Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
Medicine (Baltimore) ; 103(23): e38404, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847712

ABSTRACT

BACKGROUND: The role of non-nitrogen-containing bisphosphonates (non-N-BPs) and nitrogen-containing bisphosphonates (N-BPs) in the treatment of atherosclerosis (AS) and vascular calcification (VC) is uncertain. This meta-analysis was conducted to evaluate the efficacy of non-N-BPs and N-BPs in the treatment of AS and VC. METHODS: The PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases were searched from their inception to July 5th, 2023. Eligible studies comparing bisphosphonates (BPs) versus no BPs in the treatment of AS and VC were included. The data were analyzed using Review Manager Version 5.3. RESULTS: Seventeen studies were included in this meta-analysis. Twelve were randomized control trials (RCTs), and 5 were nonrandomized studies. Overall, 813 patients were included in the BPs group, and 821 patients were included in the no BPs group. Compared with no BP treatment, non-N-BP or N-BP treatment did not affect serum calcium (P > .05), phosphorus (P > .05) or parathyroid hormone (PTH) levels (P > .05). Regarding the effect on serum lipids, non-N-BPs decreased the serum total cholesterol (TC) level (P < .05) and increased the serum triglyceride (TG) level (P < .01) but did not affect the serum low-density lipoprotein cholesterol (LDL-C) level (P > .05). N-BPs did not affect serum TC (P > .05), TG (P > .05) or LDL-C levels (P > .05). Regarding the effect on AS, non-N-BPs did not have a beneficial effect (P > .05). N-BPs had a beneficial effect on AS, including reducing the intima-media thickness (IMT) (P < .05) and plaque area (P < .01). For the effect on VC, non-N-BPs had a beneficial effect (P < .01), but N-BPs did not have a beneficial effect (P > .05). CONCLUSION: Non-N-BPs and N-BPs did not affect serum calcium, phosphorus or PTH levels. Non-N-BPs decreased serum TC levels and increased serum TG levels. N-BPs did not affect serum lipid levels. Non-N-BPs had a beneficial effect on VC, and N-BPs had a beneficial effect on AS.


Subject(s)
Atherosclerosis , Diphosphonates , Vascular Calcification , Humans , Diphosphonates/therapeutic use , Atherosclerosis/drug therapy , Vascular Calcification/drug therapy , Vascular Calcification/blood , Nitrogen , Randomized Controlled Trials as Topic , Bone Density Conservation Agents/therapeutic use
2.
Mol Med ; 30(1): 58, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720283

ABSTRACT

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Subject(s)
AMP-Activated Protein Kinases , Exenatide , Glucagon-Like Peptide-1 Receptor , Mitophagy , Signal Transduction , Vascular Calcification , Animals , Mitophagy/drug effects , Vascular Calcification/etiology , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Signal Transduction/drug effects , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Humans , Exenatide/pharmacology , Exenatide/therapeutic use , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice, Inbred C57BL
3.
Phytomedicine ; 129: 155618, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678949

ABSTRACT

BACKGROUND: Vascular calcification refers to the abnormal accumulation of calcium in the walls of blood vessels and is a risk factor often overlooked in cardiovascular disease. However, there is currently no specific drug for treating vascular calcification. Compound Danshen Dripping Pill (CDDP) is widely used to treat cardiovascular diseases, but its effect on vascular calcification has not been reported. PURPOSE: We investigated the effects of CDDP on vascular calcification in ApoE-/- mice and in vitro and elucidated its mechanism of action. STUDY DESIGN: Firstly, we found that CDDP has the potential to improve calcification based on network pharmacology analysis. Then, we performed the following experiments: in vivo, ApoE-/- mice were fed a high-fat diet randomly supplemented with CDDP for 16 weeks. Atherosclerosis and vascular calcification were determined. In vitro, human aortic smooth muscle cells (HASMCs), human umbilical vein endothelial cells (HUVECs), and human aortic endothelial cells (HAECs) were used to determine the mechanisms for CDDP-inhibited vascular calcification. RESULTS: In this study, we observed that CDDP reduced intimal calcification in atherosclerotic lesions of ApoE-deficient mice fed a high-fat diet, as well as the calcification in cultured SMCs and ECs. Mechanistically, CDDP inhibited the Wnt/ß-catenin pathway by up-regulating the expression of DKK1 and LRP6, which are upstream inhibitors of Wnt, leading to a reduction in the expression of osteoblastic transition markers (ALP, OPN, BMP2, and RUNX2). Furthermore, CDDP enhanced the secretion of DKK1, which plays a role in mediating EC-SMC crosstalk in calcification. Additionally, VC contributes to vascular aging by inhibiting Sirt1 and increasing senescence parameters (SA-ß-gal, p21, and p16). However, CDDP reversed these changes by activating Sirt1. CDDP also reduced the levels of pro-inflammatory cytokines and the senescence-associated secretory phenotype in vivo and in vitro. CONCLUSIONS: Our study suggests that CDDP reduces vascular calcification by regulating the DKK1/LRP6/ß-catenin signaling pathway in ECs/SMCs and interactions with the crosstalk of ECs and SMCs. It also reduces the senescence of ECs/SMCs, contributing to the Sirt1 activation, indicating CDDP's novel role in ameliorating vascular calcification.


Subject(s)
Atherosclerosis , Diet, High-Fat , Drugs, Chinese Herbal , Human Umbilical Vein Endothelial Cells , Salvia miltiorrhiza , Vascular Calcification , Animals , Vascular Calcification/drug therapy , Humans , Drugs, Chinese Herbal/pharmacology , Salvia miltiorrhiza/chemistry , Male , Diet, High-Fat/adverse effects , Atherosclerosis/drug therapy , Mice , Human Umbilical Vein Endothelial Cells/drug effects , Sirtuin 1/metabolism , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Apolipoproteins E/genetics , Network Pharmacology , Wnt Signaling Pathway/drug effects , Aorta/drug effects , Camphanes , Intercellular Signaling Peptides and Proteins , Panax notoginseng
4.
Kidney Blood Press Res ; 49(1): 137-143, 2024.
Article in English | MEDLINE | ID: mdl-38266504

ABSTRACT

INTRODUCTION: The process of vascular calcification has severe clinical consequences in a number of diseases, including diabetes, atherosclerosis, and end-stage renal disease. In the present study, we investigated the effect of policosanol (Poli), genistein (Gen), and vitamin D (VitD) separately and in association to evaluate the possible synergistic action on inorganic phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). METHODS: Primary human VSMCs were cultured with either growth medium or growth medium supplemented with calcium and phosphorus (calcification medium) in combination with Poli, Gen, and VitD. Alizarin Red staining, mineralization, and the protein expression of RUNX2 and superoxide dismutase-2 (SOD2) were investigated. RESULTS: All three substances tested were effective at reducing osteogenic differentiation of VSMCs in a dose-dependent manner. Poli+Gen, Poli+VitD, Gen+VitD treatment induced a greater inhibition of calcification and RUNX2 expression compared to single compounds treatments. Moreover, the association of Poli+Gen+VitD (Reduplaxin®) was more effective at inhibiting VSMCs mineralization and preventing the increase in RUNX2 expression induced by calcification medium but not modified SOD2 expression. CONCLUSIONS: The association of Pol, Gen, and VitD (Reduplaxin®) has an additive inhibitory effect on the calcification process of VSMCs induced in vitro by a pro-calcifying medium.


Subject(s)
Fatty Alcohols , Genistein , Muscle, Smooth, Vascular , Vascular Calcification , Vitamin D , Humans , Vitamin D/pharmacology , Fatty Alcohols/pharmacology , Cells, Cultured , Vascular Calcification/prevention & control , Vascular Calcification/chemically induced , Vascular Calcification/drug therapy , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Genistein/pharmacology , Genistein/therapeutic use , Superoxide Dismutase/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism
5.
Acta Pharmacol Sin ; 45(4): 751-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38172306

ABSTRACT

Type 2 diabetes mellitus (T2DM) patients exhibit greater susceptibility to vascular calcification (VC), which has a higher risk of death and disability. However, there is no specific drug for VC therapy. NLRP3 inflammasome activation as a hallmark event of medial calcification leads to arterial stiffness, causing vasoconstrictive dysfunction in T2DM. Empagliflozin (EMPA), a sodium-glucose co-transporter 2 inhibitor (SGLT2i), restrains hyperglycemia with definite cardiovascular benefits. Given the anti-inflammatory activity of EMPA, herein we investigated whether EMPA protected against VC in the aorta of T2DM mice by inhibiting NLRP3 inflammasome activation. Since db/db mice receiving a normal diet developed VC at the age of about 20 weeks, we administered EMPA (5, 10, 20 mg·kg-1·d-1, i.g) to 8 week-old db/db mice for 12 weeks. We showed that EMPA intervention dose-dependently ameliorated the calcium deposition, accompanied by reduced expression of RUNX2 and BMP2 proteins in the aortas. We found that EMPA (10 mg·kg-1·d-1 for 6 weeks) also protected against VC in vitamin D3-overloaded mice, suggesting the protective effects independent of metabolism. We showed that EMPA (10 mg·kg-1·d-1) inhibited the abnormal activation of NLRP3 inflammasome in aortic smooth muscle layer of db/db mice. Knockout (KO) of NLRP3 significantly alleviated VC in STZ-induced diabetic mice. The protective effects of EMPA were verified in high glucose (HG)-treated mouse aortic smooth muscle cells (MOVASs). In HG-treated NLRP3 KO MOVASs, EMPA (1 µM) did not cause further improvement. Bioinformatics and Western blot analysis revealed that EMPA significantly increased the expression levels of basic helix-loop-helix family transcription factor e40 (Bhlhe40) in HG-treated MOVASs, which served as a negative transcription factor directly binding to the promotor of Nlrp3. We conclude that EMPA ameliorates VC by inhibiting Bhlhe40-dpendent NLRP3 inflammasome activation. These results might provide potential significance for EMPA in VC therapy of T2DM patients.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Glucosides , Vascular Calcification , Animals , Humans , Infant , Mice , Basic Helix-Loop-Helix Transcription Factors/therapeutic use , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Homeodomain Proteins , Inflammasomes/metabolism , Mice, Inbred Strains , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Transcription Factors , Vascular Calcification/drug therapy
6.
BMC Nephrol ; 25(1): 26, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254024

ABSTRACT

BACKGROUND: Up to now, there is no unequivocal intervention to mitigate vascular calcification (VC) in patients with hemodialysis. This network meta-analysis aimed to systematically evaluate the clinical efficacy of sodium thiosulfate, bisphosphonates, and cinacalcet in treating vascular calcification. METHODS: A comprehensive study search was performed using PubMed, Web of Science, the Cochrane Library, EMBASE and China National Knowledge Internet (CNKI) to collect randomized controlled trials (RCTs) of sodium thiosulfate, bisphosphonates, and cinacalcet for vascular calcification among hemodialysis patients. Then, network meta-analysis was conducted using Stata 17.0 software. RESULTS: In total, eleven RCTs including 1083 patients were qualified for this meta-analysis. We found that cinacalcet (SMD - 0.59; 95% CI [-0.95, -0.24]) had significant benefit on vascular calcification compared with conventional therapy, while sodium thiosulfate or bisphosphonates did not show such efficiency. Furthermore, as for ranking the efficacy assessment, cinacalcet possessed the highest surface under the cumulative ranking curve (SUCRA) value (88.5%) of lessening vascular calcification and was superior to sodium thiosulfate (50.4%) and bisphosphonates (55.4%). Thus, above results suggested that cinacalcet might be the most promising drug for vascular calcification treatment in hemodialysis patients. Mechanistically, our findings illustrated that cinacalcet reduced serum calcium (SMD - 1.20; 95% CI [-2.08, - 0.33]) and showed the tendency in maintaining the balance of intact Parathyroid Hormone (iPTH) level. CONCLUSIONS: This network meta-analysis indicated that cinacalcet appear to be more effective than sodium thiosulfate and bisphosphonates in mitigating vascular calcification through decreasing serum calcium and iPTH. And cinacalcet might be a reasonable option for hemodialysis patients with VC in clinical practice. SYSTEMATIC REVIEW REGISTRATION: [ http://www.crd.york.ac.uk/PROSPERO ], identifier [CRD42022379965].


Subject(s)
Diphosphonates , Thiosulfates , Vascular Calcification , Humans , Diphosphonates/therapeutic use , Cinacalcet/therapeutic use , Network Meta-Analysis , Calcium , Vascular Calcification/drug therapy , Randomized Controlled Trials as Topic
7.
J Int Med Res ; 52(1): 3000605231222156, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38180904

ABSTRACT

OBJECTIVE: This study aimed to examine the mechanism of hyperphosphatemia-induced vascular calcification (HPVC). METHODS: Primary human aortic smooth muscle cells and rat aortic rings were cultured in Dulbecco's modified Eagle's medium supplemented with 0.9 mM or 2.5 mM phosphorus concentrations. Type III sodium-dependent phosphate cotransporter-1 (Pit-1) small interfering RNA and phosphonoformic acid (PFA), a Pit-1 inhibitor, were used to investigate the effects and mechanisms of Pit-1 on HPVC. Calcium content shown by Alizarin red staining, expression levels of Pit-1, and characteristic molecules for phenotypic transition of vascular smooth muscle cells were examined. RESULTS: Hyperphosphatemia induced the upregulation of Pit-1 expression, facilitated phenotypic transition of vascular smooth muscle cells, and led to HPVC in cellular and organ models. Treatment with Pit-1 small interfering RNA or PFA significantly inhibited Pit-1 expression, suppressed phenotypic transition, and attenuated HPVC. CONCLUSIONS: Our findings suggest that Pit-1 plays a pivotal role in the development of HPVC. The use of PFA as a Pit-1 inhibitor has the potential for therapeutic intervention in patients with HPVC. However, further rigorous clinical investigations are required to ensure the safety and efficacy of PFA before it can be considered for widespread implementation in clinical practice.


Subject(s)
Hyperphosphatemia , Sodium-Phosphate Cotransporter Proteins, Type III , Vascular Calcification , Animals , Humans , Rats , Aorta , Foscarnet , Hyperphosphatemia/complications , RNA, Small Interfering/genetics , Transcription Factors , Vascular Calcification/drug therapy , Vascular Calcification/etiology , Sodium-Phosphate Cotransporter Proteins, Type III/drug effects , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 873-888, 2024 02.
Article in English | MEDLINE | ID: mdl-37522915

ABSTRACT

Vascular calcification (VC) is a major risk factor for cardiovascular events. A mutual interplay between inflammation, oxidative stress, apoptosis, and autophagy is implicated in its development. Herein, we aimed to evaluate the potential protective effects of canagliflozin in a vitamin D3 plus nicotine (VDN) model of VC, and to explore potential mechanisms. VC was induced by VDN in adult male Wistar rats on day one. Then, rats were randomly assigned into three groups to receive canagliflozin (10 mg or 20 mg/kg/day) or its vehicle for 4 weeks. Age-matched normal rats served as a control group. After euthanization, aorta and kidneys were harvested for biochemical and histopathological evaluation of calcification. Aortic markers of oxidative stress, alkaline phosphatase (ALP) activity, runt-related transcription factor (Runx2) and bone morphogenic protein-2 (BMP-2) levels were determined. Additionally, the protein expression of autophagic markers, LC3 and p62, and adenosine monophosphate activated protein kinase (AMPK) were also assessed in aortic homogenates. Canagliflozin dose-dependently improved renal function, enhanced the antioxidant capacity of aortic tissues and reduced calcium deposition in rat aortas and kidneys. Both doses of canagliflozin attenuated ALP and osteogenic markers while augmented the expression of autophagic markers and AMPK. Histopathological examination of aortas and kidneys by H&E and Von Kossa stain further support the beneficial effect of canagliflozin. Canagliflozin could alleviate VDN-induced vascular calcification, in a dose dependent manner, via its antioxidant effect and modulation of autophagy. Further studies are needed to verify whether this effect is a member or a class effect.


Subject(s)
Cholecalciferol , Vascular Calcification , Rats , Male , Animals , Cholecalciferol/pharmacology , Nicotine/adverse effects , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , AMP-Activated Protein Kinases , Rats, Sprague-Dawley , Rats, Wistar , Vascular Calcification/chemically induced , Vascular Calcification/drug therapy , Vascular Calcification/prevention & control , Autophagy
9.
Annu Rev Pathol ; 19: 507-540, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37871131

ABSTRACT

The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.


Subject(s)
Phosphoric Diester Hydrolases , Vascular Calcification , Adult , Humans , Middle Aged , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Vascular Calcification/drug therapy , Vascular Calcification/genetics , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
10.
Life Sci ; 336: 122309, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38042282

ABSTRACT

Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.


Subject(s)
Atherosclerosis , Vascular Calcification , Humans , Mitogen-Activated Protein Kinases/metabolism , Sirolimus/pharmacology , Atherosclerosis/drug therapy , Signal Transduction , Vascular Calcification/drug therapy , Vascular Calcification/metabolism
11.
Environ Toxicol ; 39(4): 2363-2373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38156404

ABSTRACT

Vascular calcification (VC) is a common complication of chronic kidney disease (CKD). VC is a gene-regulated process similar to osteogenic differentiation. There are still no convincing schemes to prevent and reduce the development of VC. It has been reported that hypoxia-inducing factor 1α (HIF-1α) and endothelin-1(ET-1) are related to VC. In this study, we found that the expression of ET-1 and HIF-1α was enhanced after VC, the interaction between HIF-1α and ET-1 was confirmed by CO-IP and luciferase experiments. We found that ET-1 was an upregulated differential gene of calcified vascular smooth muscle cells (VSMCs) through gene sequencing. However, hypoxia-inducing factor 2α (HIF-2α) and HIF-1α have antagonistic effects on each other. HIF-1α is a pro-inflammatory cytokine, and HIF-2α can improve inflammation and fibrosis. Roxadustat, as a selective PHD3 inhibitor, preferentially activates HIF-2α. It is still unclear whether roxadustat improves VC in CKD by regulating the expression of HIF-2α/HIF-1α. Alizarin red staining and western blot as well as immunohistochemical results showed that roxadustat could significantly reduce the degree of vascular and VSMCs calcification in CKD rats. Serum HIF-1α and ET-1 were significantly decreased after roxadustat treatment. In addition, western blot results showed that roxadustat could decrease the expression of HIF-1α and ET-1 in vascular tissues and calcified VSMC, but HIF-2α expression significantly increased. Interestingly, our study confirmed that activation of HIF-1α or inhibition of HIF-2α reversed the ameliorating effect of roxadustat on VC, proving that the effect mediated by roxadustat is HIF-2α/HIF-1α dependent. We have demonstrated for the first time that roxadustat improves VC in CKD rats by regulating HIF-2α/HIF-1α, thus providing a new idea for the application of roxadustat in VC of CKD.


Subject(s)
Renal Insufficiency, Chronic , Vascular Calcification , Rats , Animals , Osteogenesis , Vascular Calcification/drug therapy , Vascular Calcification/prevention & control , Vascular Calcification/complications , Hypoxia , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit
12.
Mol Med ; 29(1): 168, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093172

ABSTRACT

BACKGROUND: Shenqi Compound (SQC) has been used in clinic for several decades in the prevention and treatment of diabetes and its complications. But this is merely a heritage of experience. The primary aim of this study is to scientifically validate the therapeutic effects of SQC on diabetic vascular calcification (DVC) in an animal model and, simultaneously, uncover its potential underlying mechanisms. METHOD: Spontaneous diabetic rat- Goto Kakizaki (GK) rats were selected for rat modeling. We meticulously designed three distinct groups: a control group, a model group, and an SQC treatment group to rigorously evaluate the influence of SQC. Utilizing a comprehensive approach that encompassed methods such as pathological staining, western blot analysis, qRT-PCR, and RNA sequencing, we thoroughly investigated the therapeutic advantages and the underlying mechanistic pathways associated with SQC in the treatment of DVC. RESULT: The findings from this investigation have unveiled the extraordinary efficacy of SQC treatment in significantly mitigating DVC. The underlying mechanisms driving this effect encompass multifaceted facets, including the restoration of aberrant glucose and lipid metabolism, the prevention of phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteogenic-like states, the subsequent inhibition of cell apoptosis, the modulation of inflammation responses, the remodeling of the extracellular matrix (ECM), and the activation of the Hippo-YAP signaling pathway. Collectively, these mechanisms lead to the dissolution of deposited calcium salts, ultimately achieving the desired inhibition of DVC. CONCLUSION: Our study has provided compelling and robust evidence of the remarkable efficacy of SQC treatment in significantly reducing DVC. This reduction is attributed to a multifaceted interplay of mechanisms, each playing a crucial role in the observed therapeutic effects. Notably, our findings illuminate prospective directions for further research and potential clinical applications in the field of cardiovascular health.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Vascular Calcification , Rats , Animals , Prospective Studies , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Vascular Calcification/drug therapy , Vascular Calcification/complications , Vascular Calcification/metabolism , Myocytes, Smooth Muscle/metabolism
13.
ACS Nano ; 17(24): 24773-24789, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38055864

ABSTRACT

As the prevalence of vascular calcification (VC), a strong contributor to cardiovascular morbidity and mortality, continues to increase, the need for pharmacologic therapies becomes urgent. Sodium thiosulfate (STS) is a clinically approved drug for therapy against VC; however, its efficacy is hampered by poor bioavailability and severe adverse effects. Plant-derived extracellular vesicles have provided options for VC treatment since they can be used as biomimetic drug carriers with higher biosafety and targeting abilities than artificial carriers. Inspired by natural grapefruit-derived extracellular vesicles (EVs), we fabricated a biomimetic nanocarrier comprising EVs loaded with STS and further modified with hydroxyapatite crystal binding peptide (ESTP) for VC-targeted delivery of STS. In vitro, the ESTP nanodrug exhibited excellent cellular uptake capacity by calcified vascular smooth muscle cells (VSMCs) and subsequently inhibited VSMCs calcification. In the VC mice model, the ESTP nanodrug showed preferentially the highest accumulation in the calcified arteries compared to other treatment groups. Mechanistically, the ESTP nanodrug significantly prevented VC via driving M2 macrophage polarization, reducing inflammation, and suppressing bone-vascular axis as demonstrated by inhibiting osteogenic phenotype trans-differentiation of VSMCs while enhancing bone quality. In addition, the ESTP nanodrug did not induce hemolysis or cause any damage to other organs. These results suggest that the ESTP nanodrug can prove to be a promising agent against VC without the concern of systemic toxicity.


Subject(s)
Citrus paradisi , Extracellular Vesicles , Vascular Calcification , Animals , Mice , Biomimetics , Vascular Calcification/drug therapy , Vascular Calcification/metabolism , Vascular Calcification/prevention & control , Extracellular Vesicles/metabolism
14.
BMC Nephrol ; 24(1): 373, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102596

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is a major cause of morbidity and mortality in patients with chronic kidney disease (CKD) and could be related to oxidative stress. Vascular calcification (VC) has been established as a critical risk factor for accelerated CVD. In CKD, phosphorus (Pi), iron (Fe) and Nrf2 are modulators of VC and important agonists and antagonists of oxidative stress. The aim of this study was to determine whether Fe administration, which is commonly used to treat renal anemia, affects aortic Fe overload and VC, and whether Nrf2 and its related genes, ferritin H and HIF-1α, are involved in the development of VC. METHODS: A CKD model was created in rats by administering adenine and simultaneously feeding a high-Pi diet. In addition to control and CKD rats without Fe administration (No-Fe group), Fe was administered orally (PO-Fe group) or intraperitoneally (IP-Fe group) to CKD animals to clarify the effects of Fe administration on the aortic Fe and calcium (Ca) contents and the involvement of Nrf2 and its induced antioxidative proteins, ferritin H and HIF-1α, in VC. RESULTS: The aortic Fe content increased significantly in the IP-Fe group, which was closely correlated with liver HAMP (hepcidin) expression in all animals. Fe administration had no significant effect on the aortic Ca and Pi contents regardless of the route of Fe administration. The aortic mRNA level of Nrf2 was significantly increased in the IP-Fe group and correlated with serum Pi levels and aortic Fe contents, which could respond to oxidative stress. Notably, the mRNA level of Nrf2 was also significantly correlated with the mRNA levels of ferritin H and HIF-1α. Since we could not measure Nrf2 protein levels in this study, we confirmed the upregulation of HMOX1 and NQO1 mRNA expression in parallel with Nrf2 mRNA. CONCLUSION: Parenteral Fe administration increased aortic Fe in parallel with the liver HAMP mRNA level but did not affect VC. Aortic Nrf2 mRNA levels correlated significantly with aortic Fe and serum Pi levels and with aortic mRNA levels of ferritin H and HIF-1α as well as HMOX1 and NQO1.


Subject(s)
Cardiovascular Diseases , Renal Insufficiency, Chronic , Vascular Calcification , Humans , Rats , Animals , Iron/metabolism , Phosphorus , NF-E2-Related Factor 2/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/complications , Ferritins , Calcium/metabolism , Vascular Calcification/drug therapy , Vascular Calcification/etiology , Cardiovascular Diseases/complications , RNA, Messenger
15.
Curr Atheroscler Rep ; 25(12): 911-920, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37971683

ABSTRACT

PURPOSE OF REVIEW: To discuss and review the technical considerations, fundamentals, and guideline-based indications for coronary artery calcium scoring, and the use of other non-invasive imaging modalities, such as extra-coronary calcification in cardiovascular risk prediction. RECENT FINDINGS: The most robust evidence for the use of CAC scoring is in select individuals, 40-75 years of age, at borderline to intermediate 10-year ASCVD risk. Recent US recommendations support the use of CAC scoring in varying clinical scenarios. First, in adults with very high CAC scores (CAC ≥ 1000), the use of high-intensity statin therapy and, if necessary, guideline-based add-on LDL-C lowering therapies (ezetimibe, PCSK9-inhibitors) to achieve a ≥ 50% reduction in LDL-C and optimally an LDL-C < 70 mg/dL is recommended. In patients with a CAC score ≥ 100 at low risk of bleeding, the benefits of aspirin use may outweigh the risk of bleeding. Other applications of CAC scoring include risk estimation on non-contrast CT scans of the chest, risk prediction in younger patients (< 40 years of age), its value as a gatekeeper for the decision to perform nuclear stress testing, and to aid in risk stratification in patients presenting with low-risk chest pain. There is a correlation between extra-coronary calcification (e.g., breast arterial calcification, aortic calcification, and aortic valve calcification) and incident ASCVD events. However, its role in informing lipid management remains unclear. Identification of coronary calcium in selected patients is the single best non-invasive imaging modality to identify future ASCVD risk and inform lipid-lowering therapy decision-making.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Vascular Calcification , Adult , Humans , Proprotein Convertase 9 , Cholesterol, LDL , Calcium , Risk Assessment/methods , Vascular Calcification/diagnostic imaging , Vascular Calcification/drug therapy , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/drug therapy , Atherosclerosis/diagnostic imaging , Atherosclerosis/drug therapy , Risk Factors , Coronary Vessels
16.
Int Immunopharmacol ; 125(Pt B): 111198, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952482

ABSTRACT

Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1ß, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and ß-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and ß-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted ß-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.


Subject(s)
Atherosclerosis , Vascular Calcification , Humans , Animals , Mice , beta Catenin , Interleukin-6 , Osteogenesis , Vascular Calcification/drug therapy , Inflammation/drug therapy , Atherosclerosis/drug therapy
17.
J Am Heart Assoc ; 12(23): e031676, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38014685

ABSTRACT

BACKGROUND: Cardiovascular calcification, characterized by deposition of calcium phosphate in the arterial wall and heart valves, is associated with cardiovascular morbidity and mortality and is commonly seen in aging, diabetes, and chronic kidney disease. Whether evidence-based interventions could significantly attenuate cardiovascular calcification progression remains uncertain. METHODS AND RESULTS: We conducted a systematic review of randomized controlled trials involving interventions, compared with placebo, another comparator, or standard of care, to attenuate cardiovascular calcification. Included clinical trials involved participants without chronic kidney disease, and the outcome was cardiovascular calcification measured using radiological methods. Quality of evidence was determined by the Cochrane risk of bias and Grading of Recommendations, Assessment, Development, and Evaluations assessment. Forty-nine randomized controlled trials involving 9901 participants (median participants 104, median duration 12 months) were eligible for inclusion. Trials involving aged garlic extract (n=6 studies) consistently showed attenuation of cardiovascular calcification. Trials involving 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (n=14), other lipid-lowering agents (n=2), hormone replacement therapies (n=3), vitamin K (n=5), lifestyle measures (n=4), and omega-3 fatty acids (n=2) consistently showed no attenuation of cardiovascular calcification with these therapies. Trials involving antiresorptive (n=2), antihypertensive (n=2), antithrombotic (n=4), and hypoglycemic agents (n=3) showed mixed results. Singleton studies involving salsalate, folate with vitamin B6 and 12, and dalcetrapib showed no attenuation of cardiovascular calcification. Overall, Cochrane risk of bias was moderate, and the Grading of Recommendations, Assessment, Development, and Evaluations assessment for a majority of analyses was moderate certainty of evidence. CONCLUSIONS: Currently, there are insufficient or conflicting data for interventions evaluated in clinical trials for mitigation of cardiovascular calcification. Therapy involving aged garlic extract appears most promising, but evaluable studies were small and of short duration.


Subject(s)
Garlic , Phytotherapy , Vascular Calcification , Humans , Antioxidants , Diabetes Mellitus , Disease Progression , Hypoglycemic Agents , Randomized Controlled Trials as Topic , Renal Insufficiency, Chronic , Vascular Calcification/drug therapy , Vascular Calcification/therapy , Plant Extracts/therapeutic use
18.
J Vet Sci ; 24(5): e69, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38031648

ABSTRACT

BACKGROUND: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. OBJECTIVES: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. METHODS: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. RESULTS: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runt-related transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. CONCLUSIONS: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.


Subject(s)
Vascular Calcification , Animals , Mice , Calcium/metabolism , Cells, Cultured , Collagen/metabolism , Mice, Inbred ICR , Muscle, Smooth, Vascular/metabolism , Signal Transduction , Vascular Calcification/prevention & control , Vascular Calcification/drug therapy , Vascular Calcification/metabolism , Vascular Calcification/veterinary
19.
Curr Atheroscler Rep ; 25(11): 769-784, 2023 11.
Article in English | MEDLINE | ID: mdl-37796384

ABSTRACT

PURPOSE OF REVIEW: This review aimed to determine the association between statin use and coronary artery calcification (CAC), as detected by computed tomography in the general population, in previously published observational studies (OSs) and randomized controlled trials (RCTs). RECENT FINDINGS: A systematic search until February 2022 identified 41 relevant studies, comprising 29 OSs and 12 RCTs. We employed six meta-analysis models, stratifying studies based on design and effect metrics. For cohort studies, the pooled ß of the association with CAC quantified by the Agatston score was 0.11 (95% CI = 0.05; 0.16), with an average follow-up time per person (AFTP) of 3.68 years. Cross-sectional studies indicated a pooled odds ratio of 2.11 (95% CI = 1.61; 2.78) for the presence of CAC. In RCTs, the pooled standardized mean differences (SMDs) for CAC, quantified by Agatston score or volume, over and AFTP of 1.25 years were not statistically significant (SMD = - 0.06, 95% CI = - 0.19; 0.06 and SMD = 0.26, 95% CI = - 0.66; 1.19), but significantly different (p-value = 0.04). Meta-regression and subgroup analyses did not show any significant differences in pooled estimates across covariates. The effect of statins on CAC differs across study designs. OSs demonstrate associations between statin use and higher CAC scores and presence while being prone to confounding by indication. Effects from RCTs do not reach statistical significance and vary depending on the quantification method, hampering drawing conclusions. Further investigations are required to address the limitations inherent in each approach.


Subject(s)
Coronary Artery Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Vascular Calcification , Humans , Coronary Artery Disease/complications , Coronary Vessels/diagnostic imaging , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Risk Factors , Vascular Calcification/diagnostic imaging , Vascular Calcification/drug therapy , Observational Studies as Topic
20.
Cardiol Rev ; 31(6): 293-298, 2023.
Article in English | MEDLINE | ID: mdl-37796966

ABSTRACT

Lipid-lowering therapy with statins is well recognized as an effective therapy in reducing adverse cardiovascular events. However, the relationship between statin therapy and progression of coronary artery calcification (CAC) is unclear. A few of studies suggested that statins fail to slow and even accelerate progression of CAC; meanwhile, some researchers demonstrate opposite results. With the purpose of seeking out the effect of statin therapy on CAC, we summarized the existing evidence on statins and undertook meta-analyses of clinical trials assessing the effect of statin therapy on CAC. Fourteen trials were identified suitable for inclusion in the analysis of the effect of statin treatment on CAC, of which 11 were randomized controlled trails, 1 was case-control study, 1 was cross-sectional study, and 1 was observational study. In the meta-analysis of CAC progression, statin therapy seemed to accelerate the progression of CAC. Meanwhile, the analysis revealed a significant correlation between statin treatment and lower risk of cardiovascular events. In conclusion, meta-analyses of the available trials have shown a significant reduction of risk of cardiovascular events. In contrast, statins accelerated CAC. This suggests that statin-mediated atheroma calcification may enhance plaque stability and reduce the risk of plaque rupture.


Subject(s)
Coronary Artery Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Plaque, Atherosclerotic , Vascular Calcification , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Case-Control Studies , Cross-Sectional Studies , Vascular Calcification/prevention & control , Vascular Calcification/chemically induced , Vascular Calcification/drug therapy , Coronary Artery Disease/prevention & control , Coronary Artery Disease/drug therapy , Risk Factors , Observational Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...