Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.742
Filter
1.
PLoS One ; 19(6): e0304173, 2024.
Article in English | MEDLINE | ID: mdl-38843125

ABSTRACT

The aim of this study was to determine plasma levels of three adhesion molecules that may contribute to the development of diabetic retinopathy; soluble endothelial selectin (sE-selectin), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), in young adults, aged 15-34 years at diagnosis of diabetes, to find potential predictors for development of retinopathy, and to evaluate their relation to diabetes associated autoantibodies. Participants with type 1 (n = 169) and type 2 diabetes (n = 83) were selected from the complications trial of the Diabetes Incidence Study in Sweden and classified in two subgroups according to presence (n = 80) or absence (n = 172) of retinopathy as determined by retinal photography at follow-up 8-10 years after diagnosis of diabetes. Blood samples were collected at diagnosis in 1987-88. The levels of sE-selectin, sICAM-1, and sVCAM-1 were analysed by enzyme-linked immunosorbent assay and islet cell antibodies by a prolonged two-colour immunofluorescent assay. Mean HbA1c (p<0.001) and clinical characteristics: mean body mass index (p = 0.019), systolic blood pressure (p = 0.002), diastolic blood pressure (p = 0.003), male gender (p = 0.026), and young age at diagnosis of diabetes (p = 0.015) remained associated with development of retinopathy in type 1 diabetes. However, in a multivariate analysis only HbA1c remained as a risk factor. sE-selectin was significantly higher in the group with type 2 diabetes and retinopathy, compared to the group with type 2 diabetes without retinopathy (p = 0.04). Regarding sE-selectin, sICAM-1, and sVCAM-1 in participants with type 1 diabetes, no differences were observed between the groups with or without retinopathy. This trial confirmed the role of HbA1c and clinical characteristics as predictors for development of retinopathy in type 1 diabetes. sE-selectin stands out as a potential predictor for development of retinopathy in type 2 diabetes, whereas a predictive role for sICAM-1 and sVCAM-1 could not be identified neither for type 1 nor type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Retinopathy , E-Selectin , Intercellular Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1 , Humans , Diabetic Retinopathy/blood , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/epidemiology , E-Selectin/blood , Intercellular Adhesion Molecule-1/blood , Male , Vascular Cell Adhesion Molecule-1/blood , Female , Adolescent , Adult , Sweden/epidemiology , Young Adult , Prospective Studies , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Biomarkers/blood , Risk Factors
2.
J Transl Med ; 22(1): 412, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693516

ABSTRACT

BACKGROUND: Thromboinflammation involving platelet adhesion to endothelial surface-associated von Willebrand factor (VWF) has been implicated in the accelerated progression of non-culprit plaques after MI. The aim of this study was to use arterial endothelial molecular imaging to mechanistically evaluate endothelial-associated VWF as a therapeutic target for reducing remote plaque activation after myocardial infarction (MI). METHODS: Hyperlipidemic mice deficient for the low-density lipoprotein receptor and Apobec-1 underwent closed-chest MI and were treated chronically with either: (i) recombinant ADAMTS13 which is responsible for proteolytic removal of VWF from the endothelial surface, (ii) N-acetylcysteine (NAC) which removes VWF by disulfide bond reduction, (iii) function-blocking anti-factor XI (FXI) antibody, or (iv) no therapy. Non-ischemic controls were also studied. At day 3 and 21, ultrasound molecular imaging was performed with probes targeted to endothelial-associated VWF A1-domain, platelet GPIbα, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) at lesion-prone sites of the aorta. Histology was performed at day 21. RESULTS: Aortic signal for P-selectin, VCAM-1, VWF, and platelet-GPIbα were all increased several-fold (p < 0.01) in post-MI mice versus sham-treated animals at day 3 and 21. Treatment with NAC and ADAMTS13 significantly attenuated the post-MI increase for all four molecular targets by > 50% (p < 0.05 vs. non-treated at day 3 and 21). On aortic root histology, mice undergoing MI versus controls had 2-4 fold greater plaque size and macrophage content (p < 0.05), approximately 20-fold greater platelet adhesion (p < 0.05), and increased staining for markers of platelet transforming growth factor-ß1 signaling. Accelerated plaque growth and inflammatory activation was almost entirely prevented by ADAMTS13 and NAC. Inhibition of FXI had no significant effect on molecular imaging signal or plaque morphology. CONCLUSIONS: Plaque inflammatory activation in remote arteries after MI is strongly influenced by VWF-mediated platelet adhesion to the endothelium. These findings support investigation into new secondary preventive therapies for reducing non-culprit artery events after MI.


Subject(s)
ADAMTS13 Protein , Myocardial Infarction , von Willebrand Factor , Animals , von Willebrand Factor/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/complications , ADAMTS13 Protein/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Plaque, Atherosclerotic/pathology , P-Selectin/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Molecular Imaging , Aorta/pathology , Aorta/drug effects , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Mice, Inbred C57BL
3.
ACS Chem Neurosci ; 15(10): 2028-2041, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710594

ABSTRACT

Chronic cerebral hypoperfusion (CCH)-triggered blood-brain barrier (BBB) dysfunction is a core pathological change occurring in vascular dementia (VD). Despite the recent advances in the exploration of the structural basis of BBB impairment and the routes of entry of harmful compounds after a BBB leakage, the molecular mechanisms inducing BBB impairment remain largely unknown in terms of VD. Here, we employed a CCH-induced VD model and discovered increased vascular cell adhesion molecule 1 (VCAM1) expression on the brain endothelial cells (ECs). The expression of VCAM1 was directly correlated with the severity of BBB impairment. Moreover, the VCAM1 expression was associated with different regional white matter lesions. Furthermore, a compound that could block VCAM1 activation, K-7174, was also found to alleviate BBB leakage and protect the white matter integrity, whereas pharmacological manipulation of the BBB leakage did not affect the VCAM1 expression. Thus, our results demonstrated that VCAM1 is an important regulator that leads to BBB dysfunction following CCH. Blocking VCAM1-mediated BBB impairment may thus offer a new strategy to treat CCH-related neurodegenerative diseases.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Animals , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Brain/metabolism , Brain/pathology , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Humans , Brain Ischemia/metabolism , Brain Ischemia/pathology , Mice
4.
Clin Nutr ESPEN ; 61: 151-157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777428

ABSTRACT

BACKGROUND: Elevated levels of ICAM-1 and VCAM-1 are significant risk factors for cardiovascular diseases. Conversely, the regulatory roles of physical activity and omega-3 supplementation in these factors have been reported. The primary aim of the present research was to investigate the impact of an eight-week combined (resistance-endurance) accompanied by omega-3 supplementation on ICAM-1 and VCAM-1 levels in elderly women. METHODS: Forty elderly women, averaging 66.7 ± 4.13 years, were randomly assigned to four groups: placebo, omega-3 supplement, training, and training + omega-3. The combined exercise training program was implemented for eight weeks, three sessions per week. Aerobic training included 20 min of running at 60-70% of the reserve heart rate, while resistance training involved exercises at 70% of 1RM with 10 repetitions per exercise for two sets. The omega-3 and training + omega-3 groups consumed 2000 mg of omega-3 daily. Blood samples were collected 48 h after the last combined exercise training or omega-3 consumption, and the measured variables were analyzed using analysis of covariance test and SPSS-24 software. RESULTS: ICAM-1 and VCAM-1 levels significantly decreased in the training and training + omega-3 groups (p < 0.001). The decrease in ICAM-1 within the training + omega-3 group was also significant compared to the training group (p = 0.024). Additionally, a significant reduction in insulin resistance and body fat percentage was observed in both the training and training + omega-3 groups (p < 0.001). CONCLUSION: The present study's results indicate that omega-3 supplementation can enhance the effectiveness of combined training in regulating cardiovascular risk factors.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3 , Intercellular Adhesion Molecule-1 , Resistance Training , Vascular Cell Adhesion Molecule-1 , Humans , Female , Intercellular Adhesion Molecule-1/blood , Vascular Cell Adhesion Molecule-1/blood , Aged , Fatty Acids, Omega-3/administration & dosage , Middle Aged , Cardiovascular Diseases/prevention & control , Exercise/physiology , Double-Blind Method
5.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786065

ABSTRACT

In various neurodegenerative conditions, inflammation plays a significant role in disrupting the blood-brain barrier (BBB), contributing to disease progression. Nitric oxide (NO) emerges as a central regulator of vascular function, with a dual role in inflammation, acting as both a pro- and anti-inflammatory molecule. This study investigates the effects of the NO donor sodium nitroprusside (SNP) in protecting the BBB from lipopolysaccharide (LPS)-induced inflammation, using bEnd.3 endothelial cells as a model system. Additionally, Raw 264.7 macrophages were employed to assess the effects of LPS and SNP on their adhesion to a bEnd.3 cell monolayer. Our results show that LPS treatment induces oxidative stress, activates the JAK2/STAT3 pathway, and increases pro-inflammatory markers. SNP administration effectively mitigates ROS production and IL-6 expression, suggesting a potential anti-inflammatory role. However, SNP did not significantly alter the adhesion of Raw 264.7 cells to bEnd.3 cells induced by LPS, probably because it did not have any effect on ICAM-1 expression, although it reduced VCAM expression. Moreover, SNP did not prevent BBB disruption. This research provides new insights into the role of NO in BBB disruption induced by inflammation.


Subject(s)
Blood-Brain Barrier , Inflammation , Lipopolysaccharides , Nitroprusside , Lipopolysaccharides/pharmacology , Nitroprusside/pharmacology , Animals , Mice , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , RAW 264.7 Cells , Inflammation/pathology , Reactive Oxygen Species/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Oxidative Stress/drug effects , STAT3 Transcription Factor/metabolism , Cell Adhesion/drug effects , Interleukin-6/metabolism , Signal Transduction/drug effects , Intercellular Adhesion Molecule-1/metabolism , Macrophages/drug effects , Macrophages/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
6.
Int Immunopharmacol ; 134: 112148, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718657

ABSTRACT

BACKGROUND: Vascular inflammation is the key event in early atherogenesis. Pro-inflammatory endothelial cells induce monocyte recruitment into the sub-endothelial layer of the artery. This requires endothelial expression of adhesion molecules namely intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), alongside chemokines production. Christia vespertilionis (L.f.) Bakh.f. (CV) possesses anti-inflammatory property. However, its potential anti-atherogenic effect in the context of vascular inflammation has yet to be explored. PURPOSE: To evaluate the anti-atherogenic mechanism of 80% ethanol extract of CV leaves on tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVECs). METHODS: Qualitative analysis of the CV extract was carried out by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The cell viability of HUVECs treated with CV extract was determined by MTT assay. The effect of CV extract on monocyte adhesion was determined by monocyte-endothelial adhesion assay. Protein expressions of ICAM-1, VCAM-1 and nuclear factor-kappa B (NF-κB) signaling pathway were determined by western blot while production of monocyte chemoattractant protein-1 (MCP-1) was determined by ELISA. RESULTS: LC-MS/MS analysis showed that CV extract composed of five main compounds, including schaftoside, orientin, isovitexin, 6-caffeoyl-D-glucose, and 3,3'-di-O-methyl ellagic acid. Treatment of CV extract at a concentration range from 5 to 60 µg/mL for 24 h maintained HUVECs viability above 90 %, therefore concentrations of 20, 40 and 60 µg/mL were selected for the subsequent experiments. All concentrations of CV extract showed a significant inhibitory effect on monocyte adhesion to TNF-α-activated HUVECs (p < 0.05). In addition, the protein expressions of ICAM-1 and VCAM-1 were significantly attenuated by CV in a concentration dependent manner (p < 0.001). At all tested concentrations, CV extract also exhibited significant inhibition on the production of MCP-1 (p < 0.05). Moreover, CV extract significantly inhibited TNF-α-induced phosphorylation of inhibitor of nuclear factor-κB kinase alpha/beta (IKKα/ß), inhibitor kappa B-alpha (IκBα), NF-κB and nuclear translocation of NF-κB (p < 0.05). CONCLUSION: CV extract inhibited monocyte adhesion to endothelial cells by suppressing protein expressions of cell adhesion molecules and production of chemokines through downregulation of NF-κB signaling pathway. Thus, CV has the potential to be developed as an anti-atherogenic agent for early treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Human Umbilical Vein Endothelial Cells , Intercellular Adhesion Molecule-1 , Monocytes , NF-kappa B , Plant Extracts , Plant Leaves , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1 , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , NF-kappa B/metabolism , Atherosclerosis/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Monocytes/drug effects , Cell Adhesion/drug effects , Anti-Inflammatory Agents/pharmacology , Ethanol/chemistry , Cells, Cultured , Cell Survival/drug effects , Signal Transduction/drug effects
7.
Sci Rep ; 14(1): 10241, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702365

ABSTRACT

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.


Subject(s)
Actin Cytoskeleton , Cell Movement , Cofilin 1 , Monocytes , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Cofilin 1/metabolism , Monocytes/metabolism , Myosins/metabolism , THP-1 Cells , Vascular Cell Adhesion Molecule-1/metabolism
8.
ACS Nano ; 18(22): 14348-14366, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768086

ABSTRACT

Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.


Subject(s)
Alzheimer Disease , Mice, Transgenic , Pericytes , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Pericytes/drug effects , Pericytes/metabolism , Pericytes/pathology , Mice , Reactive Oxygen Species/metabolism , Curcumin/pharmacology , Curcumin/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Nanoparticles/chemistry , Vascular Cell Adhesion Molecule-1/metabolism , Humans , Peptides/chemistry , Peptides/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry
9.
PLoS One ; 19(4): e0296863, 2024.
Article in English | MEDLINE | ID: mdl-38603717

ABSTRACT

INTRODUCTION: Known to have pleiotropic functions, high-density lipoprotein (HDL) helps to regulate systemic inflammation during sepsis. As preserving HDL-C level is a promising therapeutic strategy for sepsis, the interaction between HDL and sepsis worth further investigation. This study aimed to determine the impact of sepsis on HDL's anti-inflammatory capacity and explore its correlations with disease severity and laboratory parameters. METHODS AND MATERIALS: We enrolled 80 septic subjects admitted to the intensive care unit and 50 controls admitted for scheduled coronary angiography in this cross-sectional study. We used apolipoprotein-B depleted (apoB-depleted) plasma to measure the anti-inflammatory capacity of HDL-C. ApoB-depleted plasma's anti-inflammatory capacity is defined as its ability to suppress tumor necrosis factor-α-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human umbilical-vein endothelial cells. A subgroup analysis was conducted to investigate in septic subjects according to disease severity. RESULTS: ApoB-depleted plasma's anti-inflammatory capacity was reduced in septic subjects relative to controls (VCAM-1 mRNA fold change: 50.1% vs. 35.5%; p < 0.0001). The impairment was more pronounced in septic subjects with than in those without septic shock (55.8% vs. 45.3%, p = 0.0022). Both associations were rendered non-significant with the adjustment for the HDL-C level. In sepsis patients, VCAM-1 mRNA fold change correlated with the SOFA score (Spearman's r = 0.231, p = 0.039), lactate level (r = 0.297, p = 0.0074), HDL-C level (r = -0.370, p = 0.0007), and inflammatory markers (C-reactive protein level: r = 0.441, p <0.0001; white blood cell: r = 0.353, p = 0.0013). CONCLUSION: ApoB-depleted plasma's anti-inflammatory capacity is reduced in sepsis patients and this association depends of HDL-C concentration. In sepsis patients, this capacity correlates with disease severity and inflammatory markers. These findings explain the prognostic role of the HDL-C level in sepsis and indirectly support the rationale for targeting HDL-C as sepsis treatment.


Subject(s)
Endothelial Cells , Sepsis , Humans , Cholesterol, HDL , Cross-Sectional Studies , Endothelial Cells/metabolism , Vascular Cell Adhesion Molecule-1 , Lipoproteins, HDL , Apolipoproteins B , Anti-Inflammatory Agents , RNA, Messenger
10.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623655

ABSTRACT

BACKGROUND: A typical non-neoplastic connective tissue proliferations called a pyogenic granuloma. A vascular adhesion molecule used to assess angiogenesis is the CD34 marker. The primary memberof a family of growth factors, VEGF helps in generating and maintaining the lymphatic and blood circulation systems. OBJECTIVE: The aim of the study was to know the correlation between VEGF and CD34 protein marker and pyogenic granuloma. METHODS: Thirty-one formalin fixed paraffin embedded (FFPE) blocks were taken from female pyogenic granuloma patients ranging in age from 29 to 70. The IHC was used to identify VEGF and CD34 expression in the cytoplasm of the cells. RESULTS: Seventeenout of 31 patients had VEGF positive expression. Twenty-sixout of 31 had CD34 positive expression and 5 with no expression (negative expression). Brown-stained cytoplasm showed high VEGF and CD34 expression, whereas blue stained cytoplasm showed no VEGF and CD34 expression in these cells. CONCLUSIONS: The results suggest the role of suchbiomarkers in the oral pyogenic granuloma pathogenesis, and it appears that CD34 and VEGF are valuable biomarkers in evaluating vascular and inflammatory diseases like pyogenic granuloma.


Subject(s)
Granuloma, Pyogenic , Humans , Female , Granuloma, Pyogenic/diagnosis , Granuloma, Pyogenic/etiology , Granuloma, Pyogenic/metabolism , Vascular Endothelial Growth Factor A , Vascular Cell Adhesion Molecule-1 , Neovascularization, Pathologic/complications , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Antigens, CD34
11.
Commun Biol ; 7(1): 483, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643279

ABSTRACT

Leukemias and their bone marrow microenvironments undergo dynamic changes over the course of disease. However, little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of CLC dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: (i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and (ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Mice , Animals , Bone Marrow/pathology , Leukemia, Myeloid, Acute/pathology , Acute Disease , Vascular Cell Adhesion Molecule-1 , Tumor Microenvironment
12.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673738

ABSTRACT

The high content of bioactive compounds in Aronia melanocarpa fruit offers health benefits. In this study, the anti-atherosclerotic effect of Aronia extracts was assessed. The impact on the level of adhesion molecules and the inflammatory response of human umbilical vein endothelial cells (HUVECs) was shown in relation to the chemical composition and the stage of ripening of the fruits. Samples were collected between May (green, unripe) and October (red, overripe) on two farms in Poland, which differed in climate. The content of chlorogenic acids, anthocyanins, and carbohydrates in the extracts was determined using HPLC-DAD/RI. The surface expression of ICAM-1 and VCAM-1 in HUVECs was determined by flow cytometry. The mRNA levels of VCAM-1, ICAM-1, IL-6, and MCP-1 were assessed using the quantitative real-time PCR method. The farms' geographical location was associated with the quantity of active compounds in berries and their anti-atherosclerotic properties. Confirmed activity for green fruits was linked to their high chlorogenic acid content.


Subject(s)
Atherosclerosis , Fruit , Human Umbilical Vein Endothelial Cells , Photinia , Plant Extracts , Photinia/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Atherosclerosis/drug therapy , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Anthocyanins/pharmacology , Anthocyanins/chemistry , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Interleukin-6/metabolism , Interleukin-6/genetics
13.
High Blood Press Cardiovasc Prev ; 31(2): 113-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38630421

ABSTRACT

INTRODUCTION: Coenzyme Q10 (CoQ10) has gained attention as a potential therapeutic agent for improving endothelial function. Several randomized clinical trials have investigated CoQ10 supplementation's effect on endothelial function. However, these studies have yielded conflicting results, therefore this systematic review and meta-analysis were conducted. AIM: This systematic review and meta-analysis were conducted to assess the effects of CoQ10 supplementation on endothelial factors. METHODS: A comprehensive search was done in numerous databases until July 19th, 2023. Quantitative data synthesis was performed using a random-effects model, with weight mean difference (WMD) and 95% confidence intervals (CI). Standard methods were used for the assessment of heterogeneity, meta-regression, sensitivity analysis, and publication bias. RESULTS: 12 studies comprising 489 subjects were included in the meta-analysis. The results demonstrated significant increases in Flow Mediated Dilation (FMD) after CoQ10 supplementation (WMD: 1.45; 95% CI: 0.55 to 2.36; p < 0.02), but there is no increase in Vascular cell adhesion protein (VCAM), and Intercellular adhesion molecule (ICAM) following Q10 supplementation (VCAM: SMD: - 0.34; 95% CI: - 0.74 to - 0.06; p < 0.10) (ICAM: SMD: - 0.18; 95% CI: - 0.82 to 0.46; p < 0.57). The sensitivity analysis showed that the effect size was robust in FMD and VCAM. In meta-regression, changes in FMD percent were associated with the dose of supplementation (slope: 0.01; 95% CI: 0.004 to 0.03; p = 0.006). CONCLUSIONS: CoQ10 supplementation has a positive effect on FMD in a dose-dependent manner. Our findings show that CoQ10 has an effect on FMD after 8 weeks of consumption. Additional research is warranted to establish the relationship between CoQ10 supplementation and endothelial function.


Subject(s)
Dietary Supplements , Endothelium, Vascular , Ubiquinone , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Randomized Controlled Trials as Topic , Treatment Outcome , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Vascular Cell Adhesion Molecule-1/blood , Vascular Cell Adhesion Molecule-1/metabolism , Vasodilation/drug effects
14.
Atherosclerosis ; 392: 117519, 2024 May.
Article in English | MEDLINE | ID: mdl-38581737

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Subject(s)
Aorta , Atherosclerosis , Disease Models, Animal , Disease Progression , Glucuronidase , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/enzymology , Atherosclerosis/metabolism , Glucuronidase/deficiency , Glucuronidase/genetics , Glucuronidase/metabolism , Aorta/pathology , Aorta/metabolism , Aorta/enzymology , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/enzymology , Aortic Diseases/metabolism , Diet, High-Fat , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Mice, Inbred C57BL , Male , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Mice, Knockout , Sinus of Valsalva/pathology , Necrosis
15.
J Cell Biochem ; 125(5): e30563, 2024 May.
Article in English | MEDLINE | ID: mdl-38591551

ABSTRACT

High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.


Subject(s)
Endothelial Cells , Glucose , Heme Oxygenase-1 , Myocytes, Smooth Muscle , Reactive Oxygen Species , Stress, Mechanical , Humans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Glucose/metabolism , Glucose/pharmacology , Myocytes, Smooth Muscle/metabolism , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Cell Proliferation , Coculture Techniques , Enzyme Activation , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Intercellular Adhesion Molecule-1/metabolism
16.
Clin Exp Nephrol ; 28(6): 505-512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630367

ABSTRACT

Inflammation plays a crucial role in the pathophysiology of various kidney diseases. Kidney perivascular cells (pericytes/fibroblasts) are responsible for producing proinflammatory molecules, promoting immune cell infiltration, and enhancing inflammation. Vascular adhesion protein-1, expressed in kidney perivascular cells, is an ectoenzyme that catalyzes the oxidative deamination of primary amines with the production of hydrogen peroxide in the extracellular space. Our study demonstrated that blocking this enzyme suppressed hydrogen peroxide production and neutrophil infiltration, thereby reducing renal ischemia-reperfusion injury. Sphingosine 1-phosphate (S1P) signaling was also observed to play an essential role in the regulation of perivascular inflammation. S1P, which is produced in kidney perivascular cells, is transported into the extracellular space via spinster homolog 2, and then binds to S1P receptor-1 expressed in perivascular cells. Upon injury, inflammatory signaling in perivascular cells is enhanced by this pathway, thereby promoting immune cell infiltration and subsequent fibrosis. Furthermore, inhibition of S1P transport by spinster homolog 2 reduces kidney fibrosis. Hypoxia-inducible factor-prolyl hydroxylase inhibitors can restore the capacity for erythropoietin production in kidney perivascular cells. Animal data suggested that these drugs could also alleviate kidney and lipid inflammation although the precise mechanism is still unknown. Neuroimmune interactions have been attracting significant attention due to their potential to benefit patients with inflammatory diseases. Vagus nerve stimulation is one of the most promising strategies for harnessing neuroimmune interactions and attenuating inflammation associated with various diseases, including kidney disease. Using cutting-edge tools, the vagal afferents-C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis responsible for kidney protection induced by vagus nerve stimulation was identified in our study. Further research is required to decipher other crucial systems that control kidney inflammation and to determine whether these novel strategies can be applied to patients with kidney disease.


Subject(s)
Kidney Diseases , Lysophospholipids , Neuroimmunomodulation , Sphingosine , Humans , Animals , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Kidney Diseases/metabolism , Kidney/pathology , Kidney/metabolism , Inflammation/metabolism , Signal Transduction , Vascular Cell Adhesion Molecule-1/metabolism
18.
J Med Food ; 27(5): 419-427, 2024 May.
Article in English | MEDLINE | ID: mdl-38656897

ABSTRACT

The primary inflammatory process in atherosclerosis, a major contributor to cardiovascular disease, begins with monocyte adhering to vascular endothelial cells. Actinidia arguta (kiwiberry) is an edible fruit that contains various bioactive components. While A. arguta extract (AAE) has been recognized for its anti-inflammatory characteristics, its specific inhibitory effect on early atherogenic events has not been clarified. We used tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs) for an in vitro model. AAE effectively hindered the attachment of THP-1 monocytes and reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. Transcriptome analysis revealed that AAE treatment upregulated phosphatase and tensin homolog (PTEN), subsequently inhibiting phosphorylation of AKT and glycogen synthase kinase 3ß (GSK3ß) in HUVECs. AAE further hindered phosphorylation of AKT downstream of the nuclear factor kappa B (NF-κB) signaling pathway, leading to suppression of target gene expression. Oral administration of AAE suppressed TNF-α-stimulated VCAM-1 expression, monocyte-derived macrophage infiltration, and proinflammatory cytokine expression in C57BL/6 mouse aortas. Myo-inositol, identified as the major compound in AAE, played a key role in suppressing THP-1 monocyte adhesion in HUVECs. These findings suggest that AAE could serve as a nutraceutical for preventing atherosclerosis by inhibiting its initial pathogenesis.


Subject(s)
Actinidia , Cell Adhesion , Glycogen Synthase Kinase 3 beta , Human Umbilical Vein Endothelial Cells , Inositol , Monocytes , NF-kappa B , PTEN Phosphohydrolase , Plant Extracts , Proto-Oncogene Proteins c-akt , Signal Transduction , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Humans , NF-kappa B/metabolism , NF-kappa B/genetics , Monocytes/drug effects , Monocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Actinidia/chemistry , Animals , Plant Extracts/pharmacology , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Adhesion/drug effects , Mice , Inositol/pharmacology , Inositol/analogs & derivatives , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Male
19.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612857

ABSTRACT

Endothelial wound-healing processes are fundamental for the maintenance and restoration of the circulatory system and are greatly affected by the factors present in the blood. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) induces the proinflammatory activation of endothelial cells and is able to cooperate with other proinflammatory activators. Our aim was to investigate the combined effect of mechanical wounding and MASP-1 on endothelial cells. Transcriptomic analysis showed that MASP-1 alters the expression of wound-healing-related and angiogenesis-related genes. Both wounding and MASP-1 induced Ca2+ mobilization when applied individually. However, MASP-1-induced Ca2+ mobilization was inhibited when the treatment was preceded by wounding. Mechanical wounding promoted CREB phosphorylation, and the presence of MASP-1 enhanced this effect. Wounding induced ICAM-1 and VCAM-1 expression on endothelial cells, and MASP-1 pretreatment further increased VCAM-1 levels. MASP-1 played a role in the subsequent stages of angiogenesis, facilitating the breakdown of the endothelial capillary network on Matrigel®. Our findings extend our general understanding of endothelial wound healing and highlight the importance of complement MASP-1 activation in wound-healing processes.


Subject(s)
Endothelial Cells , Mannose-Binding Protein-Associated Serine Proteases , Mannose-Binding Protein-Associated Serine Proteases/genetics , Vascular Cell Adhesion Molecule-1 , Wound Healing , Complement System Proteins
20.
Schizophr Res ; 267: 223-229, 2024 May.
Article in English | MEDLINE | ID: mdl-38574562

ABSTRACT

BACKGROUND: Endothelial inflammation may be involved in the pathogenesis of schizophrenia, and cellular adhesion molecules (CAMs) on endothelial cells may facilitate leukocyte binding and transendothelial migration of cells and inflammatory factors. The aim of the present study was to assess levels of soluble cellular adhesion molecules, including intercellular adhesion molecule (ICAM)-1, vascular adhesion molecule (VCAM)-1, mucosal addressin cell adhesion molecule (MADCAM), junctional adhesion molecule (JAM-A) and neural cadherin (N-CAD) in patients with schizophrenia compared to healthy controls. METHODS: The study population consists of 138 patients with schizophrenia-spectrum disorder, of whom 54 were drug-naïve, compared to 317 general population controls. The potential confounders age, gender, smoking and body mass index (BMI) were adjusted for in linear regression models. RESULTS: The total patient group showed significantly higher levels of ICAM-1 (p < 0.001) and VCAM-1 (p < 0.001) compared to controls. Previously medicated patients showed higher ICAM-1 levels compared to drug-naïve patients (p = 0.042) and controls (p < 0.001), and elevated VCAM-1 levels compared to controls (p < 0.001). Drug-naive patients had elevated levels of VCAM-1 (p = 0.031) compared to controls. CONCLUSIONS: In our study, patients with schizophrenia - including the drug-naïve - have higher levels of soluble CAMs compared to healthy controls. These findings suggest activation of the endothelial system as in inflammation.


Subject(s)
Cell Adhesion Molecules , Intercellular Adhesion Molecule-1 , Schizophrenia , Vascular Cell Adhesion Molecule-1 , Humans , Female , Male , Schizophrenia/drug therapy , Schizophrenia/blood , Schizophrenia/metabolism , Adult , Cell Adhesion Molecules/blood , Middle Aged , Vascular Cell Adhesion Molecule-1/blood , Intercellular Adhesion Molecule-1/blood , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...