Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.587
Filter
1.
Nat Commun ; 15(1): 4152, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755120

ABSTRACT

Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.


Subject(s)
Dorsal Raphe Nucleus , Optogenetics , Serotonergic Neurons , Serotonin , Animals , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/physiology , Male , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Mice , Serotonin/metabolism , Magnetic Resonance Imaging , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Mice, Inbred C57BL , Brain/metabolism , Brain/physiology , Ventral Tegmental Area/physiology , Ventral Tegmental Area/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics
2.
Nat Commun ; 15(1): 4233, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762463

ABSTRACT

The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.


Subject(s)
Avoidance Learning , Basal Forebrain , GABAergic Neurons , Glutamic Acid , Reward , Ventral Tegmental Area , Ventral Tegmental Area/physiology , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/cytology , Animals , Glutamic Acid/metabolism , Basal Forebrain/metabolism , Basal Forebrain/physiology , Male , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Avoidance Learning/physiology , Mice , Dopamine/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/cytology , Nucleus Accumbens/physiology , Neurons/metabolism , Neurons/physiology , gamma-Aminobutyric Acid/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Mice, Inbred C57BL , Behavior, Animal/physiology
3.
Nature ; 630(8015): 141-148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778097

ABSTRACT

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.


Subject(s)
Dopaminergic Neurons , Fentanyl , Nucleus Accumbens , Receptors, Opioid, mu , Reinforcement, Psychology , Substance Withdrawal Syndrome , Ventral Tegmental Area , Animals , Fentanyl/pharmacology , Receptors, Opioid, mu/metabolism , Mice , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiology , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Substance Withdrawal Syndrome/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Dopamine/metabolism , Optogenetics , Central Amygdaloid Nucleus/metabolism , Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/physiology , Female , Mice, Inbred C57BL , Opioid-Related Disorders/metabolism , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage
4.
Nat Commun ; 15(1): 4100, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773091

ABSTRACT

In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.


Subject(s)
Dopamine , Dopaminergic Neurons , Hippocampus , Learning , Long-Term Potentiation , Optogenetics , Ventral Tegmental Area , Animals , Long-Term Potentiation/physiology , Ventral Tegmental Area/physiology , Male , Dopamine/metabolism , Mice , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Hippocampus/physiology , Hippocampus/metabolism , Learning/physiology , Mice, Transgenic , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Synapses/physiology , Synapses/metabolism , Mice, Inbred C57BL , Memory/physiology
5.
Neurobiol Learn Mem ; 212: 107930, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692391

ABSTRACT

Positive social comparative feedback is hypothesized to generate a dopamine response in the brain, similar to reward, by enhancing expectancies to support motor skill learning. However, no studies have utilized neuroimaging to examine this hypothesized dopaminergic mechanism. Therefore, the aim of this preliminary study was to investigate the effect of positive social comparative feedback on dopaminergic neural pathways measured by resting state connectivity. Thirty individuals practiced an implicit, motor sequence learning task and were assigned to groups that differed in feedback type. One group received feedback about their actual response time to complete the task (RT ONLY), while the other group received feedback about their response time with positive social comparison (RT + POS). Magnetic resonance imaging was acquired at the beginning and end of repetitive motor practice with feedback to measure practice-dependent changes in resting state brain connectivity. While both groups showed improvements in task performance and increases in performance expectancies, ventral tegmental area and the left nucleus accumbens (mesolimbic dopamine pathway) resting state connectivity increased in the RT + POS group but not in the RT ONLY group. Instead, the RT ONLY group showed increased connectivity between ventral tegmental area and primary motor cortex. Positive social comparative feedback during practice of a motor sequence task may induce a dopaminergic response in the brain along the mesolimbic pathway. However, given that absence of effects on expectancies and motor learning, more robust and individualized approaches may be needed to provide beneficial psychological and behavioral effects.


Subject(s)
Magnetic Resonance Imaging , Neural Pathways , Nucleus Accumbens , Ventral Tegmental Area , Humans , Male , Female , Young Adult , Adult , Ventral Tegmental Area/physiology , Ventral Tegmental Area/diagnostic imaging , Neural Pathways/physiology , Nucleus Accumbens/physiology , Nucleus Accumbens/diagnostic imaging , Dopamine/metabolism , Dopamine/physiology , Feedback, Psychological/physiology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Brain/physiology , Brain/diagnostic imaging , Motor Skills/physiology , Practice, Psychological
6.
Article in English | MEDLINE | ID: mdl-38557630

ABSTRACT

There is widespread interest and concern about the evidence and hypothesis that the auditory system is involved in ultrasound neuromodulation. We have addressed this problem by performing acoustic shear wave simulations in mouse skull and behavioral experiments in deaf mice. The simulation results showed that shear waves propagating along the skull did not reach sufficient acoustic pressure in the auditory cortex to modulate neurons. Behavioral experiments were subsequently performed to awaken anesthetized mice with ultrasound targeting the motor cortex or ventral tegmental area (VTA). The experimental results showed that ultrasound stimulation (US) of the target areas significantly increased arousal scores even in deaf mice, whereas the loss of ultrasound gel abolished the effect. Immunofluorescence staining also showed that ultrasound can modulate neurons in the target area, whereas neurons in the auditory cortex required the involvement of the normal auditory system for activation. In summary, the shear waves propagating along the skull cannot reach the auditory cortex and induce neuronal activation. Ultrasound neuromodulation-induced arousal behavior needs direct action on functionally relevant stimulation targets in the absence of auditory system participation.


Subject(s)
Skull , Animals , Mice , Skull/diagnostic imaging , Skull/physiology , Auditory Cortex/physiology , Auditory Cortex/diagnostic imaging , Ultrasonic Waves , Ventral Tegmental Area/physiology , Ventral Tegmental Area/diagnostic imaging , Ventral Tegmental Area/radiation effects , Mice, Inbred C57BL , Male
7.
Nat Commun ; 15(1): 3525, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664445

ABSTRACT

Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.


Subject(s)
Hydrogels , Mice, Transgenic , Optogenetics , Polymers , Polyvinyl Alcohol , Animals , Polyvinyl Alcohol/chemistry , Mice , Hydrogels/chemistry , Optogenetics/methods , Polymers/chemistry , Nanotubes, Carbon/chemistry , Ventral Tegmental Area/physiology , Microelectrodes , Male , Channelrhodopsins/metabolism , Channelrhodopsins/chemistry , Channelrhodopsins/genetics
8.
Eur J Neurosci ; 59(10): 2522-2534, 2024 May.
Article in English | MEDLINE | ID: mdl-38650479

ABSTRACT

Dopamine neurons signal the salience of environmental stimuli and influence learning, although it is less clear if these neurons also determine the salience of memories. Ventral tegmental area (VTA) dopamine neurons increase their firing in the presence of new objects and reduce it upon repeated, inconsequential exposures, marking the shift from novelty to familiarity. This study investigates how dopamine neuron activity during repeated familiar object exposure affects an animal's preference for new objects in a subsequent novel object recognition (NOR) test. We hypothesize that a single familiarization session will not sufficiently lower dopamine activity, such that the memory of a familiar object remains salient, leading to equal exploration of familiar and novel objects and weaker NOR discrimination. In contrast, multiple familiarization sessions likely suppress dopamine activity more effectively, reducing the salience of the familiar object and enhancing subsequent novelty discrimination. Our experiments in mice indicated that multiple familiarization sessions reduce VTA dopamine neuron activation, as measured by c-Fos expression, and enhance novelty discrimination compared with a single familiarization session. Dopamine neurons that show responsiveness to novelty were primarily located in the paranigral nucleus of the VTA and expressed vesicular glutamate transporter 2 transcripts, marking them as dopamine-glutamate neurons. Chemogenetic inhibition of dopamine neurons during a single session paralleled the effects of multiple sessions, improving NOR. These findings suggest that a critical role of dopamine neurons during the transition from novelty to familiarity is to modulate the salience of an object's memory.


Subject(s)
Dopaminergic Neurons , Mice, Inbred C57BL , Recognition, Psychology , Ventral Tegmental Area , Animals , Recognition, Psychology/physiology , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Ventral Tegmental Area/physiology , Mice , Male , Proto-Oncogene Proteins c-fos/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics
9.
Neuroscience ; 547: 56-73, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38636897

ABSTRACT

Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area generally respond to aversive stimuli or the absence of expected rewards with transient inhibition of firing rates, which can be recapitulated with activation of the lateral habenula (LHb) and eliminated by lesioning the intermediating rostromedial tegmental nucleus (RMTg). However, a minority of DA neurons respond to aversive stimuli, such as foot shock, with a transient increase in firing rate, an outcome that rarely occurs with LHb stimulation. The degree to which individual neurons respond to these two stimulation modalities with the same response phenotype and the role of the RMTg is not known. Here, we record responses from single SN DA neurons to alternating activation of the LHb and foot shock in male rats. Lesions of the RMTg resulted in a shift away from inhibition to no response during both foot shock and LHb stimulation. Furthermore, lesions unmasked an excitatory response during LHb stimulation. The response correspondence within the same neuron between the two activation sources was no different from chance in sham controls, suggesting that external inputs rather than intrinsic DA neuronal properties are more important to response outcome. These findings contribute to a literature that shows a complex neurocircuitry underlies the regulation of DA activity and, by extension, behaviors related to learning, anhedonia, and cognition.


Subject(s)
Dopaminergic Neurons , Habenula , Substantia Nigra , Animals , Male , Habenula/physiology , Dopaminergic Neurons/physiology , Substantia Nigra/physiology , Electroshock , Action Potentials/physiology , Rats , Electric Stimulation , Rats, Sprague-Dawley , Ventral Tegmental Area/physiology
10.
Elife ; 122024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567902

ABSTRACT

Dopamine and orexins (hypocretins) play important roles in regulating reward-seeking behaviors. It is known that hypothalamic orexinergic neurons project to dopamine neurons in the ventral tegmental area (VTA), where they can stimulate dopaminergic neuronal activity. Although there are reciprocal connections between dopaminergic and orexinergic systems, whether and how dopamine regulates the activity of orexin neurons is currently not known. Here we implemented an opto-Pavlovian task in which mice learn to associate a sensory cue with optogenetic dopamine neuron stimulation to investigate the relationship between dopamine release and orexin neuron activity in the lateral hypothalamus (LH). We found that dopamine release can be evoked in LH upon optogenetic stimulation of VTA dopamine neurons and is also naturally evoked by cue presentation after opto-Pavlovian learning. Furthermore, orexin neuron activity could also be upregulated by local stimulation of dopaminergic terminals in the LH in a way that is partially dependent on dopamine D2 receptors (DRD2). Our results reveal previously unknown orexinergic coding of reward expectation and unveil an orexin-regulatory axis mediated by local dopamine inputs in the LH.


Subject(s)
Hypothalamic Area, Lateral , Ventral Tegmental Area , Mice , Animals , Orexins , Ventral Tegmental Area/physiology , Dopamine , Receptors, Dopamine D2 , Dopaminergic Neurons , Reward
11.
Article in English | MEDLINE | ID: mdl-38498742

ABSTRACT

Depression is one of the most serious mental disorders affecting modern human life and is often caused by chronic stress. Dopamine system dysfunction is proposed to contribute to the pathophysiology of chronic stress, especially the ventral tegmental area (VTA) which mainly consists of dopaminergic neurons. Focused ultrasound stimulation (FUS) is a promising neuromodulation modality and multiple studies have demonstrated effective ultrasonic activation of cortical, subcortical, and related networks. However, the effects of FUS on the dopamine system and the potential link to chronic stress-induced depressive behaviors are relatively unknown. Here, we measured the effects of FUS targeting VTA on the improvement of depression-like behavior and evaluated the dopamine concentration in the downstream region - medial prefrontal cortex (mPFC). We found that targeting VTA FUS treatment alleviated chronic restraint stress (CRS) -induced anhedonia and despair behavior. Using an in vivo photometry approach, we analyzed the dopamine signal of mPFC and revealed a significant increase following the FUS, positively associated with the improvement of anhedonia behavior. FUS also protected the dopaminergic neurons in VTA from the damage caused by CRS exposure. Thus, these results demonstrated that targeting VTA FUS treatment significantly rescued the depressive-like behavior and declined dopamine level of mPFC induced by CRS. These beneficial effects of FUS might be due to protection in the DA neuron of VTA. Our findings suggest that FUS treatment could serve as a new therapeutic strategy for the treatment of stress-related disorders.


Subject(s)
Anhedonia , Dopamine , Humans , Prefrontal Cortex/physiology , Ventral Tegmental Area/physiology , Neurons/physiology , Dopaminergic Neurons/physiology
12.
Sci Rep ; 14(1): 6363, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493169

ABSTRACT

Inhibition is implicated across virtually all human experiences. As a trade-off of being very efficient, this executive function is also prone to many errors. Rodent and computational studies show that midbrain regions play crucial roles during errors by sending dopaminergic learning signals to the basal ganglia for behavioural adjustment. However, the parallels between animal and human neural anatomy and function are not determined. We scanned human adults while they performed an fMRI inhibitory task requiring trial-and-error learning. Guided by an actor-critic model, our results implicate the dorsal striatum and the ventral tegmental area as the actor and the critic, respectively. Using a multilevel and dimensional approach, we also demonstrate a link between midbrain and striatum circuit activity, inhibitory performance, and self-reported autistic and obsessive-compulsive subclinical traits.


Subject(s)
Learning , Ventral Tegmental Area , Adult , Animals , Humans , Ventral Tegmental Area/physiology , Learning/physiology , Basal Ganglia , Corpus Striatum/physiology , Neural Inhibition
13.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38485256

ABSTRACT

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Subject(s)
Basal Forebrain , Cocaine , Neural Pathways , Reward , Animals , Mice , Basal Forebrain/physiology , Male , Cocaine/pharmacology , Cocaine/administration & dosage , Female , Neural Pathways/physiology , Mice, Inbred C57BL , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Ventral Tegmental Area/physiology , Ventral Tegmental Area/cytology
14.
Neuroscience ; 548: 50-68, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38513762

ABSTRACT

The functional dichotomy of anatomical regions of the medial prefrontal cortex (mPFC) has been tested with greater certainty in punishment-driven tasks, and less so in reward-oriented paradigms. In the infralimbic cortex (IL), known for behavioral suppression (STOP), tasks linked with reward or punishment are encoded through firing rate decrease or increase, respectively. Although the ventral tegmental area (VTA) is the brain region governing reward/aversion learning, the link between its excitatory neuron population and IL encoding of reward-linked behavioral expression is unclear. Here, we present evidence that IL ensembles use a population-based mechanism involving broad inhibition of principal cells at intervals when reward is presented or expected. The IL encoding mechanism was consistent across multiple sessions with randomized rewarded target sites. Most IL neurons exhibit FR (Firing Rate) suppression during reward acquisition intervals (T1), and subsequent exploration of previously rewarded targets when the reward is omitted (T2). Furthermore, FR suppression in putative IL ensembles persisted for intervals that followed reward-linked target events. Pairing VTA glutamate inhibition with reward acquisition events reduced the weight of reward-target association expressed as a lower affinity for previously rewarded targets. For these intervals, fewer IL neurons per mouse trial showed FR decrease and were accompanied by an increase in the percentage of units with no change in FR. Together, we conclude that VTA glutamate neurons are likely involved in establishing IL inhibition states that encode reward acquisition, and subsequent reward-target association.


Subject(s)
Neurons , Reward , Ventral Tegmental Area , Ventral Tegmental Area/physiology , Animals , Male , Neurons/physiology , Action Potentials/physiology , Mice, Inbred C57BL , Prefrontal Cortex/physiology , Mice , Glutamic Acid/metabolism
15.
Neuron ; 112(6): 1020-1032.e7, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38266645

ABSTRACT

To survive, animals need to balance their exploratory drive with their need for safety. Subcortical circuits play an important role in initiating and modulating movement based on external demands and the internal state of the animal; however, how motivation and onset of locomotion are regulated remain largely unresolved. Here, we show that a glutamatergic pathway from the medial septum and diagonal band of Broca (MSDB) to the ventral tegmental area (VTA) controls exploratory locomotor behavior in mice. Using a self-supervised machine learning approach, we found an overrepresentation of exploratory actions, such as sniffing, whisking, and rearing, when this projection is optogenetically activated. Mechanistically, this role relies on glutamatergic MSDB projections that monosynaptically target a subset of both glutamatergic and dopaminergic VTA neurons. Taken together, we identified a glutamatergic basal forebrain to midbrain circuit that initiates locomotor activity and contributes to the expression of exploration-associated behavior.


Subject(s)
Exploratory Behavior , Ventral Tegmental Area , Mice , Animals , Ventral Tegmental Area/physiology , Dopaminergic Neurons/metabolism , Motivation
16.
J Neurosci ; 44(11)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38267258

ABSTRACT

Phosphoinositides, including phosphatidylinositol-4,5-bisphosphate (PIP2), play a crucial role in controlling key cellular functions such as membrane and vesicle trafficking, ion channel, and transporter activity. Phosphatidylinositol 4-kinases (PI4K) are essential enzymes in regulating the turnover of phosphoinositides. However, the functional role of PI4Ks and mediated phosphoinositide metabolism in the central nervous system has not been fully revealed. In this study, we demonstrated that PI4KIIIß, one of the four members of PI4Ks, is an important regulator of VTA dopaminergic neuronal activity and related depression-like behavior of mice by controlling phosphoinositide turnover. Our findings provide new insights into possible mechanisms and potential drug targets for neuropsychiatric diseases, including depression. Both sexes were studied in basic behavior tests, but only male mice could be used in the social defeat depression model.


Subject(s)
Dopaminergic Neurons , Ventral Tegmental Area , Female , Mice , Male , Animals , Dopaminergic Neurons/physiology , Ventral Tegmental Area/physiology , Depression , Phosphatidylinositols/metabolism , Central Nervous System
17.
Neuron ; 112(6): 1001-1019.e6, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38278147

ABSTRACT

Midbrain dopamine neurons are thought to signal reward prediction errors (RPEs), but the mechanisms underlying RPE computation, particularly the contributions of different neurotransmitters, remain poorly understood. Here, we used a genetically encoded glutamate sensor to examine the pattern of glutamate inputs to dopamine neurons in mice. We found that glutamate inputs exhibit virtually all of the characteristics of RPE rather than conveying a specific component of RPE computation, such as reward or expectation. Notably, whereas glutamate inputs were transiently inhibited by reward omission, they were excited by aversive stimuli. Opioid analgesics altered dopamine negative responses to aversive stimuli into more positive responses, whereas excitatory responses of glutamate inputs remained unchanged. Our findings uncover previously unknown synaptic mechanisms underlying RPE computations; dopamine responses are shaped by both synergistic and competitive interactions between glutamatergic and GABAergic inputs to dopamine neurons depending on valences, with competitive interactions playing a role in responses to aversive stimuli.


Subject(s)
Dopaminergic Neurons , Glutamic Acid , Mice , Animals , Dopaminergic Neurons/physiology , Dopamine/physiology , Reward , Mesencephalon , Ventral Tegmental Area/physiology
18.
J Neurosci ; 44(5)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296649

ABSTRACT

The mesolimbic dopamine system is a crucial component of reward and reinforcement processing, including the psychotropic effects of drugs of abuse such as cocaine. Drugs of abuse can activate intracellular signaling cascades that engender long-term molecular changes to brain reward circuitry, which can promote further drug use. However, gaps remain about how the activity of these signaling pathways, such as ERK1/2 signaling, can affect cocaine-induced neurochemical plasticity and cocaine-associated behaviors specifically within dopaminergic cells. To enable specific modulation of ERK1/2 signaling in dopaminergic neurons of the ventral tegmental area, we utilize a viral construct that Cre dependently expresses Map kinase phosphatase 3 (MKP3) to reduce the activity of ERK1/2, in combination with transgenic rats that express Cre in tyrosine hydroxylase (TH)-positive cells. Following viral transfection, we found an increase in the surface expression of the dopamine transporter (DAT), a protein associated with the regulation of dopamine signaling, dopamine transmission, and cocaine-associated behavior. We found that inactivation of ERK1/2 reduced post-translational phosphorylation of the DAT, attenuated the ability of cocaine to inhibit the DAT, and decreased motivation for cocaine without affecting associative learning as tested by conditioned place preference. Together, these results indicate that ERK1/2 signaling plays a critical role in shaping the dopamine response to cocaine and may provide additional insights into the function of dopaminergic neurons. Further, these findings lay important groundwork toward the assessment of how signaling pathways and their downstream effectors influence dopamine transmission and could ultimately provide therapeutic targets for treating cocaine use disorders.


Subject(s)
Cocaine , Dopamine , Rats , Animals , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Motivation , MAP Kinase Signaling System , Dual Specificity Phosphatase 6/metabolism , Cocaine/pharmacology , Ventral Tegmental Area/physiology , Reward , Rats, Transgenic
19.
Eur J Neurosci ; 59(7): 1536-1557, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38233998

ABSTRACT

For a long time, it has been assumed that dopaminergic (DA) neurons in both the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) uniformly respond to rewarding and aversive stimuli by either increasing or decreasing their activity, respectively. This response was believed to signal information about the perceived stimuli's values. The identification of VTA&SNc DA neurons that are excited by both rewarding and aversive stimuli has led to the categorisation of VTA&SNc DA neurons into two subpopulations: one signalling the value and the other signalling the salience of the stimuli. It has been shown that the general state of the brain can modulate the electrical activity of VTA&SNc DA neurons, but it remains unknown whether this factor may also influence responses to aversive stimuli, such as a footshock (FS). To address this question, we have recorded the responses of VTA&SNc DA neurons to FSs across cortical activation and slow wave activity brain states in urethane-anaesthetised rats. Adding to the knowledge of aversion signalling by midbrain DA neurons, we report that significant proportion of VTA&SNc DA neurons can change their responses to an aversive stimulus in a brain state-dependent manner. The majority of these neurons decreased their activity in response to FS during cortical activation but switched to increasing it during slow wave activity. It can be hypothesised that this subpopulation of DA neurons may be involved in the 'dual signalling' of both the value and the salience of the stimuli, depending on the general state of the brain.


Subject(s)
Anesthesia , Dopaminergic Neurons , Rats , Animals , Urethane/pharmacology , Substantia Nigra/physiology , Mesencephalon , Ventral Tegmental Area/physiology , Anesthetics, Intravenous
20.
Eur Arch Psychiatry Clin Neurosci ; 274(4): 867-878, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38236282

ABSTRACT

A number of different receptors are distributed in glutamatergic neurons of the lateral habenula (LHb). These glutamatergic neurons are involved in different neural pathways, which may identify how the LHb regulates various physiological functions. However, the role of dopamine D1 receptor (D1R)-expressing habenular neurons projecting to the ventral tegmental area (VTA) (LHbD1R-VTA) remains not well understood. In the current study, to determine the activity of D1R-expressing neurons in LHb, D1R-Cre mice were used to establish the chronic restraint stress (CRS) depression model. Adeno-associated virus was injected into bilateral LHb in D1R-Cre mice to examine whether optogenetic activation of the LHb D1R-expressing neurons and their projections could induce depression-like behavior. Optical fibers were implanted in the LHb and VTA, respectively. To investigate whether optogenetic inhibition of the LHbD1R-VTA circuit could produce antidepressant-like effects, the adeno-associated virus was injected into the bilateral LHb in the D1R-Cre CRS model, and optical fibers were implanted in the bilateral VTA. The D1R-expressing neuronal activity in the LHb was increased in the CRS depression model. Optogenetic activation of the D1R-expressing neurons in LHb induced behavioral despair and anhedonia, which could also be induced by activation of the LHbD1R-VTA axons. Conversely, optogenetic inhibition of the LHbD1R-VTA circuit improved behavioral despair and anhedonia in the CRS depression model. D1R-expressing glutamatergic neurons in the LHb and their projections to the VTA are involved in the occurrence and regulation of depressive-like behavior.


Subject(s)
Depression , Disease Models, Animal , Habenula , Neural Pathways , Optogenetics , Receptors, Dopamine D1 , Ventral Tegmental Area , Animals , Ventral Tegmental Area/physiopathology , Ventral Tegmental Area/physiology , Habenula/physiology , Mice , Male , Receptors, Dopamine D1/metabolism , Depression/physiopathology , Depression/etiology , Neural Pathways/physiopathology , Mice, Transgenic , Stress, Psychological/physiopathology , Mice, Inbred C57BL , Restraint, Physical , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...