Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.905
Filter
1.
Eur J Cardiothorac Surg ; 65(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38837348

ABSTRACT

OBJECTIVES: To assess the accuracy of a deep learning-based algorithm for fully automated detection of thoracic aortic calcifications in chest computed tomography (CT) with a focus on the aortic clamping zone. METHODS: We retrospectively included 100 chest CT scans from 91 patients who were examined on second- or third-generation dual-source scanners. Subsamples comprised 47 scans with an electrocardiogram-gated aortic angiography and 53 unenhanced scans. A deep learning model performed aortic landmark detection and aorta segmentation to derive 8 vessel segments. Associated calcifications were detected and their volumes measured using a mean-based density thresholding. Algorithm parameters (calcium cluster size threshold, aortic mask dilatation) were varied to determine optimal performance for the upper ascending aorta that encompasses the aortic clamping zone. A binary visual rating served as a reference. Standard estimates of diagnostic accuracy and inter-rater agreement using Cohen's Kappa were calculated. RESULTS: Thoracic aortic calcifications were observed in 74% of patients with a prevalence of 27-70% by aorta segment. Using different parameter combinations, the algorithm provided binary ratings for all scans and segments. The best performing parameter combination for the presence of calcifications in the aortic clamping zone yielded a sensitivity of 93% and a specificity of 82%, with an area under the receiver operating characteristic curve of 0.874. Using these parameters, the inter-rater agreement ranged from κ 0.66 to 0.92 per segment. CONCLUSIONS: Fully automated segmental detection of thoracic aortic calcifications in chest CT performs with high accuracy. This includes the critical preoperative assessment of the aortic clamping zone.


Subject(s)
Aorta, Thoracic , Aortic Diseases , Deep Learning , Tomography, X-Ray Computed , Vascular Calcification , Humans , Aorta, Thoracic/diagnostic imaging , Retrospective Studies , Female , Male , Vascular Calcification/diagnostic imaging , Aged , Middle Aged , Tomography, X-Ray Computed/methods , Aortic Diseases/diagnostic imaging , Algorithms , Aged, 80 and over
2.
Cardiovasc Diabetol ; 23(1): 191, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835028

ABSTRACT

BACKGROUND: The purpose of this study was to explore the prognostic significance of the lesion-specific pericoronary fat attenuation index (FAI) in forecasting major adverse cardiovascular events (MACE) among patients with type 2 diabetes mellitus (T2DM). METHODS: This study conducted a retrospective analysis of 304 patients diagnosed with T2DM who underwent coronary computed tomography angiography (CCTA) in our hospital from December 2011 to October 2021. All participants were followed for a period exceeding three years. Detailed clinical data and CCTA imaging features were carefully recorded, encompassing lesion-specific pericoronary FAI, FAI of the three prime coronary arteries, features of high-risk plaques, and the coronary artery calcium score (CACS). The MACE included in the study comprised cardiac death, acute coronary syndrome (which encompasses unstable angina pectoris and myocardial infarction), late-phase coronary revascularization procedures, and hospital admissions prompted by heart failure. RESULTS: Within the three-year follow-up, 76 patients with T2DM suffered from MACE. The lesion-specific pericoronary FAI in patients who experienced MACE was notably higher compared to those without MACE (-84.87 ± 11.36 Hounsfield Units (HU) vs. -88.65 ± 11.89 HU, p = 0.016). Multivariate Cox regression analysis revealed that CACS ≥ 100 (hazard ratio [HR] = 4.071, 95% confidence interval [CI] 2.157-7.683, p < 0.001) and lesion-specific pericoronary FAI higher than - 83.5 HU (HR = 2.400, 95% CI 1.399-4.120, p = 0.001) were independently associated with heightened risk of MACE in patients with T2DM over a three-year period. Kaplan-Meier analysis showed that patients with higher lesion-specific pericoronary FAI were more likely to develop MACE (p = 0.0023). Additionally, lesions characterized by higher lesion-specific pericoronary FAI values were found to have a greater proportion of high-risk plaques (p = 0.015). Subgroup analysis indicated that lesion-specific pericoronary FAI higher than - 83.5 HU (HR = 2.017, 95% CI 1.143-3.559, p = 0.015) was independently correlated with MACE in patients with T2DM who have moderate to severe coronary calcification. Moreover, the combination of CACS ≥ 100 and lesion-specific pericoronary FAI>-83.5 HU significantly enhanced the predictive value of MACE in patients with T2DM within 3 years. CONCLUSIONS: The elevated lesion-specific pericoronary FAI emerged as an independent prognostic factor for MACE in patients with T2DM, inclusive of those with moderate to severe coronary artery calcification. Incorporating lesion-specific pericoronary FAI with the CACS provided incremental predictive power for MACE in patients with T2DM.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Predictive Value of Tests , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/diagnosis , Male , Female , Retrospective Studies , Middle Aged , Aged , Risk Assessment , Prognosis , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/mortality , Coronary Artery Disease/therapy , Risk Factors , Time Factors , Plaque, Atherosclerotic , Vascular Calcification/diagnostic imaging , Vascular Calcification/mortality , Vascular Calcification/epidemiology , Adiposity , Adipose Tissue/diagnostic imaging , Epicardial Adipose Tissue
3.
Medicine (Baltimore) ; 103(23): e38404, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847712

ABSTRACT

BACKGROUND: The role of non-nitrogen-containing bisphosphonates (non-N-BPs) and nitrogen-containing bisphosphonates (N-BPs) in the treatment of atherosclerosis (AS) and vascular calcification (VC) is uncertain. This meta-analysis was conducted to evaluate the efficacy of non-N-BPs and N-BPs in the treatment of AS and VC. METHODS: The PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases were searched from their inception to July 5th, 2023. Eligible studies comparing bisphosphonates (BPs) versus no BPs in the treatment of AS and VC were included. The data were analyzed using Review Manager Version 5.3. RESULTS: Seventeen studies were included in this meta-analysis. Twelve were randomized control trials (RCTs), and 5 were nonrandomized studies. Overall, 813 patients were included in the BPs group, and 821 patients were included in the no BPs group. Compared with no BP treatment, non-N-BP or N-BP treatment did not affect serum calcium (P > .05), phosphorus (P > .05) or parathyroid hormone (PTH) levels (P > .05). Regarding the effect on serum lipids, non-N-BPs decreased the serum total cholesterol (TC) level (P < .05) and increased the serum triglyceride (TG) level (P < .01) but did not affect the serum low-density lipoprotein cholesterol (LDL-C) level (P > .05). N-BPs did not affect serum TC (P > .05), TG (P > .05) or LDL-C levels (P > .05). Regarding the effect on AS, non-N-BPs did not have a beneficial effect (P > .05). N-BPs had a beneficial effect on AS, including reducing the intima-media thickness (IMT) (P < .05) and plaque area (P < .01). For the effect on VC, non-N-BPs had a beneficial effect (P < .01), but N-BPs did not have a beneficial effect (P > .05). CONCLUSION: Non-N-BPs and N-BPs did not affect serum calcium, phosphorus or PTH levels. Non-N-BPs decreased serum TC levels and increased serum TG levels. N-BPs did not affect serum lipid levels. Non-N-BPs had a beneficial effect on VC, and N-BPs had a beneficial effect on AS.


Subject(s)
Atherosclerosis , Diphosphonates , Vascular Calcification , Humans , Diphosphonates/therapeutic use , Atherosclerosis/drug therapy , Vascular Calcification/drug therapy , Vascular Calcification/blood , Nitrogen , Randomized Controlled Trials as Topic , Bone Density Conservation Agents/therapeutic use
4.
Chest ; 165(6): e191-e198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38852977

ABSTRACT

CASE PRESENTATION: A 57-year-old man was admitted to our hospital via the ED presenting in reduced general condition because of an infection of unknown origin, generalized edema, and dyspnea at rest (peripheral capillary oxygen saturation, 89%) that required 2 L/min intranasal oxygen. Anamnesis was complicated by an infection-triggered delirium, but his wife reported an increasing physical decay that had led to bed confinement. The BP was reduced at 88/55 mm Hg with a normal heart rate of 86 beats/min. Lung auscultation showed mild bipulmonal rales. Previous comorbidities were a BMI of 42 kg/m2, an insulin-dependent type 2 diabetes mellitus with a severe diabetes-related chronic kidney disease stage G4A3, and systemic arterial hypertension.


Subject(s)
Pulmonary Artery , Humans , Male , Middle Aged , Pulmonary Artery/diagnostic imaging , Vascular Calcification/diagnosis , Vascular Calcification/diagnostic imaging , Vascular Calcification/complications , Tomography, X-Ray Computed , Diagnosis, Differential
5.
Mol Biol Rep ; 51(1): 622, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709309

ABSTRACT

Menopause is a normal physiological process accompanied by changes in various physiological states. The incidence of vascular calcification (VC) increases each year after menopause and is closely related to osteoporosis (OP). Although many studies have investigated the links between VC and OP, the interaction mechanism of the two under conditions of estrogen loss remains unclear. MicroRNAs (miRNAs), which are involved in epigenetic modification, play a critical role in estrogen-mediated mineralization. In the past several decades, miRNAs have been identified as biomarkers or therapeutic targets in diseases. Thus, we hypothesize that these small molecules can provide new diagnostic and therapeutic approaches. In this review, we summarize the close interactions between VC and OP and the role of miRNAs in their interplay.


Subject(s)
MicroRNAs , Postmenopause , Vascular Calcification , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Vascular Calcification/genetics , Vascular Calcification/metabolism , Postmenopause/genetics , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Estrogens/metabolism , Biomarkers/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Epigenesis, Genetic
6.
BMC Nephrol ; 25(1): 157, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714960

ABSTRACT

BACKGROUND: This study aims to investigate the influencing factors of vascular calcification in peritoneal dialysis (PD) patients and its relationship with long-term prognosis. METHODS: This retrospective cohort study included chronic kidney disease patients undergoing peritoneal dialysis at the Peritoneal Dialysis Center of Beijing Luhu Hospital, Capital Medical University, from January 2019 to March 2019. Demographic and clinical laboratory data, including serum sclerostin (SOST), calcium (Ca), phosphate (P), serum albumin (ALB), and intact parathyroid hormone (iPTH) levels, were collected. Abdominal aortic calcification (AAC) was assessed using abdominal lateral X-ray examination to determine the occurrence of vascular calcification, and patients were divided into the AAC group and Non-AAC group based on the results. RESULTS: A total of 91 patients were included in the study. The AAC group consisted of 46 patients, while the Non-AAC group consisted of 45 patients. The AAC group had significantly older patients compared to the non-AAC group (P < 0.001) and longer dialysis time (P = 0.004). Multivariable logistic regression analysis indicated that risk factors for vascular calcification in PD patients included dialysis time, diabetes, hypertension, and SOST. Kaplan-Meier survival analysis showed that the AAC group had a significantly higher mortality rate than the non-AAC group (χ2 = 35.993, P < 0.001). Multivariable Cox regression analysis revealed that dialysis time, diabetes and AAC were risk factors for all-cause mortality in peritoneal dialysis patients. CONCLUSION: Longer dialysis time, comorbid diabetes, comorbid hypertension, and SOST are risk factors for vascular calcification in PD patients. Additionally, AAC, longer dialysis time, and comorbid diabetes are associated with increased risk of all-cause mortality in peritoneal dialysis patients.


Subject(s)
Peritoneal Dialysis , Vascular Calcification , Humans , Peritoneal Dialysis/adverse effects , Male , Female , Vascular Calcification/epidemiology , Vascular Calcification/diagnostic imaging , Vascular Calcification/etiology , Middle Aged , Retrospective Studies , Prognosis , Risk Factors , Aged , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/complications , Cohort Studies , Parathyroid Hormone/blood , Adult , Aorta, Abdominal/diagnostic imaging , Serum Albumin/metabolism , Serum Albumin/analysis , Calcium/blood
7.
FASEB J ; 38(10): e23651, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752537

ABSTRACT

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Subject(s)
Autophagy , Interferon-beta , Intraocular Pressure , Trabecular Meshwork , Autophagy/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Humans , Animals , Mice , Intraocular Pressure/physiology , Interferon-beta/metabolism , Male , Female , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Hearing Loss, Sensorineural/metabolism , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Mice, Inbred C57BL , Mutation , Optic Atrophy/genetics , Optic Atrophy/metabolism , Optic Atrophy/pathology , Pedigree , Odontodysplasia , Vascular Calcification , Dental Enamel Hypoplasia , Metacarpus/abnormalities , Osteoporosis , Muscular Diseases , Aortic Diseases , Receptors, Immunologic
8.
Gut Microbes ; 16(1): 2351532, 2024.
Article in English | MEDLINE | ID: mdl-38727248

ABSTRACT

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Subject(s)
Gastrointestinal Microbiome , Lipopolysaccharides , NF-kappa B , Prevotella , Renal Insufficiency, Chronic , Signal Transduction , Toll-Like Receptor 4 , Vascular Calcification , Animals , Vascular Calcification/metabolism , Vascular Calcification/pathology , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , Rats , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Humans , Male , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Prevotella/metabolism , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/metabolism , Osteogenesis/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Feces/microbiology , Inflammasomes/metabolism
9.
Article in English | MEDLINE | ID: mdl-38780291

ABSTRACT

ABSTRACT: Vascular calcification (VC), a major complication in chronic kidney disease (CKD), is predominantly driven by osteoblastic differentiation. Recent studies have highlighted the crucial role of microRNAs in CKD's pathogenesis. Here, our research focused on the effects of miR-204-5p and its molecular mechanisms within VC. We initially found a notable decrease in miR-204-5p levels in human aortic vascular smooth muscle cells stimulated with inorganic phosphate, using this as a VC model in vitro. Following the overexpression of miR-204-5p, a decrease in VC was observed, as indicated by alizarin red S staining and measurements of calcium content. This decrease was accompanied by lower levels of the osteogenic marker, runt-related transcription factor 2, and higher levels of α-smooth muscle actin, a marker of contractility. Further investigation showed that calcium/calmodulin-dependent protein kinase 1 (CAMK1), which is a predicted target of miR-204-5p, promotes VC. Conversely, overexpressing miR-204-5p reduced VC by suppressing CAMK1 activity. Overexpressing miR-204-5p also effectively mitigated aortic calcification in an in vivo rat model. In summary, our research indicated that targeting the miR-204-5p/CAMK1 pathway could be a viable strategy for mitigating VC in CKD patients.


Subject(s)
Cell Differentiation , MicroRNAs , Muscle, Smooth, Vascular , Osteogenesis , Vascular Calcification , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Vascular Calcification/genetics , Vascular Calcification/metabolism , Vascular Calcification/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Osteogenesis/genetics , Animals , Rats , Aorta/pathology , Myocytes, Smooth Muscle/metabolism , Male , Cells, Cultured , Rats, Sprague-Dawley
10.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727287

ABSTRACT

Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-ß1 (TGF-ß1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.


Subject(s)
Disease Progression , Renal Insufficiency, Chronic , Renin-Angiotensin System , Humans , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renin-Angiotensin System/physiology , Animals , Hypertension/physiopathology , Hypertension/pathology , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/physiopathology , Transforming Growth Factor beta1/metabolism , Kidney/pathology , Kidney/metabolism , Kidney/physiopathology
11.
J Am Heart Assoc ; 13(10): e033639, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38742509

ABSTRACT

BACKGROUND: It was recently reported that thin-cap fibroatheroma (TCFA) detected by optical coherence tomography was an independent predictor of future cardiac events in patients with diabetes. However, the clinical usefulness of this finding is limited by the invasive nature of optical coherence tomography. Computed tomography angiography (CTA) characteristics of TCFA have not been systematically studied. The aim of this study was to investigate CTA characteristics of TCFA in patients with diabetes. METHODS AND RESULTS: Patients with diabetes who underwent preintervention CTA and optical coherence tomography were included. Qualitative and quantitative analyses were performed for plaques on CTA. TCFA was assessed by optical coherence tomography. Among 366 plaques in 145 patients with diabetes, 111 plaques had TCFA. The prevalence of positive remodeling (74.8% versus 50.6%, P<0.001), low attenuation plaque (63.1% versus 33.7%, P<0.001), napkin-ring sign (32.4% versus 11.0%, P<0.001), and spotty calcification (55.0% versus 34.9%, P<0.001) was significantly higher in TCFA than in non-TCFA. Low-density noncalcified plaque volume (25.4 versus 15.7 mm3, P<0.001) and remodeling index (1.30 versus 1.20, P=0.002) were higher in TCFA than in non-TCFA. The presence of napkin-ring sign, spotty calcification, high low-density noncalcified plaque volume, and high remodeling index were independent predictors of TCFA. When all 4 predictors were present, the probability of TCFA increased to 82.4%. CONCLUSIONS: The combined qualitative and quantitative plaque analysis of CTA may be helpful in identifying TCFA in patients with diabetes. REGISTRATION INFORMATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04523194.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Plaque, Atherosclerotic , Tomography, Optical Coherence , Humans , Male , Plaque, Atherosclerotic/diagnostic imaging , Female , Computed Tomography Angiography/methods , Tomography, Optical Coherence/methods , Aged , Middle Aged , Coronary Artery Disease/diagnostic imaging , Coronary Angiography/methods , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Retrospective Studies , Predictive Value of Tests , Diabetes Mellitus/epidemiology , Vascular Calcification/diagnostic imaging , Vascular Remodeling , Fibrosis
12.
J Cardiothorac Surg ; 19(1): 277, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704582

ABSTRACT

BACKGROUND: Intravascular lithotripsy (IVL) represents a novel approach in the management of coronary calcification. This technique employs acoustic pressure waves, generated by a shockwave balloon, to effectively fracture both superficial and deep calcification in situ. The efficacy and safety of IVL have been convincingly demonstrated through the Disrupt CAD I-IV studies. While IVL is associated with the occurrence of atrial and ventricular arrhythmias, there is no evidence to indicate it causes myocardial ischemia. CASE DESCRIPTION: A 71-year-old man was admitted presenting with chest pain. His previous coronary angiography revealed stenosis and calcification in the left anterior descending branch. An attempt to predilate the lesion using two Lacrosse non-slip element balloons was unsuccessful. Ventricular premature beats and transient ST-segment depression were captured during the utilization of IVL. The operator gradually extended the pulse emission interval across two consecutive cycles to mitigate myocardial ischemia. Notably, when the interval reached 30s, the patient had no chest pain or ST-segment changes. Subsequent images of intravascular ultrasound confirmed calcification ruptures. Therapeutic intervention included the placement of a stent and the application of a drug-coated balloon in the left anterior descending branch. A telephonic follow-up six months later indicated the patient had no discomfort. CONCLUSIONS: This case underscores the effectiveness of gradually extending the pulse emission interval as a strategic complement to the clinical application of IVL. In certain clinical scenarios, it may become imperative to suspend the pulse delivery to improve myocardial blood supply.


Subject(s)
Lithotripsy , Myocardial Ischemia , Humans , Male , Aged , Lithotripsy/methods , Myocardial Ischemia/therapy , Coronary Angiography , Vascular Calcification/therapy
13.
Ther Adv Cardiovasc Dis ; 18: 17539447241249650, 2024.
Article in English | MEDLINE | ID: mdl-38708947

ABSTRACT

Currently, cardiovascular risk stratification to guide preventive therapy relies on clinical scores based on cardiovascular risk factors. However, the discriminative power of these scores is relatively modest. The use of coronary artery calcium score (CACS) and coronary CT angiography (CCTA) has surfaced as methods for enhancing the estimation of risk and potentially providing insights for personalized treatment in individual patients. CACS improves overall cardiovascular risk prediction and may be used to improve the yield of statin therapy in primary prevention, and possibly identify patients with a favorable risk/benefit relationship for antiplatelet therapies. CCTA holds promise to guide anti-atherosclerotic therapies and to monitor individual response to these treatments by assessing individual plaque features, quantifying total plaque volume and composition, and assessing peri-coronary adipose tissue. In this review, we aim to summarize current evidence regarding the use of CACS and CCTA for guiding lipid-lowering and antiplatelet therapy and discuss the possibility of using plaque burden and plaque phenotyping to monitor response to anti-atherosclerotic therapies.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Vessels , Plaque, Atherosclerotic , Predictive Value of Tests , Vascular Calcification , Humans , Vascular Calcification/diagnostic imaging , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Vessels/diagnostic imaging , Coronary Vessels/drug effects , Risk Assessment , Platelet Aggregation Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Heart Disease Risk Factors , Treatment Outcome , Clinical Decision-Making , Patient Selection
14.
Clin Imaging ; 110: 110143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696996

ABSTRACT

PURPOSE: Breast arterial calcification (BAC) refers to medial calcium deposition in breast arteries and is detectable via mammography. Sarcopenia, which is characterised by low skeletal muscle mass and quality, is associated with several serious clinical conditions, increased morbidity, and mortality. Both BAC and sarcopenia share common pathologic pathways, including ageing, diabetes, and chronic kidney disease. Therefore, this study evaluated the relationship between BAC and sarcopenia as a potential indicator of sarcopenia. METHODS: This study involved women aged >40. BAC was evaluated using digital mammography and was defined as vascular calcification. Sarcopenia was assessed using abdominal computed tomography. The cross-sectional skeletal mass area was measured at the third lumbar vertebra level. The skeletal mass index was obtained by dividing the skeletal mass area by height in square meters(m2). Sarcopenia was defined as a skeletal mass index of ≤38.5 cm2/m2. A multivariable model was used to evaluate the relationship between BAC and sarcopenia. RESULTS: The study involved 240 participants. Of these, 36 (15 %) were patients with BAC and 204 (85 %) were without BAC. Sarcopenia was significantly higher among the patients with BAC than in those without BAC (72.2 % vs 17.2 %, P < 0.001). The multivariable model revealed that BAC and age were independently associated with sarcopenia (odds ratio[OR]: 7.719, 95 % confidence interval[CI]: 3.201-18.614, and P < 0.001 for BAC and OR: 1.039, 95 % CI: 1.007-1.073, P = 0.01 for age). CONCLUSION: BAC is independently associated with sarcopenia. BAC might be used as an indicator of sarcopenia on screening mammography.


Subject(s)
Mammography , Sarcopenia , Vascular Calcification , Humans , Sarcopenia/diagnostic imaging , Sarcopenia/complications , Female , Middle Aged , Vascular Calcification/diagnostic imaging , Vascular Calcification/complications , Mammography/methods , Aged , Cross-Sectional Studies , Breast/diagnostic imaging , Breast/blood supply , Postmenopause , Tomography, X-Ray Computed/methods , Adult
15.
JACC Cardiovasc Interv ; 17(10): 1187-1199, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38811101

ABSTRACT

Calcified nodules (CNs) are among the most challenging lesions to treat in contemporary percutaneous coronary intervention. CNs may be divided into 2 subtypes, eruptive and noneruptive, which have distinct histopathological and prognostic features. An eruptive CN is a biologically active lesion with a disrupted fibrous cap and possibly adherent thrombus, whereas a noneruptive CN has an intact fibrous cap and no adherent thrombus. The use of intravascular imaging may allow differentiation between the 2 subtypes, thus potentially guiding treatment strategy. Compared with noneruptive CNs, eruptive CNs are more likely to be deformable, resulting in better stent expansion, but are paradoxically associated with worse clinical outcomes, in part because of their frequent initial presentation as an acute coronary syndrome and subsequent reprotrusion of the CN into the vessel lumen through the stent struts. Pending the results of ongoing studies, a tailored therapeutic approach based on the distinct features of the different CNs may be of value.


Subject(s)
Coronary Artery Disease , Percutaneous Coronary Intervention , Stents , Vascular Calcification , Humans , Percutaneous Coronary Intervention/instrumentation , Percutaneous Coronary Intervention/adverse effects , Vascular Calcification/diagnostic imaging , Vascular Calcification/therapy , Treatment Outcome , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Risk Factors , Predictive Value of Tests , Coronary Vessels/diagnostic imaging , Plaque, Atherosclerotic , Ultrasonography, Interventional , Coronary Angiography , Clinical Decision-Making
17.
EuroIntervention ; 20(10): e656-e668, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38776142

ABSTRACT

BACKGROUND: Coronary calcification negatively impacts optimal stenting. Intravascular lithotripsy (IVL) is a new calcium modification technique. AIMS: We aimed to assess the impact of different calcium morphologies on IVL efficacy. METHODS: This was a prospective, multicentre study (13 tertiary referral centres). Optical coherence tomography (OCT) was performed before and after IVL, and after stenting. OCT-defined calcium morphologies were concentric (mean calcium arc >180°) and eccentric (mean calcium arc ≤180°). The primary outcomes were angiographic success (residual stenosis <20%) and the presence of fracture by OCT in concentric versus eccentric lesions. RESULTS: Ninety patients were included with a total of 95 lesions: 47 concentric and 48 eccentric. The median number of pulses was 60 (p=1.00). Following IVL, the presence of fracture was not statistically different between groups (79.0% vs 66.0% for concentric vs eccentric; p=0.165). The number of fractures/lesion (4.2±4.4 vs 2.3±2.8; p=0.018) and ≥3 fractures/lesion (57.1% vs 34.0%; p=0.029) were more common in concentric lesions. Angiographic success was numerically but not statistically higher in the concentric group (87.0% vs 76.6%; p=0.196). By OCT, no differences were noted in final minimum lumen area (5.9±2.2 mm2 vs 6.2±2.1 mm2; p=0.570), minimum stent area (5.9±2.2 mm² vs 6.25±2.4 mm2; p=0.483), minimum stent expansion (80.9±16.7% vs 78.2±19.8%), or stent expansion at the maximum calcium site (100.6±24.2% vs 95.8±27.3%) (p>0.05 for all comparisons of concentric vs eccentric, respectively). Calcified nodules were found in 29.5% of lesions; these were predominantly non-eruptive (57%). At the nodule site, dissection was more common than fracture with stent expansion of 103.6±27.2%. CONCLUSIONS: In this prospective, multicentre study, the effectiveness of IVL followed by stenting was not significantly affected by coronary calcium morphology.


Subject(s)
Coronary Angiography , Coronary Artery Disease , Lithotripsy , Tomography, Optical Coherence , Vascular Calcification , Humans , Lithotripsy/methods , Male , Female , Middle Aged , Aged , Prospective Studies , Vascular Calcification/diagnostic imaging , Vascular Calcification/therapy , Treatment Outcome , Coronary Artery Disease/therapy , Coronary Artery Disease/diagnostic imaging , Stents , Percutaneous Coronary Intervention/methods , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Calcium
19.
Cardiovasc Diabetol ; 23(1): 186, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812011

ABSTRACT

BACKGROUND: Vascular calcification (VC) is an independent risk factor for cardiovascular diseases. Recently, ferroptosis has been recognised as a novel therapeutic target for cardiovascular diseases. Although an association between ferroptosis and vascular calcification has been reported, the role and mechanism of iron overload in vascular calcification are still poorly understood. Specifically, further in-depth research is required on whether metalloproteins SLC39a14 and SLC39a8 are involved in ferroptosis induced by iron overload. METHODS: R language was employed for the differential analysis of the dataset, revealing the correlation between ferroptosis and calcification. The experimental approaches encompassed both in vitro and in vivo studies, incorporating the use of iron chelators and models of iron overload. Additionally, gain- and loss-of-function experiments were conducted to investigate iron's effects on vascular calcification comprehensively. Electron microscopy, immunofluorescence, western blotting, and real-time polymerase chain reaction were used to elucidate how Slc39a14 and Slc39a8 mediate iron overload and promote calcification. RESULTS: Ferroptosis was observed in conjunction with vascular calcification (VC); the association was consistently confirmed by in vitro and in vivo studies. Our results showed a positive correlation between iron overload in VSMCs and calcification. Iron chelators are effective in reversing VC and iron overload exacerbates this process. The expression levels of the metal transport proteins Slc39a14 and Slc39a8 were significantly upregulated during calcification; the inhibition of their expression alleviated VC. Conversely, Slc39a14 overexpression exacerbates calcification and promotes intracellular iron accumulation in VSMCs. CONCLUSIONS: Our research demonstrates that iron overload occurs during VC, and that inhibition of Slc39a14 and Slc39a8 significantly relieves VC by intercepting iron overload-induced ferroptosis in VSMCs, providing new insights into the VC treatment.


Subject(s)
Cation Transport Proteins , Disease Models, Animal , Ferroptosis , Iron Chelating Agents , Mice, Inbred C57BL , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Calcification , Ferroptosis/drug effects , Vascular Calcification/metabolism , Vascular Calcification/pathology , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Signal Transduction , Male , Humans , Iron/metabolism , Iron Overload/metabolism , Iron Overload/pathology
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 734-740, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818560

ABSTRACT

OBJECTIVE: To explore the clinical manifestations and genetic basis for a rare case of Generalized arterial calcification of infancy (GACI). METHODS: A 44-day-old female infant who was treated at Baoding Hospital of Beijing Children's Hospital Affiliated to Capital Medical University on August 26, 2022 was selected as the study subject. Clinical data of the child was collected, and Trio-whole exome sequencing (Trio-WES), whole genome copy number variation sequencing (CNV-seq) and minigene splicing assay were carried out to analyze the pathogenicity of the variants. RESULTS: The child had presented with fever and high inflammatory indicators, for which treatment with various antibiotics was ineffective. Ultrasound had revealed extensive arterial calcification and arterial wall thickening. The child was suspected for GACI with arteritis related to the primary disease. Her fever was relieved by treatment with glucocorticoid and biological agents. Trio-WES revealed that she has harbored compound heterozygous variants of the ABCC6 gene, namely c.4404-1G>A and c.4041+5G>T, for which the latter was unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics, the variants were classified as likely pathogenic (PVS1+PM2_Supporting) and variant of unknown significance (PM2_Supporting+PM3+PP3), respectively. The result of CNV-seq was negative. And the minigene splicing assay has further verified that both variants can result in alternative splicing. CONCLUSION: For pyrexia with unknown causes and refractory to conventional treatment, it is necessary to recommend early genetic testing to avoid missed diagnosis of GACI.


Subject(s)
Multidrug Resistance-Associated Proteins , Vascular Calcification , Humans , Female , Vascular Calcification/genetics , Multidrug Resistance-Associated Proteins/genetics , Infant , Genetic Testing , Exome Sequencing , DNA Copy Number Variations , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...