable sizes using conjugation assays and S1-pulsed field gel electrophoresis blotting, suggesting the instability/flexibility of vanM cluster amplification in the genome and an increased risk of vanM resistance dissemination.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecium , Microbial Sensitivity Tests , Multigene Family , Plasmids , Vancomycin Resistance , Vancomycin , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Plasmids/genetics , Vancomycin/pharmacology , Vancomycin Resistance/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Humans , Whole Genome Sequencing
11.
J Antimicrob Chemother ; 79(5): 997-1005, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501366

ABSTRACT

BACKGROUND: VRE are increasingly described worldwide. Screening of hospitalized patients at risk for VRE carriage is mandatory to control their dissemination. Here, we have developed the Bfast [VRE Panel] PCR kit, a rapid and reliable quantitative PCR assay for detection of vanA, vanB, vanD and vanM genes, from solid and liquid cultures adaptable to classical and ultrafast real-time PCR platforms. METHODS: Validation was carried out on 133 well characterized bacterial strains, including 108 enterococci of which 64 were VRE. Analytical performances were determined on the CFX96 Touch (Bio-Rad) and Chronos Dx (BforCure), an ultrafast qPCR machine. Widely used culture plates and broths for enterococci selection/growth were tested. RESULTS: All targeted van alleles (A, B, D and M) were correctly detected without cross-reactivity with other van genes (C, E, G, L and N) and no interference with the different routinely used culture media. A specificity and sensitivity of 100% and 99.7%, respectively, were determined, with limits of detection ranging from 21 to 238 cfu/reaction depending on the targets. The Bfast [VRE Panel] PCR kit worked equally well on the CFX and Chronos Dx platforms, with differences in multiplexing capacities (five and four optical channels, respectively) and in turnaround time (45 and 16 minutes, respectively). CONCLUSIONS: The Bfast [VRE Panel] PCR kit is robust, easy to use, rapid and easily implementable in clinical microbiology laboratories for ultra-rapid confirmation of the four main acquired van genes. Its features, especially on Chronos Dx, seem to be unmatched compared to other tools for screening of VRE.


Subject(s)
Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Vancomycin Resistance , Vancomycin-Resistant Enterococci , Humans , Real-Time Polymerase Chain Reaction/methods , Vancomycin Resistance/genetics , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Enterococcus/genetics , Enterococcus/drug effects , Enterococcus/isolation & purification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Bacterial Proteins/genetics , Time Factors , Genes, Bacterial/genetics
12.
Sci Rep ; 14(1): 1895, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253607

ABSTRACT

Clonal transmission and horizontal gene transfer (HGT) contribute to the spread of vancomycin-resistant enterococci (VRE) in global healthcare. Our study investigated vesiduction, a HGT mechanism via membrane vesicles (MVs), for vanA and vanB genes that determine vancomycin resistance. We isolated MVs for VRE of different sequence types (STs) and analysed them by nanoparticle tracking analysis. Selected MV samples were subjected to DNA sequence analysis. In resistance transfer experiments, vancomycin-susceptible enterococci were exposed to MVs and bacterial supernatants of VRE. Compared to bacteria grown in lysogeny broth (MVs/LB), cultivation under vancomycin stress (MVs/VAN) resulted in increased particle concentrations of up to 139-fold (ST80). As a key finding, we could show that VRE isolates of ST80 and ST117 produced remarkably more vesicles at subinhibitory antibiotic concentrations (approx. 9.2 × 1011 particles/ml for ST80 and 2.4 × 1011 particles/ml for ST117) than enterococci of other STs (range between 1.8 × 1010 and 5.3 × 1010 particles/ml). In those MV samples, the respective resistance genes vanA and vanB were completely verifiable using sequence analysis. Nevertheless, no vancomycin resistance transfer via MVs to vancomycin-susceptible Enterococcus faecium was phenotypically detectable. However, our results outline the potential of future research on ST-specific MV properties, promising new insights into VRE mechanisms.


Subject(s)
Enterococcus faecium , Vancomycin-Resistant Enterococci , Enterococcus faecium/genetics , Vancomycin Resistance/genetics , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/genetics , Membranes
13.
Diagn Microbiol Infect Dis ; 108(3): 116180, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183897

ABSTRACT

The use of glycopeptide medications may decline in line with the annual decline in methicillin-resistant Staphylococcus aureus (MRSA) detection rates in China. The rate of heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)detection may be impacted by this. However, there is currently a dearth of information on the incidence of hVISA in China. This study aims to analyze the recent epidemiology and molecular characteristics of hVISA strains in Beijing, China. A total of 175 non-duplicate MRSA strains from various infection sites were collected from a medical center between January 2018 and May 2023 and underwent molecular typing and susceptibility testing (Vitek2). Vancomycin and teicoplanin MICs were also evaluated by standard broth microdilution method and agar dilution method, respectively. Isolates growing on screening agar (BHIV4 and BHIT5, brain heart infusion agar containing 4 µg/ml vancomycin and 5 µg/ml teicoplanin, respectively) were characterized further by analysis of macro-Etest (MET) and population analysis profiling with area under the curve (PAP-AUC). The proportion of hVISA among MRSA isolates was 8.6 %. BHIT5 could select all hVISA strains while BHIV4 and MET only selected two hVISA strains. Compared with vancomycin- susceptible Staphylococcus aureus (VSSA), hVISA isolates were less susceptible to erythromycin and clindamycin. In addition, hVISA frequency was MIC-independent despite using different detection methods. In total, 11 types of STs, 28 types of spa typing, four types of SCCmec typing, and two types of agr typing were identified and the predominant type in both MRSA and hVISA isolates was ST239-t030-SCCmecIII-agr I. The analysis of biofilm formation, growth, and virulence genes in hVISA strains revealed sparse information. The dataset presented in this study provided the prevalence and molecular characteristics of hVISA in hospital settings and the combination of BHIT5 and PAP-AUC may identify hVISA efficiently. The result of genotyping suggested the genotype of hVISA was mainly consistent with that of local MRSA. Additional studies on the characteristics of hVISA strains were necessary.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Vancomycin/pharmacology , Vancomycin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus aureus , Vancomycin-Resistant Staphylococcus aureus , Teicoplanin/pharmacology , Teicoplanin/therapeutic use , Staphylococcal Infections/epidemiology , Staphylococcal Infections/drug therapy , Tertiary Care Centers , Prevalence , Agar , Vancomycin Resistance/genetics , Microbial Sensitivity Tests
14.
Eur J Clin Microbiol Infect Dis ; 43(4): 673-682, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296911

ABSTRACT

PURPOSE: To investigate the occurrence of vancomycin-variable enterococci (VVE) in a hospital in central Italy. METHODS: vanA positive but vancomycin-susceptible Enterococcus faecium isolates (VVE-S) were characterized by antibiotic susceptibility tests, molecular typing (PFGE and MLST), and WGS approach. The reversion of VVE-S to a resistant phenotype was assessed by exposure to increasing vancomycin concentrations, and the revertant isolates were used in filter mating experiments. qPCR was used to analyze the plasmid copy number. RESULTS: Eleven putative VVE-S were selected. WGS revealed two categories of vanA cluster plasmid located: the first type showed the lack of vanR, the deletion of vanS, and an intact vanH/vanA/vanX cluster; the second type was devoid of both vanR and vanS and showed a deletion of 544-bp at the 5'-end of the vanH. Strains (n = 7) carrying the first type of vanA cluster were considered VVE-S and were able to regain a resistance phenotype (VVE-R) in the presence of vancomycin, due to a 44-bp deletion in the promoter region of vanH/vanA/vanX, causing its constitutive expression. VVE-R strains were not able to transfer resistance by conjugation, and the resistance phenotype was unstable: after 11 days of growth without selective pressure, the revertants were still resistant but showed a lower vancomycin MIC. A higher plasmid copy number in the revertant strains was probably related to the resistance phenotype. CONCLUSION: We highlight the importance of VVE transition to VRE under vancomycin therapy resulting in a potential failure treatment. We also report the first-time identification of VVE-S isolates pstS-null belonging to ST1478.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Vancomycin/pharmacology , Vancomycin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Multilocus Sequence Typing , Vancomycin Resistance/genetics , Microbial Sensitivity Tests , Enterococcus , Bacterial Proteins/genetics , Gram-Positive Bacterial Infections/microbiology
15.
Mar Pollut Bull ; 198: 115844, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056291

ABSTRACT

Mangrove ecosystems are hotspots of biodiversity, but have been threatened by anthropogenic activities. Vancomycin-resistant enterococci (VRE) are nosocomial bacteria classified as high priority by the World Health Organization (WHO). Herein, we describe the identification and genomic characteristics of a vancomycin-resistant Enterococcus faecalis strain isolated from a highly impacted mangrove ecosystem of the northeastern Brazilian, in 2021. Genomic analysis confirmed the existence of the transposon Tn1546-vanA and clinically relevant antimicrobial resistance genes, such as streptogramins, tetracycline, phenicols, and fluoroquinolones. Virulome analysis identified several genes associated to adherence, immune modulation, biofilm, and exoenzymes production. The UFSEfl strain was assigned to sequence type (ST9), whereas phylogenomic analysis with publicly available genomes from a worldwide confirmed clonal relatedness with a hospital-associated Brazilian clone. Our findings highlight the successful expansion of hospital-associated VRE in a mangrove area and shed light on the need for strengthening genomic surveillance of WHO priority pathogens in these vital ecosystems.


Subject(s)
Ecosystem , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Brazil/epidemiology , Clone Cells , Enterococcus faecalis/genetics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests , Vancomycin , Vancomycin Resistance/genetics , Vancomycin-Resistant Enterococci/genetics , Cross Infection/microbiology
16.
Transpl Infect Dis ; 26(1): e14186, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37910593

ABSTRACT

BACKGROUND: Infection with vancomycin-resistant Enterococcus (VRE) in liver transplant recipients (LTR) has been associated with extended hospital stays, increased readmission rates, graft failure, and death. A tailored perioperative surgical prophylaxis regimen targeting VRE may reduce postoperative infections in VRE-colonized patients. This study investigated the outcomes of perioperative daptomycin in this patient population. METHODS: This retrospective, single-center cohort study included LTR ≥ 18 years old who were VRE-colonized from June 2018 to November 2022. VRE colonization was identified by a VRE rectal swab screen or a positive VRE culture prior to transplant. Two groups were analyzed: daptomycin versus no daptomycin. All LTR received perioperative piperacillin-tazobactam for 24 h. If VRE-colonized, one dose of daptomycin (6 mg/kg) was given pre- and postoperatively. Demographics, clinical characteristics, risk factors for VRE infection, and daptomycin dose were collected. The primary outcome was VRE infection at 14 days and 90 days post-transplant. RESULTS: There were 36 VRE-colonized LTR; 19 received daptomycin and 17 did not. Baseline characteristics and risk factors for VRE infection were similar between groups. More VRE infections occurred in the no daptomycin group within 14 days post-transplant (24% vs. 0%, p = .04), but at 90 days posttransplant there was no significant difference (29% vs. 16%, p = .43). The average daptomycin dose was 7.1 mg/kg. CONCLUSION: Perioperative daptomycin reduced the rate of VRE infections in VRE-colonized LTR within 14 days posttransplant but not at 90 days. Future studies should evaluate if higher doses and/or longer duration of perioperative daptomycin can reduce VRE infections beyond 14 days post-transplant.


Subject(s)
Daptomycin , Gram-Positive Bacterial Infections , Liver Transplantation , Vancomycin-Resistant Enterococci , Humans , Adolescent , Daptomycin/therapeutic use , Vancomycin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Retrospective Studies , Liver Transplantation/adverse effects , Cohort Studies , Vancomycin Resistance , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/prevention & control , Gram-Positive Bacterial Infections/drug therapy , Risk Factors
17.
Ann Ig ; 36(1): 115-120, 2024.
Article in English | MEDLINE | ID: mdl-38018764

ABSTRACT

Background: Healthcare-associated infections (HAIs) and multidrug resistance (MDR) are a growing public health threat and pose a risk to patient safety in healthcare facilities. Vancomycin-resistant Enterococci (VRE) are responsible for nosocomial infections and have intrinsic and acquired resistance to many antibiotics, including glycopeptides. VRE carriage can remain undetected, increasing the risk of contact transmission. Identifying colonized patients is crucial for the implementation of preventive measures. Aims: The aims of this study were to evaluate the trend of VRE carriage based on rectal swab results between 2019 and February 2022 in a large Italian trust and the percentage of patients with VRE colonization at the time of hospitalization. Methods: This was a retrospective observational study based on results of rectal swabs performed for screening on admission between January 2019 and February 2022 in four hospitals part of a single trust in Turin, North-Western Italy. The study collected data on the date of specimen collection, type of specimen, isolated pathogen and the date of hospital admission. Descriptive analysis of data was performed, and duplicate samples were not considered. Results: From January 2019 to February 2022 we collected 5025 rectal swabs performed in hospitals of the trust, of which 3037 were performed in 2019 (60%), 741 in 2020 (15%), 611 in 2021 (12%) and 636 in the first two months of 2022 (13%). VRE positivity was found in 162 (3%) rectal swabs, of which 2 cases in both 2019 (0.1%) and 2020 (0.3%), 95 in 2021 (15.5%) and 63 in the first two months of 2022 (9.9%). Furthermore, 52% (84/162) of positive rectal swabs were performed at admission, whereas the remaining 48% (78/162) of positive rectal swabs were performed after 48h. Conclusions: This study found an increasing trend of VRE carriage in the study population during the SARS-CoV-2 pandemic, highlighting the importance of screening patients for VRE carriage to prevent worsening clinical conditions, environmental contamination, and prolonged hospitalization.


Subject(s)
Cross Infection , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Anti-Bacterial Agents/pharmacology , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/drug therapy , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/epidemiology , Hospitals , Retrospective Studies , Risk Factors , Vancomycin Resistance
18.
Front Public Health ; 11: 1275778, 2023.
Article in English | MEDLINE | ID: mdl-38089023

ABSTRACT

Introduction: Enterococci are usually low pathogenic, but can cause invasive disease under certain circumstances, including urinary tract infections, bacteremia, endocarditis, and meningitis, and are associated with peritonitis and intra-abdominal abscesses. Increasing resistance of enterococci to glycopeptides and fluoroquinolones, and high-level resistance to aminoglycosides is a concern. National antimicrobial resistance (AMR) surveillance data for enterococci from the Middle East and North Africa (MENA) and the Gulf region is scarce. Methods: A retrospective 12-year analysis of N = 37,909 non-duplicate diagnostic Enterococcus spp. isolates from the United Arab Emirates (UAE) was conducted. Data was generated by routine patient care during 2010-2021, collected by trained personnel and reported by participating surveillance sites to the UAE National AMR Surveillance program. Data analysis was conducted with WHONET. Results: Enterococcus faecalis was the most commonly reported species (81.5%), followed by Enterococcus faecium (8.5%), and other enterococci species (4.8%). Phenotypically vancomycin-resistant enterococci (VRE) were found in 1.8% of Enterococcus spp. isolates. Prevalence of VRE (%VRE) was highest for E. faecium (8.1%), followed by E. faecalis (0.9%). A significant level of resistance to glycopeptides (%VRE) for these two species has been observed in the majority of observed years [E. faecalis (0-2.2%), 2010: 0%, 2021: 0.6%] and E. faecium (0-14.2%, 2010: 0%, 2021: 5.8%). Resistance to fluoroquinolones was between 17 and 29% (E. faecalis) and was higher for E. faecium (between 42 and 83%). VRE were associated with higher patient mortality (RR: 2.97), admission to intensive care units (RR: 2.25), and increased length of stay (six excess inpatient days per VRE case), as compared to vancomycin-susceptible Enterococcus spp. Discussion: Published data on Enterococcus infections, in particular VRE-infections, in the UAE and MENA region is scarce. Our data demonstrates that VRE-enterococci are relatively rare in the UAE, however showing an increasing resistance trend for several clinically important antibiotic classes, causing a concern for the treatment of serious infections caused by enterococci. This study also demonstrates that VRE were associated with higher mortality, increased intensive care unit admission rates, and longer hospitalization, thus poorer clinical outcome and higher associated costs in the UAE. We recommend the expansion of current surveillance techniques (e.g., local VRE screening), stricter infection prevention and control strategies, and better stewardship interventions. Further studies on the molecular epidemiology of enterococci are needed.


Subject(s)
Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , United Arab Emirates/epidemiology , Retrospective Studies , Vancomycin Resistance , Microbial Sensitivity Tests , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/diagnosis , Anti-Bacterial Agents/pharmacology , Fluoroquinolones , Glycopeptides
19.
BMC Microbiol ; 23(1): 380, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049763

ABSTRACT

OBJECTIVE: The purpose of this study is to reduce the spread of the vanA gene by curing the vanA-harboring plasmid of vancomycin-resistant using the CRISPR-Cas9 system. METHODS: Two specific spacer sequence (sgRNAs) specific was designed to target the vanA gene and cloned into plasmid CRISPR-Cas9. The role of the CRISPR-Cas system in the plasmid elimination of drug-resistance genes was verified by chemically transformation and conjugation delivery methods. Moreover, the elimination efficiency in strains was evaluated by plate counting, PCR, and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by Etest strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. RESULTS: In the study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the vanA gene. PCR and qPCR results indicated that recombinant pCas9-sgRNA plasmid can efficiently clear vanA-harboring plasmids. There was no significant correlation between sgRNA lengths and curing efficiency. In addition, the drug susceptibility test results showed that the bacterial resistance to vancomycin was significantly reduced after the vanA-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. The CRISPR-Cas9 system can block the horizontal transfer of the conjugated plasmid pUC19-vanA. CONCLUSION: In conclusion, our study demonstrated that CRISPR-Cas9 achieved plasmid clearance and reduced antimicrobial resistance. The CRISPR-Cas9 system could block the horizontal transfer of plasmid carrying vanA. This strategy provided a great potential to counteract the ever-worsening spread of the vanA gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.


Subject(s)
RNA, Guide, CRISPR-Cas Systems , Vancomycin , Vancomycin/pharmacology , Vancomycin Resistance/genetics , CRISPR-Cas Systems , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Bacterial Proteins/genetics
20.
Antimicrob Resist Infect Control ; 12(1): 126, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957773

ABSTRACT

BACKGROUND: Vancomycin-resistant enterococcus (VRE) was the fastest growing pathogen in Europe in 2022 (+ 21%) but its clinical relevance is still unclear. We aim to identify risk factors for acquired VRE rectal colonization in hematological patients and evaluate the clinical impact of VRE colonization on subsequent infection, and 30- and 90-day overall mortality rates, compared to a matched control group. METHODS: A retrospective, single center, case-control matched study (ratio 1:1) was conducted in a hematological department from January 2017 to December 2020. Case patients with nosocomial isolation of VRE from rectal swab screening (≥ 48 h) were matched to controls by age, sex, ethnicity, and hematologic disease. Univariate and multivariate logistic regression compared risk factors for colonization. RESULTS: A total of 83 cases were matched with 83 controls. Risk factors for VRE colonization were febrile neutropenia, bone marrow transplant, central venous catheter, bedsores, reduced mobility, altered bowel habits, cachexia, previous hospitalization and antibiotic treatments before and during hospitalization. VRE bacteraemia and Clostridioides difficile infection (CDI) occurred more frequently among cases without any impact on 30 and 90-days overall mortality. Vancomycin administration and altered bowel habits were the only independent risk factors for VRE colonization at multivariate analysis (OR: 3.53 and 3.1; respectively). CONCLUSIONS: Antimicrobial stewardship strategies to reduce inappropriate Gram-positive coverage in hematological patients is urgently required, as independent risk factors for VRE nosocomial colonization identified in this study include any use of vancomycin and altered bowel habits. VRE colonization and infection did not influence 30- and 90-day mortality. There was a strong correlation between CDI and VRE, which deserves further investigation to target new therapeutic approaches.


Subject(s)
Cross Infection , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Vancomycin/therapeutic use , Case-Control Studies , Retrospective Studies , Gram-Positive Bacterial Infections/epidemiology , Vancomycin Resistance , Risk Factors , Hospitals
SELECTION OF CITATIONS
SEARCH DETAIL
...