Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.407
Filter
1.
Environ Health Perspect ; 132(5): 55001, 2024 May.
Article in English | MEDLINE | ID: mdl-38728219

ABSTRACT

BACKGROUND: In response to the COVID-19 pandemic, new evidence-based strategies have emerged for reducing transmission of respiratory infections through management of indoor air. OBJECTIVES: This paper reviews critical advances that could reduce the burden of disease from inhaled pathogens and describes challenges in their implementation. DISCUSSION: Proven strategies include assuring sufficient ventilation, air cleaning by filtration, and air disinfection by germicidal ultraviolet (UV) light. Layered intervention strategies are needed to maximize risk reduction. Case studies demonstrate how to implement these tools while also revealing barriers to implementation. Future needs include standards designed with infection resilience and equity in mind, buildings optimized for infection resilience among other drivers, new approaches and technologies to improve ventilation, scientific consensus on the amount of ventilation needed to achieve a desired level of risk, methods for evaluating new air-cleaning technologies, studies of their long-term health effects, workforce training on ventilation systems, easier access to federal funds, demonstration projects in schools, and communication with the public about the importance of indoor air quality and actions people can take to improve it. https://doi.org/10.1289/EHP13878.


Subject(s)
Air Pollution, Indoor , COVID-19 , SARS-CoV-2 , Ventilation , COVID-19/transmission , COVID-19/prevention & control , Humans , Air Pollution, Indoor/prevention & control , Ventilation/methods , Air Microbiology , Disinfection/methods , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/transmission
2.
Sci Total Environ ; 934: 173183, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38777046

ABSTRACT

Cooking with wood biomass fuels releases hazardous air pollutants, including volatile organic compounds (VOCs), that often disproportionally affect women and children. This study, conducted in Kwale and Siaya counties in Kenya, employed thermal desorption gas chromatography - mass spectrometry to analyse VOC emissions from cooking with a wood biomass three-stone open fire vs. top-lit updraft gasifier stove. In kitchens with adequate ventilation, total VOC levels increased from 35-252 µg∙m-3 before cooking to 2235-5371 µg∙m-3 during open fire cooking, whereas use of a gasifier stove resulted in reduced emissions from cooking by 48-77 % (506-2778 µg∙m-3). However, in kitchens with poor ventilation, there was only a moderate difference in total VOC levels between the two methods of cooking (9034-9378 µg∙m-3 vs. 6727-8201 µg∙m-3 for the three-stone open fire vs. gasifier stove, respectively). Using a non-target screening approach revealed significantly increased levels of VOCs, particularly benzenoids, oxygenated and heterocyclic compounds, when cooking with the traditional open fire, especially in closed kitchens, highlighting the effects of poor ventilation. Key hazardous VOCs included benzene, naphthalene, phenols and furans, suggesting potential health risks from cooking. In kitchens with good ventilation, use of the gasifier stove markedly reduced emissions of these priority toxic VOCs compared to cooking with an open fire. Thus, substituting open fires with gasifier stoves could help to improve household air quality and alleviate health risks. The study revealed that VOCs were present prior to cooking, possibly originating from previously cooked food (buildup) or the outside environment. VOC emissions were also exacerbated by reduced air flow in high humidity during rainfall, suggesting an area for further research. The findings underscore the importance of adopting cleaner cooking technologies and enhancing kitchen ventilation to mitigate the impacts of VOCs in developing countries.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cooking , Volatile Organic Compounds , Wood , Kenya , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Biomass , Ventilation , Environmental Monitoring , Fires
3.
PLoS One ; 19(5): e0303790, 2024.
Article in English | MEDLINE | ID: mdl-38781170

ABSTRACT

We employed carbon dioxide (CO2) concentration monitoring using mobile devices to identify location-specific risks for airborne infection transmission. We lent a newly developed, portable Pocket CO2 Logger to 10 participants, to be carried at all times, for an average of 8 days. The participants recorded their location at any given time as cinema, gym, hall, home, hospital, other indoors, other outgoings, pub, restaurant, university, store, transportation, or workplace. Generalized linear mixed model was used for statistical analysis, with the objective variable set to the logarithm of CO2 concentration. Analysis was performed by assigning participant identification as the random effect and location as the fixed effect. The data were collected per participant (seven males, four females), resulting in a total of 12,253 records. Statistical analysis identified three relatively poorly ventilated locations (median values > 1,000 ppm) that contributed significantly (p < 0.0001) to CO2 concentrations: homes (1,316 ppm), halls (1,173 ppm), and gyms (1005ppm). In contrast, two locations were identified to contribute significantly (p < 0.0001) to CO2 concentrations but had relatively low average values (<1,000 ppm): workplaces (705 ppm) and stores (620 ppm). The Pocket CO2 Logger can be used to visualize airborne infectious transmission risk by location to help guide recommendation regarding infectious disease policies, such as restrictions on human flow and ventilation measures and guidelines. In the future, large-scale surveys are expected to utilize the global positioning system, Wi-Fi, or Bluetooth of an individual's smartphone to improve ease and accuracy.


Subject(s)
Carbon Dioxide , Ventilation , Humans , Carbon Dioxide/analysis , Male , Female , Tokyo/epidemiology , Adult , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , COVID-19/transmission , COVID-19/epidemiology , Middle Aged
5.
Environ Sci Pollut Res Int ; 31(23): 34415-34445, 2024 May.
Article in English | MEDLINE | ID: mdl-38703314

ABSTRACT

Natural ventilation potential (NVP) of a climate is a theoretical basis, and it gains importance due to the promising need for building energy conservation while conceding required thermal comfort conditions. A modified NVP analytical model is proposed by considering parameters involved in the earlier models (Yang et al., Build Environ 40:738-746, 2005; Luo et al., Build Environ 42:2289-2298, 2007). The effect of the dynamic thermal behavior of the wall/roof and building orientation on the indoor air temperature has been evaluated. The analytical model is applied to 11 major cities of India that belong to composite, hot-dry, temperate, and warm-humid climates. Five different envelope configurations are analyzed to envisage the NVP of concern climate (ED-I to ED-V). The results show that the effect of dynamic thermal response factors on the NVP is significant, and optimization of thermal response factors in addition to the U-value is mandatory. The impact of wind frequency on the selection of building orientation is substantial since it influences the total heat gained by the building envelope. Moreover, it is perceived that the optimum building orientation is independent of the climate and weather conditions. ED-II and ED-III are energy-efficient envelopes for composite, temperate, warm-humid, and hot-dry climates. The results revealed that the Mumbai climate has the highest NVP of 66% while the building is oriented in an E-W direction, and the lowest is observed for Jodhpur, i.e., 44% of the year when the building is in the NE-SW direction. The model helps the building architectural designers envisage the true NVP and assess the suitability of the building for natural ventilation.


Subject(s)
Climate , Ventilation , India , Temperature , Models, Theoretical , Air Pollution, Indoor , Cities
6.
Nat Commun ; 15(1): 3487, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664424

ABSTRACT

An improved understanding of the underlying physicochemical properties of respiratory aerosol that influence viral infectivity may open new avenues to mitigate the transmission of respiratory diseases such as COVID-19. Previous studies have shown that an increase in the pH of respiratory aerosols following generation due to changes in the gas-particle partitioning of pH buffering bicarbonate ions and carbon dioxide is a significant factor in reducing SARS-CoV-2 infectivity. We show here that a significant increase in SARS-CoV-2 aerostability results from a moderate increase in the atmospheric carbon dioxide concentration (e.g. 800 ppm), an effect that is more marked than that observed for changes in relative humidity. We model the likelihood of COVID-19 transmission on the ambient concentration of CO2, concluding that even this moderate increase in CO2 concentration results in a significant increase in overall risk. These observations confirm the critical importance of ventilation and maintaining low CO2 concentrations in indoor environments for mitigating disease transmission. Moreover, the correlation of increased CO2 concentration with viral aerostability need to be better understood when considering the consequences of increases in ambient CO2 levels in our atmosphere.


Subject(s)
COVID-19 , Carbon Dioxide , SARS-CoV-2 , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , COVID-19/transmission , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Aerosols , Humidity , Ventilation , Respiratory Aerosols and Droplets/metabolism , Respiratory Aerosols and Droplets/virology , Atmosphere/chemistry
7.
Sci Total Environ ; 927: 172278, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583631

ABSTRACT

The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting the most effective infection control technologies. The problem is that the large variation in viral load between individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non-steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state conditions the approach provides an elegant solution that is only dependent on removal mechanisms before and after applying infection control measures. We applied this method to compare the impact of relative humidity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool for mitigation of airborne infection risk.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Humans , Air Pollution, Indoor/prevention & control , Aerosols/analysis , COVID-19/prevention & control , COVID-19/transmission , Ventilation , Viral Load , Models, Theoretical , Infection Control/methods , Risk Assessment
8.
PLoS One ; 19(4): e0291840, 2024.
Article in English | MEDLINE | ID: mdl-38568915

ABSTRACT

BACKGROUND: This study examined the correlation of classroom ventilation (air exchanges per hour (ACH)) and exposure to CO2 ≥1,000 ppm with the incidence of SARS-CoV-2 over a 20-month period in a specialized school for students with intellectual and developmental disabilities (IDD). These students were at a higher risk of respiratory infection from SARS-CoV-2 due to challenges in tolerating mitigation measures (e.g. masking). One in-school measure proposed to help mitigate the risk of SARS-CoV-2 infection in schools is increased ventilation. METHODS: We established a community-engaged research partnership between the University of Rochester and the Mary Cariola Center school for students with IDD. Ambient CO2 levels were measured in 100 school rooms, and air changes per hour (ACH) were calculated. The number of SARS-CoV-2 cases for each room was collected over 20 months. RESULTS: 97% of rooms had an estimated ACH ≤4.0, with 7% having CO2 levels ≥2,000 ppm for up to 3 hours per school day. A statistically significant correlation was found between the time that a room had CO2 levels ≥1,000 ppm and SARS-CoV-2 PCR tests normalized to room occupancy, accounting for 43% of the variance. No statistically significant correlation was found for room ACH and per-room SARS-CoV-2 cases. Rooms with ventilation systems using MERV-13 filters had lower SARS-CoV-2-positive PCR counts. These findings led to ongoing efforts to upgrade the ventilation systems in this community-engaged research project. CONCLUSIONS: There was a statistically significant correlation between the total time of room CO2 concentrations ≥1,000 and SARS-CoV-2 cases in an IDD school. Merv-13 filters appear to decrease the incidence of SARS-CoV-2 infection. This research partnership identified areas for improving in-school ventilation.


Subject(s)
COVID-19 , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Carbon Dioxide/analysis , Developmental Disabilities/epidemiology , Schools , Students , Ventilation
9.
J Environ Radioact ; 276: 107440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669858

ABSTRACT

The radiation dose of workers in underground uranium mines mainly comes from radon and radon progeny. To ensure a healthy and safe work environment, it is necessary and urgent to optimize the design of ventilation systems. As such, based on the simplified radon diffusion-advection migration model of the rocks, this paper proposes 1) two methods for determining the radon exhalation rate modified by pressure drop, 2) three methods for calculating radon activity concentration of single-branch, and 3) the novel adjustment algorithm and solving procedures for calculating and adjusting the radon activity concentration in ventilation networks by modifying the radon exhalation rate, demonstrated on a specific ventilation network in a simulated underground uranium mine with calculation and analysis via MATLAB. The results show that 1) the radon exhalation rate of different branches can be modified by their pressure drop, and 2) the proposed method can be used to reveal the influences of different ventilation methods and fan pressures on the radon activity concentration in the ventilation network and the radon release rate to the atmosphere.


Subject(s)
Air Pollutants, Radioactive , Mining , Models, Theoretical , Radiation Monitoring , Radon , Uranium , Ventilation , Radon/analysis , Uranium/analysis , Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Occupational Exposure/analysis
10.
Environ Sci Pollut Res Int ; 31(22): 31818-31842, 2024 May.
Article in English | MEDLINE | ID: mdl-38639909

ABSTRACT

Building envelope features (BEFs) have attracted more and more attention as they have a significant impact on flow structure and pollutant dispersion within street canyons. This paper conducted CFD numerical models validated by wind-tunnel experiments, to explore the effects of the BEFs on characteristics of the airflow and pollutant distribution inside a symmetric street canyon under perpendicular incoming flow. Three different BEFs (balconies, overhangs, and wing walls) and their locations and continuity/discontinuity structures were considered. For each canyon with various BEFs, the air exchange rate (ACH), airflow patterns, and pollutant distributions were evaluated and compared in detail. The results show that compared to the regular canyon, the BEFs will reduce the ACH of the canyon, but increase the disturbances (the proportion of ACH') inside the canyon. The BEFs on the leeward wall have the least influence on the in-canyon airflow and pollutant distributions, followed by that on the windward wall. Then when the BEFs are on both walls, the ventilation capacity of the canyon is weakened greatly, and the pollutant concentration in the ground center is increased significantly, especially near the windward side. Moreover, the discontinuity BEFs will weaken the effect of the continuity BEFs on the in-canyon flow and dispersion, specifically, the discontinuity BEFs reduced the region of high pollutant concentration distributions. These findings can help optimize the BEFs design to enhance ventilation and mitigate traffic pollution.


Subject(s)
Air Movements , Air Pollutants , Wind , Environmental Monitoring , Models, Theoretical , Ventilation
11.
J Environ Manage ; 358: 120861, 2024 May.
Article in English | MEDLINE | ID: mdl-38603848

ABSTRACT

In electric vehicles, the Heating, Ventilation and Air-Conditioning (HVAC) function is often performed by a heat pump. Heating and cooling the cabin air drains energy directly from the vehicle's battery. In addition, these vehicles may operate in environments with high level of air pollution. In the cabin, passengers are confined to a small space where particles and harmful gases can accumulate. In addition, the ventilation system must also handle the air which does not enter the cabin through blower operation. This "infiltration" is a function of the vehicle speed and allows pollution to enter the cabin without being filtered or thermally treated. The objective of the study is to optimize the competing goals of the HVAC system: achieving the best air quality while maintaining good thermal comfort, at minimum energy costs. A system simulation tool is calibrated to represent the heating and cooling of an electric car. With this model, the influence of key factors is evaluated. Depending on ambient conditions and other parameters (number of occupants, vehicle speed, etc.), the blower flow rate and recirculation ratio can be adjusted to reach the objectives. The management of the proportion of fresh and recirculated air allows to regulate the humidity and carbon dioxide levels. Optimum controls are proposed as good trade-offs to reduce the power consumption, while maintaining a safe and comfortable environment for occupants. Compared to the full fresh air mode, the driving range gains are estimated in cold (-15 °C) and hot (30 °C) scenarios at 9 and 26 km respectively.


Subject(s)
Air Conditioning , Air Pollution , Ventilation , Air Pollution/prevention & control , Electricity , Carbon Dioxide/analysis
12.
Environ Sci Pollut Res Int ; 31(23): 33763-33779, 2024 May.
Article in English | MEDLINE | ID: mdl-38684617

ABSTRACT

In order to study the characteristics and transport path of PM2.5 in the subway station office, three different types of typical subway station were selected for sampling and analysis. The PM2.5 of mechanical air duct and VAC (ventilation and air conditioning system) were tested simultaneously. Both the particulate matter in the station office and VAC exhibit highly enriched characteristics of metal elements. The mass balance equation with elemental Fe as the tracer element is established firstly in subway station, and the transport path of PM2.5 in the work area is revealed: if the work area is obviously under positive pressure compared to the station hall, metal-enriched fine particles come from the VAC system; otherwise, the particles come both from the VAC system and air infiltration from the station hall. The contribution of air infiltration to metal-enriched fine particles can reach 50%. Finally, following an investigation into the source of fine particles in the office, the measures to improve air quality are proposed and validated.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Air Pollutants/analysis , Particle Size , Ventilation , Air Conditioning
13.
J Occup Environ Hyg ; 21(6): 379-388, 2024.
Article in English | MEDLINE | ID: mdl-38652919

ABSTRACT

Residents of long-term care facilities are particularly vulnerable to communicable diseases. Low-cost interventions to increase air exchange rates (AERs) may be useful in reducing the transmission of airborne communicable diseases between long-term care residents and staff. In this study, carbon dioxide gas was used as a tracer to evaluate the AER associated with the implementation of low-cost ventilation interventions. Under baseline conditions with the room's door closed, the mean AER was 0.67 ACH; while baseline conditions with the door open had a significantly higher mean AER of 3.87 ACH (p < 0.001). Subsequently opening a window with the door open increased mean AER by 1.49 ACH (p = 0.012) and adding a fan in the window further increased mean AER by 1.87 ACH (p < 0.001). Regression analyses indicated that the flow rate of air entering through the window, both passively and through the use of a fan, was significantly associated with an increase in AER (p < 0.001). These results indicate that low-cost interventions that pull outside air into resident rooms were effective in improving the air exchange rates in these facilities. While implementation of these interventions is dependent on facility rules and isolation requirements of residents with airborne communicable diseases, these interventions remain viable options for long-term care facilities to improve resident room ventilation without requiring costly ventilation system upgrades.


Subject(s)
Long-Term Care , Ventilation , Ventilation/methods , Humans , Long-Term Care/economics , Air Pollution, Indoor/prevention & control , Nursing Homes , Carbon Dioxide/analysis
14.
Sci Rep ; 14(1): 6843, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514758

ABSTRACT

The impact of mechanical ventilation on airborne diseases is not completely known. The recent pandemic of COVID-19 clearly showed that additional investigations are necessary. The use of computational tools is an advantage that needs to be included in the study of designing safe places. The current study focused on a hospital lift where two subjects were included: a healthy passenger and an infected one. The elevator was modelled with a fan placed on the middle of the ceiling and racks for supplying air at the bottom of the lateral wall. Three ventilation strategies were evaluated: a without ventilation case, an upwards-blowing exhausting fan case and a downwards-blowing fan case. Five seconds after the elevator journey began, the infected person coughed. For the risk assessment, the CO2 concentration, droplet removal performance and dispersion were examined and compared among the three cases. The results revealed some discrepancies in the selection of an optimal ventilation strategy. Depending on the evaluated parameter, downward-ventilation fan or no ventilation strategy could be the most appropriate approach.


Subject(s)
COVID-19 , Carbon Dioxide , Humans , Respiration , Hospitals , Cough , Ventilation/methods
15.
Ann Work Expo Health ; 68(4): 387-396, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38527239

ABSTRACT

Over the past 15 years, there have been numerous fatalities related to working with animal slurry. Working with cattle slurry releases toxic gases, in particular, hydrogen sulphide (H2S), which can cause acute central nervous system toxicity, breathing difficulties, and death if exposed to high concentrations. Real-time measurements of H2S gas were taken over distance and time, during the stirring of cattle slurry on farms. Gas was measured at eight slurry stores with differing typical configurations of indoor or outdoor stores and with or without slatted flooring. Highest H2S gas levels were measured from indoor stores under slatted floors, and generally at positions closest to the stirrer or the point of maximum stirring, with levels decreasing with distance from source. Most of the data indicate H2S gas levels increase very rapidly after stirring starts, and mostly decline to baseline levels within 30 min post start of stirring. There were, however, circumstances where gas levels remained high and only started to decline once the stirrer had stopped. H2S gas levels at all farms, at all positions measured were consistently below 10 ppm within 30 min of the stirrer being stopped. The current data highlight areas of the farm and ways of working that have the potential for workers and others to be at risk of exposure to toxic slurry gases. The area should be left to ventilate naturally for at least 30 min after the stirrer has been stopped before re-entering buildings. Influencing the design of stirring equipment and future slurry stores would likely reduce the risk of worker exposure to slurry gases.


Subject(s)
Hydrogen Sulfide , Occupational Exposure , Hydrogen Sulfide/analysis , Animals , Cattle , Occupational Exposure/analysis , Humans , Air Pollutants, Occupational/analysis , Animal Husbandry/methods , Manure/analysis , Farms , Environmental Monitoring/methods , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Ventilation/methods
16.
PLoS Comput Biol ; 20(3): e1011956, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547311

ABSTRACT

SARS-CoV-2 transmission in indoor spaces, where most infection events occur, depends on the types and duration of human interactions, among others. Understanding how these human behaviours interface with virus characteristics to drive pathogen transmission and dictate the outcomes of non-pharmaceutical interventions is important for the informed and safe use of indoor spaces. To better understand these complex interactions, we developed the Pedestrian Dynamics-Virus Spread model (PeDViS), an individual-based model that combines pedestrian behaviour models with virus spread models incorporating direct and indirect transmission routes. We explored the relationships between virus exposure and the duration, distance, respiratory behaviour, and environment in which interactions between infected and uninfected individuals took place and compared this to benchmark 'at risk' interactions (1.5 metres for 15 minutes). When considering aerosol transmission, individuals adhering to distancing measures may be at risk due to the buildup of airborne virus in the environment when infected individuals spend prolonged time indoors. In our restaurant case, guests seated at tables near infected individuals were at limited risk of infection but could, particularly in poorly ventilated places, experience risks that surpass that of benchmark interactions. Combining interventions that target different transmission routes can aid in accumulating impact, for instance by combining ventilation with face masks. The impact of such combined interventions depends on the relative importance of transmission routes, which is hard to disentangle and highly context dependent. This uncertainty should be considered when assessing transmission risks upon different types of human interactions in indoor spaces. We illustrated the multi-dimensionality of indoor SARS-CoV-2 transmission that emerges from the interplay of human behaviour and the spread of respiratory viruses. A modelling strategy that incorporates this in risk assessments can help inform policy makers and citizens on the safe use of indoor spaces with varying inter-human interactions.


Subject(s)
COVID-19 , Pedestrians , Humans , SARS-CoV-2 , COVID-19/prevention & control , Respiratory Aerosols and Droplets , Ventilation
17.
Environ Sci Technol ; 58(11): 5058-5067, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38445590

ABSTRACT

In new buildings, nonoccupant VOC emissions are initially high but typically decrease within months. Increased ventilation is commonly used to improve indoor air quality, assuming it speeds up VOC off-gassing from materials. However, previous research presents inconsistent results. This review introduces a simplified analytical model to understand the ventilation-emission relationship. By combining factors such as diffusivity, emitting area, and time, the model suggests the existence of a theoretical ventilation threshold beyond which enhanced ventilation has no further influence on emission rates. A threshold of approximately 0.13 L s-1 m-2 emitting area has been found for various VOCs documented in the existing literature, with which the conflicting results are explained. It is also shown that the threshold remains notably consistent across different boundary conditions and model resolutions, indicating its suitability for real-world applications.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Ventilation , Air Pollution, Indoor/analysis , Gases , Air Pollutants/analysis , Environmental Monitoring
18.
Environ Sci Pollut Res Int ; 31(15): 22308-22318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430438

ABSTRACT

This study reviews the generation and diffusion characteristics of indoor viral aerosol particles, numerical simulation methods for the diffusion process of viral aerosols, and related research on the impact mechanism of different ventilation methods on the diffusion process of viral aerosols. Research has shown that the selection of initial conditions such as exhalation mode, initial airflow velocity, particle size, turbulence model, and calculation method for the generation of aerosol particles by the human body is of great significance for the numerical simulation of the diffusion process of viral aerosol particles. At the same time, on the basis of selecting appropriate ventilation methods, the reasonable setting of ventilation parameters (temperature, speed, height, etc.) can effectively suppress the spread of viral aerosols. This study can provide a theoretical basis for the study of related respiratory diseases, as well as technical and theoretical support for the selection of indoor ventilation methods to reduce the risk of human exposure caused by viral aerosols in the construction field. It also provides guidance and reference for aerosol transport and environmental protection in indoor atmospheric environments.


Subject(s)
Air Pollution, Indoor , Respiration , Humans , Aerosols , Exhalation , Particle Size , Lung , Air Pollution, Indoor/analysis , Ventilation
19.
Sci Total Environ ; 926: 171939, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527543

ABSTRACT

Source localization is significant for mitigating indoor air pollution and safeguarding the well-being and safety of occupants. While most study focuses on mechanical ventilation and static sources, this study explores the less-explored domain of locating time-varying sources in naturally ventilated spaces. We have developed an innovative 3D localization system that adjusts to varying heights, significantly enhancing capabilities beyond traditional fixed-height 2D systems. To ensure consistency in experimental conditions, we conducted comparative analyses of 2D and 3D methods, using a swinging fan to simulate natural ventilation. Our findings reveal a substantial disparity in performance: the 2D method had a success rate below 46.7% in cases of height mismatches, while our 3D methods consistently achieved success rates above 66.7%, demonstrating their superior effectiveness in complex environments. Furthermore, we validated the 3D strategies in real naturally ventilated settings, confirming their wider applicability. This research extends the scope of indoor source localization and offers valuable insights and strategies for more effective pollution control.


Subject(s)
Air Pollution, Indoor , Robotics , Smell , Ventilation/methods , Air Pollution, Indoor/analysis
20.
J Hosp Infect ; 148: 1-10, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447806

ABSTRACT

BACKGROUND: Many UK hospitals rely heavily on natural ventilation as their main source of airflow in patient wards. This method of ventilation can have cost and energy benefits, but it may lead to unpredictable flow patterns between indoor spaces, potentially leading to the unexpected transport of infectious material to other connecting zones. However, the effects of weather conditions on airborne transmission are often overlooked. METHODS: A multi-zone CONTAM model of a naturally ventilated hospital respiratory ward, incorporating time-varying weather, was proposed. Coupling this with an airborne infection model, this study assessed the variable risk in interconnected spaces, focusing particularly on occupancy, disease and ventilation scenarios based on a UK respiratory ward. RESULTS: The results suggest that natural ventilation with varying weather conditions can cause irregularities in the ventilation rates and interzonal flow rates of connected zones, leading to infrequent but high peaks in the concentration of airborne pathogens in particular rooms. This transient behaviour increases the risk of airborne infection, particularly through movement of pathogens between rooms, and highlights that large outbreaks may be more likely under certain conditions. This study demonstrated how ventilation rates achieved by natural ventilation are likely to fall below the recommended guidance, and that the implementation of supplemental mechanical ventilation can increase ventilation rates and reduce the variability in infection risks. CONCLUSION: This model emphasises the need for consideration of transient external conditions when assessing the risk of transmission of airborne infection in indoor environments.


Subject(s)
Air Microbiology , Cross Infection , Hospitals , Ventilation , Weather , Humans , Cross Infection/transmission , United Kingdom/epidemiology , Air Pollution, Indoor , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...