Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(40): 24998-25007, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958643

ABSTRACT

Infections elicit immune adaptations to enable pathogen resistance and/or tolerance and are associated with compositional shifts of the intestinal microbiome. However, a comprehensive understanding of how infections with pathogens that exhibit distinct capability to spread and/or persist differentially change the microbiome, the underlying mechanisms, and the relative contribution of individual commensal species to immune cell adaptations is still lacking. Here, we discovered that mouse infection with a fast-spreading and persistent (but not a slow-spreading acute) isolate of lymphocytic choriomeningitis virus induced large-scale microbiome shifts characterized by increased Verrucomicrobia and reduced Firmicute/Bacteroidetes ratio. Remarkably, the most profound microbiome changes occurred transiently after infection with the fast-spreading persistent isolate, were uncoupled from sustained viral loads, and were instead largely caused by CD8 T cell responses and/or CD8 T cell-induced anorexia. Among the taxa enriched by infection with the fast-spreading virus, Akkermansia muciniphila, broadly regarded as a beneficial commensal, bloomed upon starvation and in a CD8 T cell-dependent manner. Strikingly, oral administration of A. muciniphila suppressed selected effector features of CD8 T cells in the context of both infections. Our findings define unique microbiome differences after chronic versus acute viral infections and identify CD8 T cell responses and downstream anorexia as driver mechanisms of microbial dysbiosis after infection with a fast-spreading virus. Our data also highlight potential context-dependent effects of probiotics and suggest a model in which changes in host behavior and downstream microbiome dysbiosis may constitute a previously unrecognized negative feedback loop that contributes to CD8 T cell adaptations after infections with fast-spreading and/or persistent pathogens.


Subject(s)
Anorexia/immunology , CD8 Antigens/immunology , Immunologic Memory/immunology , Lymphocytic Choriomeningitis/immunology , Virus Diseases/immunology , Akkermansia , Animals , Anorexia/microbiology , Anorexia/virology , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Dysbiosis/immunology , Dysbiosis/microbiology , Dysbiosis/virology , Firmicutes/immunology , Firmicutes/metabolism , Gastrointestinal Microbiome/immunology , Humans , Lymphocytic Choriomeningitis/microbiology , Lymphocytic Choriomeningitis/pathology , Lymphocytic choriomeningitis virus/pathogenicity , Mice , T-Lymphocytes/immunology , T-Lymphocytes/microbiology , Verrucomicrobia/immunology , Verrucomicrobia/pathogenicity , Virus Diseases/microbiology , Virus Diseases/pathology
2.
Sci Rep ; 9(1): 15683, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666581

ABSTRACT

Akkermansia muciniphila utilises colonic mucin as its substrate. Abundance is reduced in ulcerative colitis (UC), as is the relative proportion of sulphated mucin in the mucus gel layer (MGL). It is unknown if these phenomena are related, however reduced sulphated mucins could contribute to reduced abundance, owing to a lack of substrate. The aim of this study was to quantify A. muciniphila within the MGL and to relate these findings with markers of inflammation and the relative proportion of sulphomucin present. Colonic biopsies and mucus brushings were obtained from 20 patients with active UC (AC), 14 with quiescent UC (QUC) and 20 healthy controls (HC). A. muciniphila abundance was determined by RT-PCR. High iron diamine alcian-blue staining was performed for histological analysis. Patients with AC had reduced abundance of A. muciniphila compared to HC and QUC. A positive association was found between A. muciniphila abundance and higher percentage of sulphated mucin (ρ 0.546, p = 0.000). Lower abundances of A. muciniphila correlated with higher inflammatory scores (ρ = 0.294 (p = 0.001)). This study confirms an inverse relationship between A. muciniphila and inflammation and a positive association between A. muciniphila abundance and percentage of sulfated mucin in the MGL.


Subject(s)
Colitis, Ulcerative/microbiology , Inflammation/genetics , Mucins/metabolism , Verrucomicrobia/metabolism , Adolescent , Adult , Akkermansia , Biopsy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/microbiology , Female , Healthy Volunteers , Humans , Inflammation/metabolism , Inflammation/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestines/microbiology , Male , Middle Aged , Mucins/isolation & purification , Mucus/metabolism , Mucus/microbiology , Verrucomicrobia/pathogenicity , Young Adult
3.
Biomolecules ; 9(9)2019 09 01.
Article in English | MEDLINE | ID: mdl-31480575

ABSTRACT

A high-fat diet-induced C57BL/6N mouse model of non-alcoholic fatty liver disease (NAFLD) was established. The effect and mechanism of Raw Bowl Tea polyphenols (RBTP) on preventing NAFLD via regulating intestinal function were observed. The serum, liver, epididymis, small intestine tissues, and feces of mice were examined by biochemical and molecular biological methods, and the composition of RBTP was analyzed by HPLC assay. The results showed that RBTP could effectively reduce the body weight, liver weight, and liver index of NAFLD mice. The serum effects of RBTP were: (1) decreases in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), D-lactate (D-LA), diamine oxidase (DAO), lipopolysaccharide (LPS), and an increase of high density lipoprotein cholesterol (HDL-C) levels; (2) a decrease of inflammatory cytokines such as interleukin 1 beta (IL-1ß), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor alpha (TNF-α), and interferon gamma (INF-γ); (3) a decrease the reactive oxygen species (ROS) level in liver tissue; and (4) alleviation of pathological injuries of liver, epididymis, and small intestinal tissues caused by NAFLD and protection of body tissues. qPCR and Western blot results showed that RBTP could up-regulate the mRNA and protein expressions of LPL, PPAR-α, CYP7A1, and CPT1, and down-regulate PPAR-γ and C/EBP-α in the liver of NAFLD mice. In addition, RBTP up-regulated the expression of occludin and ZO-1, and down-regulated the expression of CD36 and TNF-α in the small intestines of NAFLD mice. Studies on mice feces showed that RBTP reduced the level of Firmicutes and increased the minimum levels of Bacteroides and Akkermansia, as well as reduced the proportion of Firmicutes/Bacteroides in the feces of NAFLD mice, which play a role in regulating intestinal microecology. Component analysis showed that RBTP contained seven polyphenolic compounds: Gallic acid, (-)-epigallocatechin, catechin, L-epicatechin, (-)-epigallocatechin gallate, (-)-gallocatechin gallate, and (-)-epicatechin gallate (ECG), and high levels of caffeine, (-)-epigallocatechin (EGC), and ECG. RBTP improved the intestinal environment of NAFLD mice with the contained active ingredients, thus playing a role in preventing NAFLD. The effect was positively correlated with the dose of 100 mg/kg, which was even better than that of the clinical drug bezafibrate.


Subject(s)
Intestines/drug effects , Intestines/physiology , Non-alcoholic Fatty Liver Disease/prevention & control , Polyphenols/chemistry , Polyphenols/therapeutic use , Tea/chemistry , Alanine Transaminase/blood , Animals , Bacteroides/pathogenicity , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/therapeutic use , Cytokines/blood , Disease Models, Animal , Feces/microbiology , Female , Intestines/microbiology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/metabolism , Occludin/metabolism , Verrucomicrobia/pathogenicity
4.
Hepatology ; 70(4): 1168-1184, 2019 10.
Article in English | MEDLINE | ID: mdl-31004524

ABSTRACT

The mechanisms by which alterations in intestinal bile acid (BA) metabolism improve systemic glucose tolerance and hepatic metabolic homeostasis are incompletely understood. We examined metabolic adaptations in mice with conditional intestinal deletion of the abetalipoproteinemia (ABL) gene microsomal triglyceride transfer protein (Mttp-IKO), which blocks chylomicron assembly and impairs intestinal lipid transport. Mttp-IKO mice exhibit improved hepatic glucose metabolism and augmented insulin signaling, without weight loss. These adaptations included decreased BA excretion, increased pool size, altered BA composition, and increased fibroblast growth factor 15 production. Mttp-IKO mice absorb fructose normally but are protected against dietary fructose-induced hepatic steatosis, without weight loss or changes in energy expenditure. In addition, Mttp-IKO mice exhibit altered cecal microbial communities, both at baseline and following fructose feeding, including increased abundance of Bacteroides and Lactobacillus genera. Transplantation of cecal microbiota from chow-fed Mttp-IKO mice into antibiotic-treated wild-type recipients conferred transmissible protection against fructose-induced hepatic steatosis in association with a bloom in Akkermansia and increased Clostridium XIVa genera, whose abundance was positively correlated with fecal coprostanol and total neutral sterol excretion in recipient mice. However, antibiotic-treated Mttp-IKO mice were still protected against fructose-induced hepatic steatosis, suggesting that changes in microbiota are not required for this phenotype. Nevertheless, we found increased abundance of fecal Akkermansia from two adult ABL subjects with MTTP mutations compared to their heterozygous parents and within the range noted in six healthy control subjects. Furthermore, Akkermansia abundance across all subjects was positively correlated with fecal coprostanol excretion. Conclusion: The findings collectively suggest multiple adaptive pathways of metabolic regulation following blocked chylomicron assembly, including shifts in BA signaling and altered microbial composition that confer a transmissible phenotype.


Subject(s)
Adaptation, Physiological/genetics , Chylomicrons/genetics , Fatty Liver/metabolism , Gastrointestinal Microbiome/genetics , Lipid Metabolism/genetics , Akkermansia , Animals , Bile Acids and Salts/metabolism , Biological Transport/genetics , Carrier Proteins/metabolism , Disease Models, Animal , Fatty Liver/pathology , Fructose/pharmacology , Glucose Tolerance Test , Humans , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Random Allocation , Sensitivity and Specificity , Signal Transduction , Verrucomicrobia/pathogenicity
5.
Genes Immun ; 20(2): 158-166, 2019 02.
Article in English | MEDLINE | ID: mdl-29599513

ABSTRACT

Studies have identified abnormalities in the microbiota of patients with arthritis. To evaluate the pathogenicity of human microbiota, we performed fecal microbial transplantation from children with spondyloarthritis and controls to germ-free KRN/B6xNOD mice. Ankle swelling was equivalent in those that received patient vs. control microbiota. Principal coordinates analysis revealed incomplete uptake of the human microbiota with over-representation of two genera (Bacteroides and Akkermansia) among the transplanted mice. The microbiota predicted the extent of ankle swelling (R2 = 0.185, p = 0.018). The abundances of Bacteroides (r = -0.510, p = 0.010) inversely and Akkermansia (r = 0.367, p = 0.078) directly correlated with ankle swelling. Addition of Akkermansia muciniphila to Altered Schaedler's Flora (ASF) resulted in small but statistically significant increased ankle swelling as compared to mice that received ASF alone (4.0 mm, 3.9-4.1 vs. 3.9 mm, IQR 3.6-4.0, p = 0.041), as did addition of A. muciniphila cultures to transplanted human microbiota as compared to mice that received transplanted human microbiota alone (4.5 mm, IQR 4.3-5.5 vs. 4.1 mm, IQR 3.9-4.3, p = 0.019). This study supports previous findings of an association between A. muciniphila and arthritis.


Subject(s)
Arthritis/microbiology , Gastrointestinal Microbiome , Adolescent , Animals , Ankle/pathology , Bacteroides/isolation & purification , Bacteroides/pathogenicity , Child , Female , Humans , Male , Mice , Mice, Inbred NOD , Verrucomicrobia/isolation & purification , Verrucomicrobia/pathogenicity
6.
PLoS One ; 12(3): e0173004, 2017.
Article in English | MEDLINE | ID: mdl-28249045

ABSTRACT

Gut barrier function is key in maintaining a balanced response between the host and its microbiome. The microbiota can modulate changes in gut barrier as well as metabolic and inflammatory responses. This highly complex system involves numerous microbiota-derived factors. The gut symbiont Akkermansia muciniphila is positively correlated with a lean phenotype, reduced body weight gain, amelioration of metabolic responses and restoration of gut barrier function by modulation of mucus layer thickness. However, the molecular mechanisms behind its metabolic and immunological regulatory properties are unexplored. Herein, we identify a highly abundant outer membrane pili-like protein of A. muciniphila MucT that is directly involved in immune regulation and enhancement of trans-epithelial resistance. The purified Amuc_1100 protein and enrichments containing all its associated proteins induced production of specific cytokines through activation of Toll-like receptor (TLR) 2 and TLR4. This mainly leads to high levels of IL-10 similar to those induced by the other beneficial immune suppressive microorganisms such as Faecalibacterium prausnitzii A2-165 and Lactobacillus plantarum WCFS1. Together these results indicate that outer membrane protein composition and particularly the newly identified highly abundant pili-like protein Amuc_1100 of A. muciniphila are involved in host immunological homeostasis at the gut mucosa, and improvement of gut barrier function.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Intestinal Mucosa/immunology , Verrucomicrobia/immunology , Bacterial Outer Membrane Proteins/genetics , Cell Line , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Gastrointestinal Microbiome , Humans , Intestinal Mucosa/microbiology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Verrucomicrobia/pathogenicity
7.
Best Pract Res Clin Gastroenterol ; 31(6): 637-642, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29566906

ABSTRACT

The discovery of Akkermansia muciniphila has opened new avenues for the use of this abundant intestinal symbiont in next generation therapeutic products, as well as targeting microbiota dynamics. A. muciniphila is known to colonize the mucosal layer of the human intestine where it triggers both host metabolic and immune responses. A. muciniphila is particularly effective in increasing mucus thickness and increasing gut barrier function. As a result host metabolic markers ameliorate. The mechanism of host regulation is thought to involve the outer membrane composition, including the type IV pili of A. muciniphila, that directly signal to host immune receptors. At the same time the metabolic activity of A. muciniphila leads to the production of short chain fatty acids that are beneficial to the host and microbiota members. This contributes to host-microbiota and microbe-microbe syntrophy The mucolytic activity and metabolite production make A. muciniphila a key species in the mucus layer, stimulating beneficial mucosal microbial networks. This well studied member of the microbiota has been studied in three aspects that will be further described in this review: i) A. muciniphila characteristics and mucin adaptation, ii) its role as key species in the mucosal microbiome, and iii) its role in host health.


Subject(s)
Disease/etiology , Microbiota/immunology , Verrucomicrobia/pathogenicity , Humans , Verrucomicrobia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...