Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.220
Filter
1.
Arq Bras Cardiol ; 121(4): e20230236, 2024 Apr.
Article in Portuguese, English | MEDLINE | ID: mdl-38695407

ABSTRACT

BACKGROUND: Vascular dysfunction constitutes the etiology of many diseases, such as myocardial infarction and hypertension, with the disruption of redox homeostasis playing a role in the imbalance of the vasomotor control mechanism. Our group previously has shown that thyroid hormones exert protective effects on the aortic tissue of infarcted rats by improving angiogenesis signaling. OBJECTIVE: Investigate the role of triiodothyronine (T3) on vascular response, exploring its effects on isolated aortas and whether there is an involvement of vascular redox mechanisms. METHODS: Isolated aortic rings (intact- and denuded-endothelium) precontracted with phenylephrine were incubated with T3 (10-8, 10-7, 10-6, 10-5, and 10-4 M), and tension was recorded using a force-displacement transducer coupled with an acquisition system. To assess the involvement of oxidative stress, aortic rings were preincubated with T3 and subsequently submitted to an in vitro reactive oxygen species (ROS) generation system. The level of significance adopted in the statistical analysis was 5%. RESULTS: T3 (10-4 M) promoted vasorelaxation of phenylephrine precontracted aortic rings in both intact- and denuded-endothelium conditions. Aortic rings preincubated in the presence of T3 (10-4 M) also showed decreased vasoconstriction elicited by phenylephrine (1 µM) in intact-endothelium preparations. Moreover, T3 (10-4 M) vasorelaxation effect persisted in aortic rings preincubated with NG-nitro-L-arginine methylester (L-NAME, 10 µM), a nonspecific NO synthase (NOS) inhibitor. Finally, T3 (10-4 M) exhibited, in vitro, an antioxidant role by reducing NADPH oxidase activity and increasing SOD activity in the aorta's homogenates. CONCLUSION: T3 exerts dependent- and independent-endothelium vasodilation effects, which may be related to its role in maintaining redox homeostasis.


FUNDAMENTO: A disfunção vascular constitui a etiologia de diversas doenças, incluindo infarto do miocárdio e hipertensão, diante da ruptura da homeostase oxi-redutiva ("redox"), desempenhando um papel no desequilíbrio do mecanismo de controle vasomotor. Nosso grupo demonstrou anteriormente que os hormônios tireoidianos melhoram a sinalização da angiogênese, exercendo efeitos protetores sobre o tecido aórtico de ratos infartados. OBJETIVOS: Investigar o papel da triiodotironina (T3) na resposta vascular, explorando seus efeitos em aortas isoladas e a presença de mecanismos redox vasculares. MÉTODOS: Anéis aórticos isolados (endotélio intacto e desnudado) pré-contraídos com fenilefrina foram incubados com T3 (10-8, 10-7, 10-6, 10-5 e 10-4 M) e a tensão foi registrada usando um transdutor de deslocamento de força acoplado a um sistema de coleta. Para avaliar o envolvimento do estresse oxidativo, os anéis aórticos foram pré-incubados com T3 e posteriormente submetidos a um sistema de geração de espécies reativas de oxigênio (ROS) in vitro. O nível de significância adotado na análise estatística foi de 5%. RESULTADOS: A T3 (10-4 M) promoveu o vasorrelaxamento dos anéis aórticos pré-contraídos com fenilefrina em endotélio intacto e desnudado. Os anéis aórticos pré-incubados na presença de T3 (10-4 M) também mostraram diminuição da vasoconstrição provocada pela fenilefrina (1 µM) em preparações de endotélio intacto. Além disso, o efeito vasorrelaxante da T3 (10-4 M) persistiu em anéis aórticos pré-incubados com éster metílico de NG-nitro-L-arginina (L-NAME, 10 µM), um inibidor inespecífico da NO sintase (NOS). Por fim, a T3 (10-4 M) exibiu, in vitro, um papel antioxidante ao reduzir a atividade da NADPH oxidase e aumentar a atividade da SOD nos homogenatos aórticos. CONCLUSÃO: A T3 exerce efeitos dependentes e independentes de endotélio, o que pode estar relacionado ao seu papel na manutenção da homeostase redox.


Subject(s)
Oxidation-Reduction , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Triiodothyronine , Vasodilation , Animals , Vasodilation/drug effects , Vasodilation/physiology , Male , Triiodothyronine/pharmacology , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Phenylephrine/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Rats , Reproducibility of Results , Vasoconstrictor Agents/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , In Vitro Techniques , Vasoconstriction/drug effects , Vasoconstriction/physiology
2.
Braz J Med Biol Res ; 57: e13304, 2024.
Article in English | MEDLINE | ID: mdl-38775546

ABSTRACT

Arthritis has important cardiovascular repercussions. Phenylephrine-induced vasoconstriction is impaired in rat aortas in the early phase of the adjuvant-induced arthritis (AIA), around the 15th day post-induction. Therefore, the present study aimed to verify the effects of AIA on hyporesponsiveness to phenylephrine in rat aortas. AIA was induced by intradermal injection of Mycobacterium tuberculosis (3.8 mg/dL) in the right hind paw of male Wistar rats (n=27). Functional experiments in isolated aortas were carried out 15 days after AIA induction. Morphometric and stereological analyses of the aortas were also performed 36 days after the induction of AIA. AIA did not promote structural modifications in the aortas at any of the time points studied. AIA reduced phenylephrine-induced contraction in endothelium-intact aortas, but not in endothelium-denuded aortas. However, AIA did not change KCl-induced contraction in either endothelium-intact or denuded aortas. L-NAME (non-selective NOS inhibitor), 1400W (selective iNOS inhibitor), and ODQ (guanylyl cyclase inhibitor) reversed AIA-induced hyporesponsiveness to phenylephrine in intact aortas. 7-NI (selective nNOS inhibitor) increased the contraction induced by phenylephrine in aortas from AIA rats. In summary, the hyporesponsiveness to phenylephrine induced by AIA was endothelium-dependent and mediated by iNOS-derived NO through activation of the NO-guanylyl cyclase pathway.


Subject(s)
Arthritis, Experimental , Nitric Oxide , Phenylephrine , Rats, Wistar , Animals , Male , Phenylephrine/pharmacology , Arthritis, Experimental/physiopathology , Arthritis, Experimental/chemically induced , Nitric Oxide/metabolism , Vasoconstriction/drug effects , Endothelium, Vascular/drug effects , Vasoconstrictor Agents/pharmacology , Rats , Aorta/drug effects
4.
J Ethnopharmacol ; 328: 117855, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38346524

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM: To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS: Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS: At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION: AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.


Subject(s)
Catechin/analogs & derivatives , Myocytes, Smooth Muscle , Tea , Rats , Animals , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Vasodilation , Coronary Vessels , Mesenteric Arteries , Vasoconstrictor Agents/pharmacology , Water/pharmacology
5.
J Cardiovasc Pharmacol ; 83(4): 317-329, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38207007

ABSTRACT

ABSTRACT: Chronic stress induces a group of unrecognized cardiovascular impairments, including elevated hemodynamic variables and vascular dysfunction. Moreover, hydrogen sulfide (H 2 S), a gasotransmitter that regulates the cardiovascular system decreases under chronic stress. Thus, this study assessed the impact of sodium hydrosulfide (NaHS) (H 2 S donor) on chronic restraint stress (CRS)-induced cardiovascular changes. For that purpose, male Wistar rats were restrained for 2 hours a day in a transparent acrylic tube over 8 weeks. Then, body weight, relative adrenal gland weight, serum corticosterone, H 2 S-synthesizing enzymes, endothelial nitric oxide synthetize expression, reactive oxygen species levels, lipid peroxidation, and reduced glutathione-to-oxidized glutathione (GSH 2 :GSSG) ratio were determined in the thoracic aorta. The hemodynamic variables were measured in vivo by the plethysmograph method. The vascular function was evaluated in vitro as vasorelaxant responses induced by carbachol or sodium nitroprusside, and norepinephrine (NE)-mediated vasocontractile responses in the thoracic aorta. CRS increased (1) relative adrenal gland weight; (2) hemodynamic variables; (3) vasoconstrictor responses induced by NE, (4) reactive oxygen species levels, and (5) lipid peroxidation in the thoracic aorta. In addition, CRS decreased (1) body weight; (2) vasorelaxant responses induced by carbachol; (3) GSH content, and (4) GSH 2 :GSSG ratio. Notably, NaHS administration (5.6 mg/kg) restored hemodynamic variables and lipid peroxidation and attenuated the vasoconstrictor responses induced by NE in the thoracic aorta. In addition, NaHS treatment increased relative adrenal gland weight and the GSH 2 :GSSG ratio. Taken together, our results demonstrate that NaHS alleviates CRS-induced hypertension by reducing oxidative stress and restoring vascular function in the thoracic aorta.


Subject(s)
Hydrogen Sulfide , Sulfides , Rats , Animals , Male , Reactive Oxygen Species/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Carbachol/pharmacology , Rats, Wistar , Hydrogen Sulfide/metabolism , Oxidative Stress , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology , Body Weight
6.
Anesth Analg ; 138(2): 284-294, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38215708

ABSTRACT

Intravenous (IV) fluids and vasopressor agents are key components of hemodynamic management. Since their introduction, their use in the perioperative setting has continued to evolve, and we are now on the brink of automated administration. IV fluid therapy was first described in Scotland during the 1832 cholera epidemic, when pioneers in medicine saved critically ill patients dying from hypovolemic shock. However, widespread use of IV fluids only began in the 20th century. Epinephrine was discovered and purified in the United States at the end of the 19th century, but its short half-life limited its implementation into patient care. Advances in venous access, including the introduction of the central venous catheter, and the ability to administer continuous infusions of fluids and vasopressors rather than just boluses, facilitated the use of fluids and adrenergic agents. With the advent of advanced hemodynamic monitoring, most notably the pulmonary artery catheter, the role of fluids and vasopressors in the maintenance of tissue oxygenation through adequate cardiac output and perfusion pressure became more clearly established, and hemodynamic goals could be established to better titrate fluid and vasopressor therapy. Less invasive hemodynamic monitoring techniques, using echography, pulse contour analysis, and heart-lung interactions, have facilitated hemodynamic monitoring at the bedside. Most recently, advances have been made in closed-loop fluid and vasopressor therapy, which apply computer assistance to interpret hemodynamic variables and therapy. Development and increased use of artificial intelligence will likely represent a major step toward fully automated hemodynamic management in the perioperative environment in the near future. In this narrative review, we discuss the key events in experimental medicine that have led to the current status of fluid and vasopressor therapies and describe the potential benefits that future automation has to offer.


Subject(s)
Artificial Intelligence , Biomedical Research , Humans , Hemodynamics , Vasoconstrictor Agents/therapeutic use , Vasoconstrictor Agents/pharmacology , Fluid Therapy/methods , Automation
7.
Shock ; 61(3): 406-413, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38010114

ABSTRACT

ABSTRACT: Background: High-dose vasopressors maintain blood pressure during septic shock but may adversely reduce microcirculation in vital organs. We assessed the effect of high-dose norepinephrine and vasopressin on the microcirculation of the brain, tongue, liver, and kidney during endotoxic shock using near-infrared spectroscopy (NIRS). Methods: Thirteen pigs (24.5 ± 1.8 kg) were anesthetized, and an NIRS probe was attached directly to each organ. Approximately 0.2, 0.5, 1, and 2 µg/kg/min of norepinephrine were administered in a stepwise manner, followed by 0.5, 1, 2, and 5 µg/kg/min of sodium nitroprusside in normal condition. Moreover, 1 µg/kg/h of lipopolysaccharide was administered continuously after 100 µg bolus to create endotoxic shock and after 1,000 mL of crystalloid infusion and high-dose norepinephrine (2, 5, 10, and 20 µg/kg/min) and vasopressin (0.6, 1.5, 3, and 6 U/min) were administered in a stepwise manner. The relationship between the MAP and each tissue oxygenation index (TOI) during vasopressor infusion was evaluated. Results: Three pigs died after receiving lipopolysaccharides, and 10 were analyzed. An increase of >20% from the baseline MAP induced by high-dose norepinephrine during endotoxic shock reduced the TOI in all organs except the liver. The elevation of MAP to baseline with vasopressin alone increased the kidney and liver TOIs and decreased the tongue TOI. Conclusion: Forced blood pressure elevation with high-dose norepinephrine during endotoxic shock decreased the microcirculation of vital organs, especially the kidney. Cerebral TOI may be useful for identifying the upper limit of blood pressure, at which norepinephrine impairs microcirculation.


Subject(s)
Shock, Septic , Swine , Animals , Shock, Septic/drug therapy , Microcirculation , Spectroscopy, Near-Infrared , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use , Kidney , Vasopressins/pharmacology , Norepinephrine/pharmacology , Lipopolysaccharides/pharmacology , Liver , Tongue
8.
Biochem Pharmacol ; 220: 115963, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061417

ABSTRACT

Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.


Subject(s)
Angiotensin I , Biological Factors , COVID-19 , Hypertension , Peptide Fragments , Animals , Female , Humans , Pregnancy , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Placenta/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Vasoconstrictor Agents/pharmacology
9.
Spine J ; 24(3): 519-533, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37793474

ABSTRACT

BACKGROUND: Cervical spinal injury often disrupts the supraspinal vasomotor pathways projecting to the thoracic sympathetic preganglionic neurons, leading to cardiovascular dysfunction. The current guideline is to maintain the mean arterial blood pressure at 85 to 90 mmHg using a vasopressor during the first week of the injury. Some studies have demonstrated that this treatment might be beneficial to alleviate secondary injury and improve neurological outcomes; however, elevation of blood pressure may exacerbate spinal hemorrhage, extravasation, and edema, exacerbating the initial injury. PURPOSE: The present study was designed to (1) examine whether vasopressor administration exacerbates spinal hemorrhage and extravasation; (2) evaluate whether spinal decompression surgery relieves vasopressor-induced spinal hemorrhage and extravasation. STUDY DESIGN: In vivo animal study. METHODS: Animals received a saline solution or a vasopressor (phenylephrine hydrochloride, 500 or 1000 µg/kg, 7 mL/kg/h) after mid-cervical contusion with or without spinal decompression (ie, incision of the dura and arachnoid mater). Spinal cord hemorrhage and extravasation were examined by expression of Evans blue within the spinal cord section. RESULTS: The results demonstrated that cervical spinal contusion significantly reduced the mean arterial blood pressure and induced spinal hemorrhage and extravasation. Phenylephrine infusion significantly elevated the mean arterial blood pressure to the preinjury level within 15 to 60 minutes postcontusion; however, spinal hemorrhage and extravasation were more extensive in animals that received phenylephrine than in those that received saline. Notably, spinal decompression mitigated spinal hemorrhage and extravasation in contused rats who received phenylephrine. CONCLUSIONS: These data indicate that, although phenylephrine can prevent hypotension after cervical spinal injury, it also causes excess spinal hemorrhage and extravasation. CLINICAL SIGNIFICANCE: Spinal decompressive surgery seemed to minimize the side effect of phenylephrine as vasopressor treatment during acute spinal cord injury.


Subject(s)
Cervical Cord , Contusions , Spinal Cord Injuries , Spinal Injuries , Rats , Animals , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use , Spinal Cord Injuries/complications , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/surgery , Spinal Cord , Phenylephrine , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Hemorrhage/complications , Decompression
10.
Am J Emerg Med ; 75: 154-159, 2024 01.
Article in English | MEDLINE | ID: mdl-37950984

ABSTRACT

OBJECTIVES: Whether a longer no-flow (NF) interval affects the magnitude of response to epinephrine in the resuscitation has not been well studied. Therefore, this study aimed to evaluate the effect of NF interval on the vasopressor effect of initial epinephrine administration in a porcine model. METHODS: We enrolled 20 pigs from two randomized porcine experimental studies using a ventricular fibrillation (VF) cardiac arrest model. The first experiment subjects were resuscitated after 4 min of NF (Short NF group), followed by three cycles (6 min) of chest compression using a mechanical cardiopulmonary resuscitation device before epinephrine administration. Second experiment subjects received 6 min of NF (Long NF group), two cycles (4 min) of chest compressions, and administration of epinephrine. Defibrillation for VF was delivered 8 and 10 min after VF induction in the Short NF and Long NF groups, respectively. The mean arterial pressure (MAP) and cerebral perfusion pressure (CePP) in the 2-min resuscitation period after epinephrine administration were compared between the study groups using the Wilcoxon rank-sum test. The mean differences in the parameters between phases were also compared. RESULTS: Seven pigs in the Short NF group and 13 pigs in the Long NF group were included in the analysis. All 2-min resuscitation phases from 6 to 16 min after VF induction were compared between the study groups. The Short NF group showed higher MAP and CePP in all phases (p < 0.01). Change of mean MAP after the epinephrine administration was significantly different between the study groups: mean difference (95% confidence interval) of 16.6 (15.8-17.4) mmHg in the Short NF group and 4.2 (3.9-4.5) mmHg in the Long NF group. CONCLUSION: In the porcine VF cardiac arrest model, 6 min of NF before resuscitation may affect the vasopressor effect of the initial epinephrine administered compared to 4 min of NF. A short NF may play a role in maximizing the effect of epinephrine in advanced cardiovascular life support.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Humans , Swine , Animals , Ventricular Fibrillation/drug therapy , Heart Arrest/drug therapy , Epinephrine/pharmacology , Epinephrine/therapeutic use , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use
11.
Anaesthesia ; 79(1): 71-85, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37948131

ABSTRACT

We conducted a systematic review of the literature reporting phenylephrine-induced changes in blood pressure, cardiac output, cerebral blood flow and cerebral tissue oxygen saturation as measured by near-infrared spectroscopy in humans. We used the proportion change of the group mean values reported by the original studies in our analysis. Phenylephrine elevates blood pressure whilst concurrently inducing a reduction in cardiac output. Furthermore, despite increasing cerebral blood flow, it decreases cerebral tissue oxygen saturation. The extent of phenylephrine's influence on cardiac output (r = -0.54 and p = 0.09 in awake humans; r = -0.55 and p = 0.007 in anaesthetised humans), cerebral blood flow (r = 0.65 and p = 0.002 in awake humans; r = 0.80 and p = 0.003 in anaesthetised humans) and cerebral tissue oxygen saturation (r = -0.72 and p = 0.03 in awake humans; r = -0.24 and p = 0.48 in anaesthetised humans) appears closely linked to the magnitude of phenylephrine-induced blood pressure changes. When comparing the effects of phenylephrine in awake and anaesthetised humans, we found no evidence of a significant difference in cardiac output, cerebral blood flow or cerebral tissue oxygen saturation. There was also no evidence of a significant difference in effect on systemic and cerebral circulations whether phenylephrine was given by bolus or infusion. We explore the underlying mechanisms driving the phenylephrine-induced cardiac output reduction, cerebral blood flow increase and cerebral tissue oxygen saturation decrease. Individualised treatment approaches, close monitoring and consideration of potential risks and benefits remain vital to the safe and effective use of phenylephrine in acute care.


Subject(s)
Oxygen , Vasoconstrictor Agents , Humans , Phenylephrine/pharmacology , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use , Blood Pressure/physiology , Cerebrovascular Circulation/physiology
12.
Am J Hypertens ; 37(5): 307-317, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38124494

ABSTRACT

BACKGROUND: Patients with resistant hypertension are the group of hypertensive patients with the highest cardiovascular risk. METHODS: All rules and guidelines for treatment of hypertension should be followed strictly to obtain blood pressure (BP) control in resistant hypertension. The mainstay of treatment of hypertension, also for resistant hypertension, is pharmacological treatment, which should be tailored to each patient's specific phenotype. Therefore, it is pivotal to assess nonadherence to pharmacological treatment as this remains the most challenging problem to investigate and manage in the setting of resistant hypertension. RESULTS: Once adherence has been confirmed, patients must be thoroughly worked-up for secondary causes of hypertension. Until such possible specific causes have been clarified, the diagnosis is apparent treatment-resistant hypertension (TRH). Surprisingly few patients remain with true TRH when the various secondary causes and adherence problems have been detected and resolved. Refractory hypertension is a term used to characterize the treatment resistance in hypertensive patients using ≥5 antihypertensive drugs. All pressor mechanisms may then need blockage before their BPs are reasonably controlled. CONCLUSIONS: Patients with resistant hypertension need careful and sustained follow-up and review of their medications and dosages at each term since medication adherence is a very dynamic process.


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Antihypertensive Agents/pharmacology , Hypertension/diagnosis , Hypertension/drug therapy , Hypertension/epidemiology , Blood Pressure , Medication Adherence , Vasoconstrictor Agents/pharmacology
13.
Aging (Albany NY) ; 15(21): 12209-12224, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37921870

ABSTRACT

PURPOSE: The study aimed to investigate whether astrocyte pyroptosis, and the subsequent neuroinflammatory response that exerts amyloid ß (Aß) neurotoxic effects, has an effect on endothelial cells, along with the underlying mechanisms. METHODS: In vivo, 5 µL of disease venom was injected into the lateral ventricle of APP/PS1 mice for treatment. Pyroptosis was induced by treating astrocytes with Aß42 in vitro. Small interfering RNA (siRNA) was used to silence caspase-1 and Gasdermin D (GSDMD) mRNA expression. Cell viability was determined using a CCK-8 detection kit. Scanning electron microscopy (SEM), Annexin V/propidium iodide (PI) double staining, RT-qPCR, immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to detect cell pyroptosis. The degree of pathological damage to the brain and aortic tissue was assessed by hematoxylin-eosin staining and immunohistochemistry. RESULTS: Aß42 induced astrocyte pyroptosis dependent on the GSDMD/Gasdermin E (GSDME)/Caspase 11/NLRP3 pathway, releasing large amounts of inflammatory factors, such as TNF-α, IL-1α, IL-1ß, and IL-18. Astrocyte pyroptosis caused endothelial cell dysfunction and release of large amounts of vasoconstrictors (ET and vWF). Knockdown of GSDMD reduced astrocyte pyroptosis in the cerebral cortex and hippocampal tissue, decreased the release of inflammatory factors IL-1 ß and IL-18, reduced Aß deposition and tau protein, increased the release of peripheral vasodilator substances (eNOS), and decreased the release of vasoconstrictor substances (ET, vWF), thereby reducing brain tissue damage and vascular injury in APP/PS1 mice. CONCLUSION: Aß42 induced astrocyte pyroptosis, while GSDMD knockout inhibited astrocyte pyroptosis, reduced the release of inflammatory factors, and alleviated brain tissue damage and vascular damage in APP/PS1 mice. Therefore, GSDMD is a novel therapeutic target for Alzheimer's disease. PURPOSE: The study aimed to investigate whether astrocyte pyroptosis, and the subsequent neuroinflammatory response that exerts amyloid ß (Aß) neurotoxic effects, has an effect on endothelial cells, along with the underlying mechanisms. METHODS: In vivo, 5 µL of disease venom was injected into the lateral ventricle of APP/PS1 mice for treatment. Pyroptosis was induced by treating astrocytes with Aß42 in vitro. Small interfering RNA (siRNA) was used to silence caspase-1 and Gasdermin D (GSDMD) mRNA expression. Cell viability was determined using a CCK-8 detection kit. Scanning electron microscopy (SEM), Annexin V/propidium iodide (PI) double staining, RT-qPCR, immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to detect cell pyroptosis. The degree of pathological damage to the brain and aortic tissue was assessed by hematoxylin-eosin staining and immunohistochemistry. RESULTS: Aß42 induced astrocyte pyroptosis dependent on the GSDMD/Gasdermin E (GSDME)/Caspase 11/NLRP3 pathway, releasing large amounts of inflammatory factors, such as TNF-α, IL-1α, IL-1ß, and IL-18. Astrocyte pyroptosis caused endothelial cell dysfunction and release of large amounts of vasoconstrictors (ET and vWF). Knockdown of GSDMD reduced astrocyte pyroptosis in the cerebral cortex and hippocampal tissue, decreased the release of inflammatory factors IL-1 ß and IL-18, reduced Aß deposition and tau protein, increased the release of peripheral vasodilator substances (eNOS), and decreased the release of vasoconstrictor substances (ET, vWF), thereby reducing brain tissue damage and vascular injury in APP/PS1 mice. CONCLUSION: Aß42 induced astrocyte pyroptosis, while GSDMD knockout inhibited astrocyte pyroptosis, reduced the release of inflammatory factors, and alleviated brain tissue damage and vascular damage in APP/PS1 mice. Therefore, GSDMD is a novel therapeutic target for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Vascular System Injuries , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Pyroptosis , tau Proteins/metabolism , Interleukin-1beta/metabolism , Astrocytes/metabolism , Interleukin-18/metabolism , Gasdermins , Endothelial Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Annexin A5/metabolism , Annexin A5/pharmacology , Eosine Yellowish-(YS)/metabolism , Eosine Yellowish-(YS)/pharmacology , Hematoxylin/metabolism , Hematoxylin/pharmacology , Propidium/metabolism , Propidium/pharmacology , Sincalide/metabolism , Tumor Necrosis Factor-alpha/metabolism , von Willebrand Factor , Caspase 1/metabolism , RNA, Small Interfering/metabolism , RNA, Messenger/metabolism , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
14.
Exp Physiol ; 108(12): 1569-1578, 2023 12.
Article in English | MEDLINE | ID: mdl-37837634

ABSTRACT

NEW FINDINGS: What is the central question of this study? What are the biggest challenges in performing in vitro studies on isolated human umbilical arteries? What is the main finding and its importance? The protocols presented in this study indicate some potential outcomes important for interpretation of the vascular responsivities of human umbilical arteries and could be useful for planning future in vitro studies with human umbilical arteries. ABSTRACT: Human umbilical artery (HUA) preparations are of particular importance for in vitro studies on isolated blood vessels because their sampling is not risky for the patient, and they can provide the closest possible impression of changes related to the uteroplacental circulation during pre-eclampsia. Using organ bath techniques, useful experimental protocols are provided for measuring some pathophysiological phenomena in the vascular responses of HUAs. Several vasoconstrictors (serotonin, prostaglandin F and phenylephrine) and vasodilators (acetylcholine and minoxidil) were seleted for determination of their vasoactivity in HUAs. The role of L-type voltage-operated calcium channels and different types of potassium channels (KATP , BKCa and KV ) were assessed, as was the impact of homocysteine. Serotonin was confirmed to be the most potent vasoconstrictor, while acetylcholine and phenylephrine caused variability in the relaxation and contraction response of HUA, respectively. The observed increase in serotonin-induced contraction and a decrease in minoxidil-induced relaxation in the presence of homocysteine suggested its procontractile effect on HUA preparations. Using selective blockers, it was determined that KATP and KV channels participate in the minoxidil-induced relaxation, while L-type voltage-dependent Ca2+  channels play an important role in the serotonin-induced contraction. The presented protocols reveal some of the methodological challenges related to HUA preparations and indicate potential outcomes in interpreting the vascular effects of the investigated substances, both in physiological conditions and in the homocysteine-induced pre-eclampsia model.


Subject(s)
Pre-Eclampsia , Umbilical Arteries , Pregnancy , Female , Humans , Umbilical Arteries/physiology , Serotonin , Acetylcholine/pharmacology , Minoxidil/pharmacology , Vasodilation/physiology , Vasoconstrictor Agents/pharmacology , Phenylephrine/pharmacology , Homocysteine/pharmacology , Adenosine Triphosphate/pharmacology
15.
Biochem Pharmacol ; 216: 115795, 2023 10.
Article in English | MEDLINE | ID: mdl-37690571

ABSTRACT

Prolonged vasoconstrictor signalling found in hypertension, increases arterial contraction, and alters vessel architecture by stimulating arterial smooth muscle cell (ASMC) growth, underpinning the development of re-stenosis lesions and vascular remodelling. Vasoconstrictors interact with their cognate G protein coupled receptors activating a variety of signalling pathways to promote smooth muscle proliferation. Here, angiotensin II (AngII) and endothelin 1 (ET1), but not UTP stimulates ASMC proliferation. Moreover, siRNA-mediated depletion of endogenous GRK2 expression, or GRK2 inhibitors, compound 101 or paroxetine, prevented AngII and ET1-promoted ASMC growth. Depletion of GRK2 expression or inhibition of GRK2 activity ablated the prolonged phase of AngII and ET-stimulated ERK signalling, while enhancing and prolonging UTP-stimulated ERK signalling. Increased GRK2 expression enhanced and prolonged AngII and ET1-stimulated ERK signalling, but suppressed UTP-stimulated ERK signalling. In ASMC prepared from 6-week-old WKY and SHR, AngII and ET1-stimulated proliferation rates were similar, however, in cultures prepared from 12-week-old rats AngII and ET1-stimulated growth was enhanced in SHR-derived ASMC, which was reversed following depletion of GRK2 expression. Furthermore, in ASMC cultures isolated from 6-week-old WKY and SHR rats, AngII and ET1-stimulated ERK signals were similar, while in cultures from 12-week-old rats ERK signals were both enhanced and prolonged in SHR-derived ASMC, and were reversed to those seen in age-matched WKY-derived ASMC following pre-treatment of SHR-derived ASMC with compound 101. These data indicate that the presence of GRK2 and its catalytic activity are essential to enable pro-proliferative vasoconstrictors to promote growth via recruitment and activation of the ERK signalling pathway in ASMC.


Subject(s)
G-Protein-Coupled Receptor Kinase 2 , Hypertension , Vasoconstrictor Agents , Animals , Rats , Angiotensin II/pharmacology , Cell Proliferation , Cells, Cultured , Hypertension/metabolism , Muscle, Smooth, Vascular/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Uridine Triphosphate/pharmacology , Vasoconstrictor Agents/pharmacology , G-Protein-Coupled Receptor Kinase 2/metabolism
16.
J Physiol ; 601(20): 4557-4572, 2023 10.
Article in English | MEDLINE | ID: mdl-37698303

ABSTRACT

We investigated the role of the exercise pressor reflex (EPR) in regulating the haemodynamic response to locomotor exercise. Eight healthy participants (23 ± 3 years, V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ : 49 ± 6 ml/kg/min) performed constant-load cycling exercise (∼36/43/52/98% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ; 4 min each) without (CTRL) and with (FENT) lumbar intrathecal fentanyl attenuating group III/IV locomotor muscle afferent feedback and, thus, the EPR. To avoid different respiratory muscle metaboreflex and arterial chemoreflex activation during FENT, subjects mimicked the ventilatory response recorded during CTRL. Arterial and leg perfusion pressure (femoral arterial and venous catheters), femoral blood flow (Doppler-ultrasound), microvascular quadriceps blood flow index (indocyanine green), cardiac output (inert gas breathing), and systemic and leg vascular conductance were quantified during exercise. There were no cardiovascular and ventilatory differences between conditions at rest. Pulmonary ventilation, arterial blood gases and oxyhaemoglobin saturation were not different during exercise. Furthermore, cardiac output (-2% to -12%), arterial pressure (-7% to -15%) and leg perfusion pressure (-8% to -22%) were lower, and systemic (up to 16%) and leg (up to 27%) vascular conductance were higher during FENT compared to CTRL. Leg blood flow, microvascular quadriceps blood flow index, and leg O2 -transport and utilization were not different between conditions (P > 0.5). These findings reflect a critical role of the EPR in the autonomic control of the heart, vasculature and, ultimately, arterial pressure during locomotor exercise. However, the lack of a net effect of the EPR on leg blood flow challenges the idea of this cardiovascular reflex as a key determinant of leg O2 -transport during locomotor exercise in healthy, young individuals. KEY POINTS: The role of the exercise pressor reflex (EPR) in regulating leg O2 -transport during human locomotion remains uncertain. We investigated the influence of the EPR on the cardiovascular response to cycling exercise. Lumbar intrathecal fentanyl was used to block group III/IV leg muscle afferents and debilitate the EPR at intensities ranging from 30% to 100% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . To avoid different respiratory muscle metaboreflex and arterial chemoreflex activation during exercise with blocked leg muscle afferents, subjects mimicked the ventilatory response recorded during control exercise. Afferent blockade increased leg and systemic vascular conductance, but reduced cardiac output and arterial-pressure, with no net effect on leg blood flow. The EPR influenced the cardiovascular response to cycling exercise by contributing to the autonomic control of the heart and vasculature, but did not affect leg blood flow. These findings challenge the idea of the EPR as a key determinant of leg O2 -transport during locomotor exercise in healthy, young individuals.


Subject(s)
Leg , Muscle, Skeletal , Male , Humans , Leg/blood supply , Muscle, Skeletal/physiology , Reflex , Fentanyl , Vasoconstrictor Agents/pharmacology , Perfusion
17.
J Emerg Med ; 65(3): e209-e220, 2023 09.
Article in English | MEDLINE | ID: mdl-37635036

ABSTRACT

BACKGROUND: Cardiac arrest occurs in approximately 350,000 patients outside the hospital and approximately 30,000 patients in the emergency department (ED) annually in the United States. When return of spontaneous circulation (ROSC) is achieved, hypotension is a common complication. However, optimal dosing of vasopressors is not clear. OBJECTIVE: The objective of this study was to determine if initial vasopressor dosing was associated with cardiac re-arrest in patients after ROSC. METHODS: This was a retrospective, single-center analysis of adult patients experiencing cardiac arrest prior to arrival or within the ED. Patients were assigned to one of four groups based on starting dose of vasopressor: low dose (LD; < 0.25 µg/kg/min), medium dose (MD; 0.25-0.49 µg/kg/min), high dose (HD; 0.5-0.99 µg/kg/min), and very high dose (VHD; ≥ 1 µg/kg/min). Data collection was performed primarily via manual chart review of medical records. The primary outcome was incidence of cardiac re-arrest within 1 h of vasopressor initiation. Multivariate logistic regression analysis was conducted to identify any covariates strongly associated with the primary outcome. RESULTS: No difference in cardiac re-arrest incidence was noted between groups. The VHD group was significantly more likely to require a second vasopressor (p = 0.003). The HD group had lower survival rates to hospital discharge compared with the LD and MD groups (p = 0.0033 and p = 0.0147). In the multivariate regression, longer duration of pre-vasopressor re-arrests and hyperkalemic cardiac arrest etiology were significant predictors of cardiac re-arrest after vasopressor initiation. CONCLUSIONS: Initial vasopressor dosing was not found to be associated with risk of cardiac re-arrest or, conversely, risk of adverse events.


Subject(s)
Heart Arrest , Return of Spontaneous Circulation , Adult , Humans , Retrospective Studies , Heart , Heart Arrest/drug therapy , Emergency Service, Hospital , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use
18.
Crit Care ; 27(1): 322, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608327

ABSTRACT

During septic shock, vasopressor infusion is usually started only after having corrected the hypovolaemic component of circulatory failure, even in the most severe patients. However, earlier administration of norepinephrine, simultaneously with fluid resuscitation, should be considered in some cases. Duration and depth of hypotension strongly worsen outcomes in septic shock patients. However, the response of arterial pressure to volume expansion is inconstant, delayed, and transitory. In the case of profound, life-threatening hypotension, relying only on fluids to restore blood pressure may unduly prolong hypotension and organ hypoperfusion. Conversely, norepinephrine rapidly increases and better stabilizes arterial pressure. By binding venous adrenergic receptors, it transforms part of the unstressed blood volume into stressed blood volume. It increases the mean systemic filling pressure and increases the fluid-induced increase in mean systemic filling pressure, as observed in septic shock patients. This may improve end-organ perfusion, as shown by some animal studies. Two observational studies comparing early vs. later administration of norepinephrine in septic shock patients using a propensity score showed that early administration reduced the administered fluid volume and day-28 mortality. Conversely, in another propensity score-based study, norepinephrine administration within the first hour following shock diagnosis increased day-28 mortality. The only randomized controlled study that compared the early administration of norepinephrine alone to a placebo showed that the early continuous administration of norepinephrine at a fixed dose of 0.05 µg/kg/min, with norepinephrine added in open label, showed that shock control was achieved more often than in the placebo group. The choice of starting norepinephrine administration early should be adapted to the patient's condition. Logically, it should first be addressed to patients with profound hypotension, when the arterial tone is very low, as suggested by a low diastolic blood pressure (e.g. ≤ 40 mmHg), or by a high diastolic shock index (heart rate/diastolic blood pressure) (e.g. ≥ 3). Early administration of norepinephrine should also be considered in patients in whom fluid accumulation is likely to occur or in whom fluid accumulation would be particularly deleterious (in case of acute respiratory distress syndrome or intra-abdominal hypertension for example).


Subject(s)
Hypotension , Shock, Septic , Animals , Blood Pressure , Norepinephrine/pharmacology , Norepinephrine/therapeutic use , Shock, Septic/drug therapy , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use , Humans
19.
Exp Eye Res ; 233: 109561, 2023 08.
Article in English | MEDLINE | ID: mdl-37429521

ABSTRACT

Adrenaline is a sympathomimetic drug used to maintain pupil dilation and to decrease the risk of bleeding. The aim of this study was to demonstrate if adrenaline could exert antifibrotic effects in glaucoma surgery. Adrenaline was tested in fibroblast-populated collagen contraction assays and there was a dose-response decrease in fibroblast contractility: matrices decreased to 47.4% (P = 0.0002) and 86.6% (P = 0.0036) with adrenaline 0.0005% and 0.01%, respectively. There was no significant decrease in cell viability even at high concentrations. Human Tenon's fibroblasts were also treated with adrenaline (0%, 0.0005%, 0.01%) for 24 h and RNA-Sequencing was performed on the Illumina NextSeq 2000. We carried out detailed gene ontology, pathway, disease and drug enrichment analyses. Adrenaline 0.01% upregulated 26 G1/S and 11 S-phase genes, and downregulated 23 G2 and 17 M-phase genes (P < 0.05). Adrenaline demonstrated similar pathway enrichment to mitosis and spindle checkpoint regulation. Adrenaline 0.05% was also injected subconjunctivally during trabeculectomy, PreserFlo Microshunt and Baerveldt 350 tube surgeries, and patients did not experience any adverse effects. Adrenaline is a safe and cheap antifibrotic drug that significantly blocks key cell cycle genes when used at high concentrations. Unless contraindicated, we recommend subconjunctival injections of adrenaline (0.05%) in all glaucoma bleb-forming surgeries.


Subject(s)
Glaucoma , Trabeculectomy , Humans , Glaucoma/drug therapy , Glaucoma/genetics , Glaucoma/surgery , Epinephrine/pharmacology , Epinephrine/metabolism , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/metabolism , Genes, cdc , Fibroblasts/metabolism
20.
J Am Heart Assoc ; 12(15): e029787, 2023 08.
Article in English | MEDLINE | ID: mdl-37489740

ABSTRACT

Cardiogenic shock is characterized by tissue hypoxia caused by circulatory failure arising from inadequate cardiac output. In addition to treating the pathologic process causing impaired cardiac function, prompt hemodynamic support is essential to reduce the risk of developing multiorgan dysfunction and to preserve cellular metabolism. Pharmacologic therapy with the use of vasopressors and inotropes is a key component of this treatment strategy, improving perfusion by increasing cardiac output, altering systemic vascular resistance, or both, while allowing time and hemodynamic stability to treat the underlying disease process implicated in the development of cardiogenic shock. Despite the use of mechanical circulatory support recently garnering significant interest, pharmacologic hemodynamic support remains a cornerstone of cardiogenic shock management, with over 90% of patients receiving at least 1 vasoactive agent. This review aims to describe the pharmacology and hemodynamic effects of current pharmacotherapies and provide a practical approach to their use, while highlighting important future research directions.


Subject(s)
Shock, Cardiogenic , Vasoconstrictor Agents , Humans , Shock, Cardiogenic/drug therapy , Vasoconstrictor Agents/therapeutic use , Vasoconstrictor Agents/pharmacology , Hemodynamics , Vascular Resistance , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL
...