Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
1.
PLoS Pathog ; 20(4): e1012186, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648216

ABSTRACT

In the bloodstream of mammalian hosts, African trypanosomes face the challenge of protecting their invariant surface receptors from immune detection. This crucial role is fulfilled by a dense, glycosylated protein layer composed of variant surface glycoproteins (VSGs), which undergo antigenic variation and provide a physical barrier that shields the underlying invariant surface glycoproteins (ISGs). The protective shield's limited permeability comes at the cost of restricted access to the extracellular host environment, raising questions regarding the specific function of the ISG repertoire. In this study, we employ an integrative structural biology approach to show that intrinsically disordered membrane-proximal regions are a common feature of members of the ISG super-family, conferring the ability to switch between compact and elongated conformers. While the folded, membrane-distal ectodomain is buried within the VSG layer for compact conformers, their elongated counterparts would enable the extension beyond it. This dynamic behavior enables ISGs to maintain a low immunogenic footprint while still allowing them to engage with the host environment when necessary. Our findings add further evidence to a dynamic molecular organization of trypanosome surface antigens wherein intrinsic disorder underpins the characteristics of a highly flexible ISG proteome to circumvent the constraints imposed by the VSG coat.


Subject(s)
Trypanosomiasis, African , Variant Surface Glycoproteins, Trypanosoma , Variant Surface Glycoproteins, Trypanosoma/metabolism , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/immunology , Protozoan Proteins/metabolism , Humans , Membrane Glycoproteins/metabolism , Animals
2.
Nat Commun ; 14(1): 8200, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081826

ABSTRACT

UPF1-like helicases play roles in telomeric heterochromatin formation and X-chromosome inactivation, and also in monogenic variant surface glycoprotein (VSG) expression via VSG exclusion-factor-2 (VEX2), a UPF1-related protein in the African trypanosome. We show that VEX2 associates with chromatin specifically at the single active VSG expression site on chromosome 6, forming an allele-selective connection, via VEX1, to the trans-splicing locus on chromosome 9, physically bridging two chromosomes and the VSG transcription and splicing compartments. We further show that the VEX-complex is multimeric and self-regulates turnover to tightly control its abundance. Using single cell transcriptomics following VEX2-depletion, we observed simultaneous derepression of many other telomeric VSGs and multi-allelic VSG expression in individual cells. Thus, an allele-selective, inter-chromosomal, and self-limiting VEX1-2 bridge supports monogenic VSG expression and multi-allelic VSG exclusion.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Alleles , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism , Trypanosoma/metabolism , Membrane Glycoproteins/genetics , Telomere/metabolism
3.
Nucleic Acids Res ; 51(11): 5678-5698, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37207337

ABSTRACT

Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.


Subject(s)
Protozoan Proteins , Trypanosoma brucei brucei , Antigenic Variation/genetics , Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation , Histones/genetics , Histones/metabolism , Telomere/genetics , Telomere/metabolism , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism , Protozoan Proteins/metabolism , Chromatin Assembly and Disassembly
4.
Nat Microbiol ; 7(8): 1280-1290, 2022 08.
Article in English | MEDLINE | ID: mdl-35879525

ABSTRACT

Variant surface glycoprotein (VSG) coats bloodstream form Trypanosoma brucei parasites, and monoallelic VSG expression underpins the antigenic variation necessary for pathogenicity. One of thousands of VSG genes is transcribed by RNA polymerase I in a singular nuclear structure called the expression site body (ESB), but how monoallelic VSG transcription is achieved remains unclear. Using a localization screen of 153 proteins we found one, ESB-specific protein 1 (ESB1), that localized only to the ESB and is expressed only in VSG-expressing life cycle stages. ESB1 associates with DNA near the active VSG promoter and is necessary for VSG expression, with overexpression activating inactive VSG promoters. Mechanistically, ESB1 is necessary for recruitment of a subset of ESB components, including RNA polymerase I, revealing that the ESB has separately assembled subdomains. Because many trypanosomatid parasites have divergent ESB1 orthologues yet do not undergo antigenic variation, ESB1 probably represents an important class of transcription regulators.


Subject(s)
Trypanosoma brucei brucei , Antigenic Variation/genetics , Membrane Glycoproteins/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Transcription Factors/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism
5.
mSphere ; 7(4): e0012222, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35727016

ABSTRACT

African trypanosomes evade the immune system of the mammalian host by the antigenic variation of the predominant glycosylphosphatidylinositol (GPI)-anchored surface protein, variant surface glycoprotein (VSG). VSG is a very stable protein that is turned over from the cell surface with a long half-life (~26 h), allowing newly synthesized VSG to populate the surface. We have recently demonstrated that VSG turnover under normal growth is mediated by a combination of GPI hydrolysis and direct shedding with intact GPI anchors. VSG synthesis is tightly regulated in dividing trypanosomes, and when subjected to RNA interference (RNAi) silencing, cells display rapid cell cycle arrest in order to conserve VSG density on the cell surface (K. Sheader, S. Vaughan, J. Minchin, K. Hughes, et al., Proc Natl Acad Sci U S A 102:8716-8721, 2005, https://doi.org/10.1073/pnas.0501886102). Arrested cells also display an altered morphology of secretory organelles-engorgement of the trans-Golgi cisternae-that may reflect a disruption of post-Golgi secretory transport. We now ask whether trypanosomes under VSG silencing also reduce the rate of VSG turnover to further conserve coat density. Our data indicate that trypanosomes do not regulate VSG turnover according to VSG protein abundance, nor was there any effect on the post-Golgi transport of soluble or GPI-anchored secretory cargo. However, the surface morphology of silenced cells was altered from a typically rugose topology to a smoother profile, consistent with reduced overall membrane trafficking to the cell surface. IMPORTANCE African trypanosomes evade the host immune system by altering the expression of variant surface glycoproteins (VSGs) in a process called antigenic variation. VSG is essential, and when its synthesis is ablated by RNAi silencing, cells enter precytokinesis growth arrest as a means to maintain constant cell surface VSG levels. We have investigated whether arrested cells also alter the rate of natural VSG turnover as a means to conserve the surface coat. This work provides insights into the natural biology of the glycocalyx of this important human and veterinary parasite.


Subject(s)
Trypanosoma brucei brucei , Animals , Antigenic Variation , Glycosylphosphatidylinositols , Humans , Mammals , Membrane Glycoproteins/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism
6.
Sci Rep ; 12(1): 6394, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35430620

ABSTRACT

African trypanosomes, such as Trypanosoma brucei, are flagellated protozoa which proliferate in mammals and cause a variety of diseases in people and animals. In a mammalian host, the external face of the African trypanosome plasma membrane is covered by a densely packed coat formed of variant surface glycoprotein (VSG), which counteracts the host's adaptive immune response by antigenic variation. The VSG is attached to the external face of the plasma membrane by covalent attachment of the C-terminus to glycosylphosphatidylinositol. As the trypanosome grows, newly synthesised VSG is added to the plasma membrane by vesicle fusion to the flagellar pocket, the sole location of exo- and endocytosis. Snake venoms contain dozens of components, including proteases and phospholipases A2. Here, we investigated the effect of Naja nigricollis venom on T. brucei with the aim of describing the response of the trypanosome to hydrolytic attack on the VSG. We found no evidence for VSG hydrolysis, however, N. nigricollis venom caused: (i) an enlargement of the flagellar pocket, (ii) the Rab11 positive endosomal compartments to adopt an abnormal dispersed localisation, and (iii) cell cycle arrest prior to cytokinesis. Our results indicate that a single protein family, the phospholipases A2 present in N. nigricollis venom, may be necessary and sufficient for the effects. This study provides new molecular insight into T. brucei biology and possibly describes mechanisms that could be exploited for T. brucei targeting.


Subject(s)
Trypanosoma brucei brucei , Animals , Elapid Venoms/metabolism , Endocytosis , Humans , Mammals/metabolism , Naja , Phospholipases A2/metabolism , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
7.
Nat Commun ; 13(1): 101, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013170

ABSTRACT

A Variant Surface Glycoprotein (VSG) coat protects bloodstream form Trypanosoma brucei. Prodigious amounts of VSG mRNA (~7-10% total) are generated from a single RNA polymerase I (Pol I) transcribed VSG expression site (ES), necessitating extremely high levels of localised splicing. We show that splicing is required for processive ES transcription, and describe novel ES-associated T. brucei nuclear bodies. In bloodstream form trypanosomes, the expression site body (ESB), spliced leader array body (SLAB), NUFIP body and Cajal bodies all frequently associate with the active ES. This assembly of nuclear bodies appears to facilitate the extraordinarily high levels of transcription and splicing at the active ES. In procyclic form trypanosomes, the NUFIP body and SLAB do not appear to interact with the Pol I transcribed procyclin locus. The congregation of a restricted number of nuclear bodies at a single active ES, provides an attractive mechanism for how monoallelic ES transcription is mediated.


Subject(s)
Nuclear Bodies/genetics , RNA Splicing , RNA, Messenger/genetics , Transcription, Genetic , Trypanosoma brucei brucei/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics , Cells, Cultured , Gene Expression Regulation , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Nuclear Bodies/metabolism , Organisms, Genetically Modified , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , RNA, Messenger/metabolism , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
8.
Trends Parasitol ; 38(1): 23-36, 2022 01.
Article in English | MEDLINE | ID: mdl-34376326

ABSTRACT

An intriguing and remarkable feature of African trypanosomes is their antigenic variation system, mediated by the variant surface glycoprotein (VSG) family and fundamental to both immune evasion and disease epidemiology within host populations. Recent studies have revealed that the VSG repertoire has a complex evolutionary history. Sequence diversity, genomic organization, and expression patterns are species-specific, which may explain other variations in parasite virulence and disease pathology. Evidence also shows that we may be underestimating the extent to what VSGs are repurposed beyond their roles as variant antigens, establishing a need to examine VSG functionality more deeply. Here, we review sequence variation within the VSG gene family, and highlight the many opportunities to explore their likely diverse contributions to parasite survival.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Antigenic Variation/genetics , Membrane Glycoproteins/genetics , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism
9.
Cell Rep ; 37(5): 109923, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731611

ABSTRACT

The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.


Subject(s)
Cell Membrane/drug effects , Cell Movement/drug effects , Single-Domain Antibodies/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Variant Surface Glycoproteins, Trypanosoma/immunology , Animals , Antibody Specificity , Binding Sites, Antibody , Camelids, New World/immunology , Cell Line , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endocytosis/drug effects , Epitopes , Exocytosis/drug effects , Protein Binding , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Trypanocidal Agents/immunology , Trypanocidal Agents/metabolism , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/ultrastructure , Trypanosomiasis, African/immunology , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/metabolism
10.
Mol Biochem Parasitol ; 245: 111409, 2021 09.
Article in English | MEDLINE | ID: mdl-34363902

ABSTRACT

Glycosylphosphatidylinositol-phospholipase C (GPI-PLC) is an enzyme that has been implicated in GPI-dependent protein trafficking and phosphoinositide metabolism in the bloodstream stage of African trypanosomes. However, despite the fact that it is associated with the cytoplasmic face of internal organellar compartments, its role in general membrane trafficking has not been investigated. Using a GPI-PLC null cell line, we determine the effect of GPI-PLC deficiency on these processes. Biosynthetic trafficking of lysosomal cargo, soluble cathepsin L and membrane bound p67, are unaffected. Likewise, secretory transport, recycling and ultimate lysosomal turnover of the GPI-anchored and transmembrane glycoproteins, transferrin receptor and invariant surface glycoprotein 65, respectively, were unaffected. A significant decrease in the endocytic uptake of transferrin was observed, confirming a prior report, but ultimate delivery to the lysosome was unimpacted. These results contribute to our understanding of the roles of this enigmatic enzyme in trypanosome cell biology.


Subject(s)
Trypanosoma brucei brucei , Glycosylphosphatidylinositols/metabolism , Lysosomes/metabolism , Protein Transport , Trypanosoma brucei brucei/metabolism , Type C Phospholipases/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
11.
Nucleic Acids Res ; 49(10): 5637-5653, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34048580

ABSTRACT

Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.


Subject(s)
RNA, Long Noncoding/metabolism , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/metabolism
12.
Nucleic Acids Res ; 49(6): 3242-3262, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33660774

ABSTRACT

The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more 'metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.


Subject(s)
Protozoan Proteins/metabolism , Repressor Proteins/metabolism , Trypanosoma brucei brucei/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics , Chromatin/metabolism , Gene Expression Regulation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protozoan Proteins/genetics , RNA Interference , Repressor Proteins/genetics , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
13.
Nat Microbiol ; 6(3): 392-400, 2021 03.
Article in English | MEDLINE | ID: mdl-33462435

ABSTRACT

Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.


Subject(s)
Drug Resistance/immunology , Suramin/metabolism , Trypanosoma brucei rhodesiense/immunology , Variant Surface Glycoproteins, Trypanosoma/chemistry , Variant Surface Glycoproteins, Trypanosoma/metabolism , Antigenic Variation/drug effects , Antigenic Variation/immunology , Binding Sites , Crystallography, X-Ray , Drug Resistance/genetics , Endocytosis/genetics , Immune Evasion , Mutation , Protein Binding , Protein Conformation , Suramin/toxicity , Trypanocidal Agents/metabolism , Trypanocidal Agents/toxicity , Trypanosoma brucei rhodesiense/chemistry , Trypanosoma brucei rhodesiense/drug effects , Trypanosoma brucei rhodesiense/metabolism , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics
14.
Mol Biochem Parasitol ; 241: 111348, 2021 01.
Article in English | MEDLINE | ID: mdl-33352254

ABSTRACT

The bloodstream form of Trypanosoma brucei persists in mammalian hosts through a population survival strategy depending on antigenic variation of a cell surface coat composed of the variant surface glycoprotein (VSG). The integrity of the VSG coat is essential and blocking its synthesis results in a cell division cycle arrest just prior to cytokinesis. This observation indicates that VSG levels are monitored and that the cell has mechanisms to respond to a disruption of synthesis. Here, the regulation of VSG mRNA levels has been investigated by first measuring VSG mRNA copy number, and second using ectopic expression of VSG transgenes containing premature termination codons. The findings are that (i) VSG mRNA copy number varies with the identity of the VSG and (ii) a pathway detects synthesis of non-functional VSG protein and results in an increase in VSG mRNA levels.


Subject(s)
Gene Expression Regulation , Trypanosoma brucei brucei/physiology , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics , Cell Line , Host-Parasite Interactions , RNA, Messenger/genetics , Trypanosomiasis, African/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
15.
Sci Adv ; 6(38)2020 09.
Article in English | MEDLINE | ID: mdl-32948591

ABSTRACT

Localization of Repressor Activator Protein 1 (RAP1) to the telomere is essential for its telomeric functions. RAP1 homologs either directly bind the duplex telomere DNA or interact with telomere-binding proteins. We find that Trypanosoma brucei RAP1 relies on a unique double-stranded DNA (dsDNA) binding activity to achieve this goal. T. brucei causes human sleeping sickness and regularly switches its major surface antigen, variant surface glycoprotein (VSG), to evade the host immune response. VSGs are monoallelically expressed from subtelomeres, and TbRAP1 is essential for VSG regulation. We identify dsDNA and single-stranded DNA binding activities in TbRAP1, which require positively charged 737RKRRR741 residues that overlap with TbRAP1's nuclear localization signal in the MybLike domain. Both DNA binding activities are electrostatics-based and sequence nonspecific. The dsDNA binding activity can be substantially diminished by phosphorylation of two 737RKRRR741-adjacent S residues and is essential for TbRAP1's telomere localization, VSG silencing, telomere integrity, and cell proliferation.


Subject(s)
Membrane Glycoproteins , Variant Surface Glycoproteins, Trypanosoma , DNA/genetics , Humans , Membrane Glycoproteins/genetics , Protozoan Proteins/chemistry , Telomere/genetics , Telomere/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism
16.
Cell Microbiol ; 22(11): e13244, 2020 11.
Article in English | MEDLINE | ID: mdl-32618070

ABSTRACT

The Endosomal Sorting Complex Required for Transport machinery consists of four protein complexes (ESCRT 0-IV) and the post ESCRT ATPase Vps4. ESCRT mediates cargo delivery for lysosomal degradation via formation of multivesicular bodies. Trypanosoma brucei contains orthologues of ESCRT I-III and Vps4. Trypanosomes also have an ubiquitinylated invariant surface glycoprotein (ISG65) that is delivered to the lysosome by ESCRT, however, we previously implicated TbVps4 in rescue and recycling of ISG65. Here we use conditional silencing to investigate the role of TbVps24, a phosphoinositide-binding ESCRT III component, on protein trafficking. TbVps24 localises to the TbRab7+ late endosome, and binds PI(3,5)P2 , the product of the TbFab1 kinase, both of which also localise to late endosomes. TbVps24 silencing is lethal, and negatively affects biosynthetic trafficking of the lysosomal markers p67 and TbCathepsin L. However, the major phenotype of silencing is accelerated degradation and depletion of the surface pool of ISG65. Thus, TbVps24 silencing phenocopies that of TbVps4 in regard to ISG65 trafficking. This presents a paradox since we have previously found that depletion of TbFab1 completely blocks ISG65 turnover. We propose a model in which late ESCRT components operate at two sites, one PI(3,5)P2 -dependent (degradation) and one PI(3,5)P2 -independent (recycling), to regulate ISG65 homeostasis.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Glycoproteins/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism , Cell Line , Endocytosis , Endosomes/metabolism , Homeostasis , Lysosomes/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Transport , Protozoan Proteins/genetics , Trypanosoma brucei brucei/growth & development , Variant Surface Glycoproteins, Trypanosoma/metabolism
17.
Nat Commun ; 11(1): 844, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051413

ABSTRACT

African trypanosomes (Trypanosoma) are vector-borne haemoparasites that survive in the vertebrate bloodstream through antigenic variation of their Variant Surface Glycoprotein (VSG). Recombination, or rather segmented gene conversion, is fundamental in Trypanosoma brucei for both VSG gene switching and for generating antigenic diversity during infections. Trypanosoma vivax is a related, livestock pathogen whose VSG lack structures that facilitate gene conversion in T. brucei and mechanisms underlying its antigenic diversity are poorly understood. Here we show that species-wide VSG repertoire is broadly conserved across diverse T. vivax clinical strains and has limited antigenic repertoire. We use variant antigen profiling, coalescent approaches and experimental infections to show that recombination plays little role in diversifying T. vivax VSG sequences. These results have immediate consequences for both the current mechanistic model of antigenic variation in African trypanosomes and species differences in virulence and transmission, requiring reconsideration of the wider epidemiology of animal African trypanosomiasis.


Subject(s)
Antigenic Variation/genetics , Antigenic Variation/immunology , Recombination, Genetic/genetics , Trypanosoma vivax/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/immunology , DNA, Protozoan , Evolution, Molecular , Genome, Protozoan , Host-Parasite Interactions/immunology , Immune Evasion , Phylogeny , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Sequence Homology , Species Specificity , Transcriptome , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/immunology , Trypanosomiasis, African/immunology , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/metabolism
18.
Sci Rep ; 9(1): 17376, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31758058

ABSTRACT

The genomic sequence of Trypanosoma cruzi, the protozoan causative of Chagas disease was published more than a decade ago. However, due to their complexity, its complete haploid predicted sequence and therefore its genetic repertoire remains unconfirmed. In this work, we have used RNAseq data to improve the previous genome assembly of Sylvio X10 strain and to define the complete transcriptome at trypomastigote stage (mammalian stage). A total of 22,977 transcripts were identified, of which more than half could be considered novel as they did not match previously annotated genes. Moreover, for the first time in T. cruzi, we are providing their relative abundance levels. We have identified that Sylvio X10 trypomastigotes exhibit a predominance of surface protein genes, specifically those encoding trans-sialidase and mucin-like proteins. On the other hand, detailed analysis of the pre-mRNA processing sites revealed some similarities but also some differences in the spliced leader and different polyadenylation addition sites compared to close related kinetoplastid parasites. Our results also confirm that transcription is bidirectional as occur in other kinetoplastids and the proportion of forward-sense and reverse-sense transcripts is almost equivalent, demonstrating that a strand-specificity does not exist.


Subject(s)
RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Transcriptome/physiology , Trypanosoma cruzi/genetics , Base Sequence , Chromosome Mapping , Gene Expression Profiling , Genome, Protozoan/genetics , Glycoproteins/genetics , Mucins/genetics , Neuraminidase/genetics , Polyadenylation/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Sequence Analysis, DNA , Trypanosoma cruzi/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism
19.
Proc Natl Acad Sci U S A ; 116(41): 20725-20735, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31554700

ABSTRACT

Trypanosoma brucei parasites successfully evade the host immune system by periodically switching the dense coat of variant surface glycoprotein (VSG) at the cell surface. Each parasite expresses VSGs in a monoallelic fashion that is tightly regulated. The consequences of exposing multiple VSGs during an infection, in terms of antibody response and disease severity, remain unknown. In this study, we overexpressed a high-mobility group box protein, TDP1, which was sufficient to open the chromatin of silent VSG expression sites, to disrupt VSG monoallelic expression, and to generate viable and healthy parasites with a mixed VSG coat. Mice infected with these parasites mounted a multi-VSG antibody response, which rapidly reduced parasitemia. Consequently, we observed prolonged survival in which nearly 90% of the mice survived a 30-d period of infection with undetectable parasitemia. Immunodeficient RAG2 knock-out mice were unable to control infection with TDP1-overexpressing parasites, showing that the adaptive immune response is critical to reducing disease severity. This study shows that simultaneous exposure of multiple VSGs is highly detrimental to the parasite, even at the very early stages of infection, suggesting that drugs that disrupt VSG monoallelic expression could be used to treat trypanosomiasis.


Subject(s)
Antigenic Variation/immunology , HMGB Proteins/metabolism , Host-Parasite Interactions/immunology , Parasitemia/prevention & control , Trypanosoma brucei brucei/immunology , Trypanosomiasis, African/complications , Variant Surface Glycoproteins, Trypanosoma/immunology , Animals , Antigenic Variation/genetics , HMGB Proteins/genetics , Immune System , Mice , Parasitemia/etiology , Parasitemia/pathology , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/pathogenicity , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism
20.
Article in English | MEDLINE | ID: mdl-31297342

ABSTRACT

Focal adhesion kinase (FAK), a cytoplasmic protein tyrosine kinase (PTK), is implicated in diverse cellular processes, including the regulation of F-actin dynamics. Host cell F-actin rearrangement is critical for invasion of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. It is unknown whether FAK is involved in the internalization process of metacyclic trypomastigote (MT), the parasite form that is important for vectorial transmission. MT can enter the mammalian host through the ocular mucosa, lesion in the skin, or by the oral route. Oral infection by MT is currently a mode of transmission responsible for outbreaks of acute Chagas disease. Here we addressed the question by generating HeLa cell lines deficient in FAK. Host cell invasion assays showed that, as compared to control wild type (WT) cells, FAK-deficient cells were significantly more susceptible to parasite invasion. Lysosome spreading and a disarranged actin cytoskeleton, two features associated with susceptibility to MT invasion, were detected in FAK-deficient cells, as opposed to WT cells that exhibited a more organized F-actin arrangement, and lysosomes concentrated in the perinuclear area. As compared to WT cells, the capacity of FAK-deficient cells to bind a recombinant protein based on gp82, the MT surface molecule that mediates invasion, was higher. On the other hand, when treated with FAK-specific inhibitor PF573228, WT cells exhibited a dense meshwork of actin filaments, lysosome accumulation around the nucleus, and had increased resistance to MT invasion. In cells treated with PF573228, the phosphorylation levels of FAK were reduced and, as a consequence of FAK inactivation, diminished phosphorylation of extracellular signal-regulated protein kinases (ERK1/2) was observed. Fibronectin, known to impair MT invasion, induced the formation of thick bundles of F-actin and ERK1/2 dephosphorylation.


Subject(s)
Disease Susceptibility/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism , Actins/metabolism , Chagas Disease/metabolism , Chagas Disease/parasitology , Disease Susceptibility/parasitology , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Humans , Lysosomes/metabolism , MAP Kinase Signaling System , Phosphorylation , Protozoan Proteins/genetics , Quinolones/metabolism , Recombinant Proteins/metabolism , Sulfones/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/pathogenicity , Variant Surface Glycoproteins, Trypanosoma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...