Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Front Biosci (Landmark Ed) ; 29(5): 195, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38812326

ABSTRACT

BACKGROUND: To investigate the immune responses and protection ability of ultraviolet light (UV)-inactivated recombinant vesicular stomatitis (rVSV)-based vectors that expressed a fusion protein consisting of four copies of the influenza matrix 2 protein ectodomain (tM2e) and the Dendritic Cell (DC)-targeting domain of the Ebola Glycoprotein (EΔM), (rVSV-EΔM-tM2e). METHOD: In our previous study, we demonstrated the effectiveness of rVSV-EΔM-tM2e to induce robust immune responses against influenza M2e and protect against lethal challenges from H1N1 and H3N2 strains. Here, we used UV to inactivate rVSV-EΔM-tM2e and tested its immunogenicity and protection in BALB/c mice from a mouse-adapted H1N1 influenza challenge. Using Enzyme-Linked Immunosorbent Assay (ELISA) and Antibody-Dependent Cellular Cytotoxicity (ADCC), the influenza anti-M2e immune responses specific to human, avian and swine influenza strains induced were characterized. Likewise, the specificity of the anti-M2e immune responses induced in recognizing M2e antigen on the surface of the cell was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. RESULTS: Like the live attenuated rVSV-EΔM-tM2e, the UV-inactivated rVSV-EΔM-tM2e was highly immunogenic against different influenza M2e from strains of different hosts, including human, swine, and avian, and protected against influenza H1N1 challenge in mice. The FACS analysis demonstrated that the induced immune responses can recognize influenza M2 antigens from human, swine and avian influenza strains. Moreover, the rVSV-EΔM-tM2e also induced ADCC activity against influenza M2e from different host strains. CONCLUSIONS: These findings suggest that UV-inactivated rVSV-EΔM-tM2e could be used as an inactivated vaccine against influenza viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Ultraviolet Rays , Animals , Influenza Vaccines/immunology , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Mice , Humans , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Vesiculovirus/immunology , Vesiculovirus/genetics , Vaccines, Inactivated/immunology
2.
Emerg Infect Dis ; 30(5): 1004-1008, 2024 May.
Article in English | MEDLINE | ID: mdl-38666640

ABSTRACT

We evaluated the in vitro effects of lyophilization for 2 vesicular stomatitis virus-based vaccines by using 3 stabilizing formulations and demonstrated protective immunity of lyophilized/reconstituted vaccine in guinea pigs. Lyophilization increased stability of the vaccines, but specific vesicular stomatitis virus-based vaccines will each require extensive analysis to optimize stabilizing formulations.


Subject(s)
Disease Models, Animal , Freeze Drying , Vesicular Stomatitis , Viral Vaccines , Animals , Guinea Pigs , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesicular Stomatitis/virology , Vesiculovirus/immunology , Vesiculovirus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Vaccine Efficacy , Vesicular stomatitis Indiana virus/immunology
3.
J Virol ; 96(18): e0133722, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36069551

ABSTRACT

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Combined , Vesicular Stomatitis , Amino Acids/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cricetinae , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Combined/immunology , Vaccines, Synthetic/genetics , Vesiculovirus/immunology
4.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994646

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Subject(s)
Proline , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccine Development , Vesicular Stomatitis , Viral Vaccines , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , Humans , Mice , Proline/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesicular Stomatitis/virology , Vesiculovirus/immunology , Viral Proteins/immunology , Viral Vaccines/immunology
5.
Viruses ; 14(1)2022 01 05.
Article in English | MEDLINE | ID: mdl-35062293

ABSTRACT

The physiologic function of tripartite motif protein 56 (TRIM56), a ubiquitously expressed E3 ligase classified within the large TRIM protein family, remains elusive. Gene knockdown studies have suggested TRIM56 as a positive regulator of the type I interferon (IFN-I) antiviral response elicited via the Toll-like receptor 3 (TLR3) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways, which detect and respond to danger signals-extracellular double-stranded (ds) RNA and cytosolic dsDNA, respectively. However, to what extent these pathways depend on TRIM56 in human cells is unclear. In addition, it is debatable whether TRIM56 plays a part in controlling the expression of IFN-stimulated genes (ISGs) resulting from IFN-I based antiviral treatment. In this study, we created HeLa-derived TRIM56 null cell lines by gene editing and used these cell models to comprehensively examine the impact of endogenous TRIM56 on innate antiviral responses. Our results showed that TRIM56 knockout severely undermined the upregulation of ISGs by extracellular dsRNA and that loss of TRIM56 weakened the response to cytosolic dsDNA. ISG induction and ISGylation following IFN-α stimulation, however, were not compromised by TRIM56 deletion. Using a vesicular stomatitis virus-based antiviral bioactivity assay, we demonstrated that IFN-α could efficiently establish an antiviral state in TRIM56 null cells, providing direct evidence that TRIM56 is not required for the general antiviral action of IFN-I. Altogether, these data ascertain the contributions of TRIM56 to TLR3- and cGAS-STING-dependent antiviral pathways in HeLa cells and add to our understanding of the roles this protein plays in innate immunity.


Subject(s)
DNA/immunology , Interferon-alpha/immunology , RNA, Double-Stranded/immunology , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Viruses/immunology , Animals , Chlorocebus aethiops , Cytosol/metabolism , HeLa Cells , Humans , Immunity, Innate , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Toll-Like Receptor 3/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Vero Cells , Vesiculovirus/immunology
6.
Signal Transduct Target Ther ; 7(1): 22, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075101

ABSTRACT

As a highly pathogenic human coronavirus, SARS-CoV-2 has to counteract an intricate network of antiviral host responses to establish infection and spread. The nucleic acid-induced stress response is an essential component of antiviral defense and is closely related to antiviral innate immunity. However, whether SARS-CoV-2 regulates the stress response pathway to achieve immune evasion remains elusive. In this study, SARS-CoV-2 NSP5 and N protein were found to attenuate antiviral stress granule (avSG) formation. Moreover, NSP5 and N suppressed IFN expression induced by infection of Sendai virus or transfection of a synthetic mimic of dsRNA, poly (I:C), inhibiting TBK1 and IRF3 phosphorylation, and restraining the nuclear translocalization of IRF3. Furthermore, HEK293T cells with ectopic expression of NSP5 or N protein were less resistant to vesicular stomatitis virus infection. Mechanistically, NSP5 suppressed avSG formation and disrupted RIG-I-MAVS complex to attenuate the RIG-I-mediated antiviral immunity. In contrast to the multiple targets of NSP5, the N protein specifically targeted cofactors upstream of RIG-I. The N protein interacted with G3BP1 to prevent avSG formation and to keep the cofactors G3BP1 and PACT from activating RIG-I. Additionally, the N protein also affected the recognition of dsRNA by RIG-I. This study revealed the intimate correlation between SARS-CoV-2, the stress response, and innate antiviral immunity, shedding light on the pathogenic mechanism of COVID-19.


Subject(s)
Coronavirus 3C Proteases/genetics , Coronavirus Nucleocapsid Proteins/genetics , DEAD Box Protein 58/genetics , DNA Helicases/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , RNA-Binding Proteins/genetics , Receptors, Immunologic/genetics , SARS-CoV-2/genetics , Stress Granules/genetics , Animals , Chlorocebus aethiops , Coronavirus 3C Proteases/immunology , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/immunology , DNA Helicases/immunology , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Immune Evasion , Phosphoproteins/genetics , Phosphoproteins/immunology , Poly I-C/pharmacology , Poly-ADP-Ribose Binding Proteins/immunology , Protein Binding , RNA Helicases/immunology , RNA Recognition Motif Proteins/immunology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/immunology , RNA-Binding Proteins/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Sendai virus/genetics , Sendai virus/immunology , Signal Transduction , Stress Granules/drug effects , Stress Granules/immunology , Stress Granules/virology , Vero Cells , Vesiculovirus/genetics , Vesiculovirus/immunology
7.
J Cell Biochem ; 123(2): 322-346, 2022 02.
Article in English | MEDLINE | ID: mdl-34729821

ABSTRACT

Chandipura vesiculovirus (CHPV) is a rapidly emerging pathogen responsible for causing acute encephalitis. Due to its widespread occurrence in Asian and African countries, this has become a global threat, and there is an urgent need to design an effective and nonallergenic vaccine against this pathogen. The present study aimed to develop a multi-epitope vaccine using an immunoinformatics approach. The conventional method of vaccine design involves large proteins or whole organism which leads to unnecessary antigenic load with increased chances of allergenic reactions. In addition, the process is also very time-consuming and labor-intensive. These limitations can be overcome by peptide-based vaccines comprising short immunogenic peptide fragments that can elicit highly targeted immune responses, avoiding the chances of allergenic reactions, in a relatively shorter time span. The multi-epitope vaccine constructed using CTL, HTL, and IFN-γ epitopes was able to elicit specific immune responses when exposed to the pathogen, in silico. Not only that, molecular docking and molecular dynamics simulation studies confirmed a stable interaction of the vaccine with the immune receptors. Several physicochemical analyses of the designed vaccine candidate confirmed it to be highly immunogenic and nonallergic. The computer-aided analysis performed in this study suggests that the designed multi-epitope vaccine can elicit specific immune responses and can be a potential candidate against CHPV.


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Docking Simulation , Molecular Dynamics Simulation , Vesiculovirus , Viral Vaccines , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Humans , Rhabdoviridae Infections/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology , Vesiculovirus/chemistry , Vesiculovirus/immunology , Viral Vaccines/chemistry , Viral Vaccines/immunology
8.
Front Immunol ; 12: 730483, 2021.
Article in English | MEDLINE | ID: mdl-34512666

ABSTRACT

The antiviral innate immunity is the first line of host defense against viral infection. Mitochondrial antiviral signaling protein (MAVS, also named Cardif/IPS-1/VISA) is a critical protein in RNA virus-induced antiviral signaling pathways. Our previous research suggested that E3 ubiquitin-protein ligases RING-finger protein (RNF90) negatively regulate cellular antiviral responses by targeting STING for degradation, though its role in RNA virus infection remains unknown. This study demonstrated that RNF90 negatively regulated RNA virus-triggered antiviral innate immune responses in RNF90-silenced PMA-THP1 cells, RNF90-deficient cells (including HaCaTs, MEFs, and BMDMs), and RNF90-deficient mice. However, RNF90 regulated RNA virus-triggered antiviral innate immune responses independent of STING. RNF90 promoted K48-linked ubiquitination of MAVS and its proteasome-dependent degradation, leading to the inhibition of innate immune responses. Altogether, our findings suggested a novel function and mechanism of RNF90 in antiviral innate immunity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Immunity, Innate , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Vesicular Stomatitis/metabolism , Vesiculovirus/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Chlorocebus aethiops , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , HEK293 Cells , HaCaT Cells , Host-Pathogen Interactions , Humans , Mice, Knockout , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Signal Transduction , THP-1 Cells , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Ubiquitination , Vero Cells , Vesicular Stomatitis/genetics , Vesicular Stomatitis/immunology , Vesicular Stomatitis/virology , Vesiculovirus/pathogenicity
9.
mBio ; 12(4): e0046321, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34340542

ABSTRACT

Oropouche virus (OROV) infection of humans is associated with a debilitating febrile illness that can progress to meningitis or encephalitis. First isolated from a forest worker in Trinidad and Tobago in 1955, the arbovirus OROV has since been detected throughout the Amazon basin with an estimated 500,000 human infections over 60 years. Like other members of the family Peribunyaviridae, the viral genome exists as 3 single-stranded negative-sense RNA segments. The medium-sized segment encodes a viral glycoprotein complex (GPC) that is proteolytically processed into two viral envelope proteins, Gn and Gc, responsible for attachment and membrane fusion. There are no therapeutics or vaccines to combat OROV infection, and we have little understanding of protective immunity to infection. Here, we generated a replication competent chimeric vesicular stomatitis virus (VSV), in which the endogenous glycoprotein was replaced by the GPC of OROV. Serum from mice immunized by intramuscular injection with VSV-OROV specifically neutralized wild-type OROV, and using peptide arrays we mapped multiple epitopes within an N-terminal variable region of Gc recognized by the immune sera. VSV-OROV lacking this variable region of Gc was also immunogenic in mice producing neutralizing sera that recognize additional regions of Gc. Challenge of both sets of immunized mice with wild-type OROV shows that the VSV-OROV chimeras reduce wild-type viral infection and suggest that antibodies that recognize the variable N terminus of Gc afford less protection than those that target more conserved regions of Gc. IMPORTANCE Oropouche virus (OROV), an orthobunyavirus found in Central and South America, is an emerging public health challenge that causes debilitating febrile illness. OROV is transmitted by arthropods, and increasing mobilization has the potential to significantly increase the spread of OROV globally. Despite this, no therapeutics or vaccines have been developed to combat infection. Using vesicular stomatitis (VSV) as a backbone, we developed a chimeric virus bearing the OROV glycoproteins (VSV-OROV) and tested its ability to elicit a neutralizing antibody response. Our results demonstrate that VSV-OROV produces a strong neutralizing antibody response that is at least partially targeted to the N-terminal region of Gc. Importantly, vaccination with VSV-OROV reduces viral loads in mice challenged with wild-type virus. These data provide novel evidence that targeting the OROV glycoproteins may be an effective vaccination strategy to combat OROV infection.


Subject(s)
Bunyaviridae Infections/prevention & control , Genome, Viral , Orthobunyavirus/genetics , Vesiculovirus/genetics , Vesiculovirus/immunology , Viral Envelope Proteins/genetics , Animals , Antibodies, Neutralizing , Bunyaviridae Infections/immunology , Male , Mice , Mice, Inbred C57BL , Vesicular Stomatitis/virology , Virus Replication
10.
Sci Immunol ; 6(60)2021 06 25.
Article in English | MEDLINE | ID: mdl-34172587

ABSTRACT

Viral encephalitis initiates a series of immunological events in the brain that can lead to brain damage and death. Astrocytes express IFN-ß in response to neurotropic infection, whereas activated microglia produce proinflammatory cytokines and accumulate at sites of infection. Here, we observed that neurotropic vesicular stomatitis virus (VSV) infection causes recruitment of leukocytes into the central nervous system (CNS), which requires MyD88, an adaptor of Toll-like receptor and interleukin-1 receptor signaling. Infiltrating leukocytes, and in particular CD8+ T cells, protected against lethal VSV infection of the CNS. Reconstitution of MyD88, specifically in neurons, restored chemokine production in the olfactory bulb as well as leukocyte recruitment into the infected CNS and enhanced survival. Comparative analysis of the translatome of neurons and astrocytes verified neurons as the critical source of chemokines, which regulated leukocyte infiltration of the infected brain and affected survival.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chemokines/metabolism , Encephalitis, Viral/immunology , Myeloid Differentiation Factor 88/metabolism , Rhabdoviridae Infections/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Disease Models, Animal , Encephalitis, Viral/pathology , Encephalitis, Viral/virology , Female , Humans , Male , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Neurons/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/immunology , Olfactory Bulb/pathology , Olfactory Bulb/virology , Rhabdoviridae Infections/pathology , Rhabdoviridae Infections/virology , Signal Transduction/immunology , Vesiculovirus/immunology
11.
Front Immunol ; 12: 667478, 2021.
Article in English | MEDLINE | ID: mdl-34025669

ABSTRACT

Viral encephalitis is the most common cause of encephalitis. It is responsible for high morbidity rates, permanent neurological sequelae, and even high mortality rates. The host immune response plays a critical role in preventing or clearing invading pathogens, especially when effective antiviral treatment is lacking. However, due to blockade of the blood-brain barrier, it remains unclear how peripheral immune cells contribute to the fight against intracerebral viruses. Here, we report that peripheral injection of an antibody against human Tim-3, an immune checkpoint inhibitor widely expressed on immune cells, markedly attenuated vesicular stomatitis virus (VSV) encephalitis, marked by decreased mortality and improved neuroethology in mice. Peripheral injection of Tim-3 antibody enhanced the recruitment of immune cells to the brain, increased the expression of major histocompatibility complex-I (MHC-I) on macrophages, and as a result, promoted the activation of VSV-specific CD8+ T cells. Depletion of macrophages abolished the peripheral injection-mediated protection against VSV encephalitis. Notably, for the first time, we found a novel post-translational modification of MHC-I by Tim-3, wherein, by enhancing the expression of MARCH9, Tim-3 promoted the proteasome-dependent degradation of MHC-I via K48-linked ubiquitination in macrophages. These results provide insights into the immune response against intracranial infections; thus, manipulating the peripheral immune cells with Tim-3 antibody to fight viruses in the brain may have potential applications for combating viral encephalitis.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antigen-Presenting Cells/drug effects , Brain/drug effects , Encephalitis, Viral/prevention & control , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Macrophages/drug effects , Rhabdoviridae Infections/prevention & control , Vesiculovirus/immunology , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/virology , Brain/immunology , Brain/metabolism , Brain/virology , Chlorocebus aethiops , Disease Models, Animal , Encephalitis, Viral/immunology , Encephalitis, Viral/metabolism , Encephalitis, Viral/virology , HEK293 Cells , Hepatitis A Virus Cellular Receptor 2/immunology , Histocompatibility Antigens Class I/metabolism , Host-Pathogen Interactions , Humans , Injections, Intraperitoneal , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Male , Mice , Mice, Inbred C57BL , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RAW 264.7 Cells , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/virology , Ubiquitination , Vero Cells , Vesiculovirus/pathogenicity , Viral Load
12.
Emerg Microbes Infect ; 10(1): 651-663, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33719915

ABSTRACT

ABSTRACTThe recent impact of Ebola virus disease (EVD) on public health in Africa clearly demonstrates the need for a safe and efficacious vaccine to control outbreaks and mitigate its threat to global health. ERVEBO® is an effective recombinant Vesicular Stomatitis Virus (VSV)-vectored Ebola virus vaccine (VSV-EBOV) that was approved by the FDA and EMA in late 2019 for use in prevention of EVD. Since the parental virus VSV, which was used to construct VSV-EBOV, is pathogenic for livestock and the vaccine virus may be shed at low levels by vaccinated humans, widespread deployment of the vaccine requires investigation into its infectivity and transmissibility in VSV-susceptible livestock species. We therefore performed a comprehensive clinical analysis of the VSV-EBOV vaccine virus in swine to determine its infectivity and potential for transmission. A high dose of VSV-EBOV resulted in VSV-like clinical signs in swine, with a proportion of pigs developing ulcerative vesicular lesions at the nasal injection site and feet. Uninoculated contact control pigs co-mingled with VSV-EBOV-inoculated pigs did not become infected or display any clinical signs of disease, indicating the vaccine is not readily transmissible to naïve pigs during prolonged close contact. In contrast, virulent wild-type VSV Indiana had a shorter incubation period and was transmitted to contact control pigs. These results indicate that the VSV-EBOV vaccine causes vesicular illness in swine when administered at a high dose. Moreover, the study demonstrates the VSV-EBOV vaccine is not readily transmitted to uninfected pigs, encouraging its safe use as an effective human vaccine.


Subject(s)
Ebola Vaccines/adverse effects , Ebola Vaccines/immunology , Ebolavirus/immunology , Vesicular Stomatitis/transmission , Vesicular Stomatitis/virology , Vesicular stomatitis Indiana virus/immunology , Vesiculovirus/immunology , Africa , Animals , Chlorocebus aethiops , Ebolavirus/genetics , Female , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Male , Models, Animal , RNA, Viral , Swine , Vaccination/methods , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vero Cells , Vesiculovirus/genetics
13.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33722907

ABSTRACT

BACKGROUND: Oncolytic viruses reduce tumor burden in animal models and have generated promising results in clinical trials. However, it is likely that oncolytic viruses will be more effective when used in combination with other therapies. Current therapeutic approaches, including chemotherapeutics, come with dose-limiting toxicities. Another option is to combine oncolytic viruses with immunotherapeutic approaches. METHODS: Using experimental models of metastatic 4T1 breast cancer and ID8 ovarian peritoneal carcinomatosis, we examined natural killer T (NKT) cell-based immunotherapy in combination with recombinant oncolytic vesicular stomatitis virus (VSV) or reovirus. 4T1 mammary carcinoma cells or ID8 ovarian cancer cells were injected into syngeneic mice. Tumor-bearing mice were treated with VSV or reovirus followed by activation of NKT cells via the intravenous administration of autologous dendritic cells loaded with the glycolipid antigen α-galactosylceramide. The effects of VSV and reovirus on immunogenic cell death (ICD), cell viability and immunogenicity were tested in vitro. RESULTS: VSV or reovirus treatments followed by NKT cell activation mediated greater survival in the ID8 model than individual therapies. The regimen was less effective when the treatment order was reversed, delivering virus treatments after NKT cell activation. In the 4T1 model, VSV combined with NKT cell activation increased overall survival and decreased metastatic burden better than individual treatments. In contrast, reovirus was not effective on its own or in combination with NKT cell activation. In vitro, VSV killed a panel of tumor lines better than reovirus. VSV infection also elicited greater increases in mRNA transcripts for proinflammatory cytokines, chemokines, and antigen presentation machinery compared with reovirus. Oncolytic VSV also induced the key hallmarks of ICD (calreticulin mobilization, plus release of ATP and HMGB1), while reovirus only mobilized calreticulin. CONCLUSION: Taken together, these results demonstrate that oncolytic VSV and NKT cell immunotherapy can be effectively combined to decrease tumor burden in models of metastatic breast and ovarian cancers. Oncolytic VSV and reovirus induced differential responses in our models which may relate to differences in virus activity or tumor susceptibility.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy, Adoptive , Natural Killer T-Cells/transplantation , Oncolytic Virotherapy , Oncolytic Viruses/immunology , Ovarian Neoplasms/therapy , Peritoneal Neoplasms/therapy , Reoviridae/immunology , Vesiculovirus/immunology , Animals , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/virology , Cell Line, Tumor , Chlorocebus aethiops , Combined Modality Therapy , Cytokines/metabolism , Cytotoxicity, Immunologic , Female , Host-Pathogen Interactions , Lymphocyte Activation , Mice, Inbred BALB C , Mice, Inbred C57BL , Natural Killer T-Cells/immunology , Oncolytic Viruses/pathogenicity , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/virology , Peritoneal Neoplasms/immunology , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/virology , Reoviridae/pathogenicity , Vero Cells , Vesiculovirus/pathogenicity
14.
Am J Trop Med Hyg ; 104(5): 1751-1754, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782211

ABSTRACT

Gamma irradiation (GI) is included in the CDC guidance on inactivation procedures to render a group of select agents and toxins nonviable. The Ebola virus falls within this group because it potentially poses a severe threat to public health and safety. To evaluate the impact of GI at a target dose of 50 kGy on neutralizing antibody titers induced by the rVSVΔG-ZEBOV-GP vaccine (V920), we constructed a panel of 48 paired human serum samples (GI-treated versus non-GI-treated) from healthy participants selected from a phase 3 study of V920 (study V920-012; NCT02503202). Neutralizing antibody titers were determined using a validated plaque-reduction neutralization test. GI of sera from V920 recipients was associated with approximately 20% reduction in postvaccination neutralizing antibody titers. GI was not associated with any change in pre-vaccination neutralizing antibody titers.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Ebola Vaccines/administration & dosage , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Immune Sera/radiation effects , Antibodies, Neutralizing/analysis , Ebola Vaccines/chemical synthesis , Ebolavirus/pathogenicity , Healthy Volunteers , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Immune Sera/chemistry , Immunogenicity, Vaccine , Neutralization Tests , Prospective Studies , Vaccination/methods , Vesiculovirus/chemistry , Vesiculovirus/immunology , Viral Envelope Proteins/immunology
15.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33393505

ABSTRACT

Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/ß induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-ß protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3-/- mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-ß secretion and ISG mRNA in induced pluripotent stem cell-derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-ß immunity.


Subject(s)
Cerebral Cortex/immunology , Fibroblasts/immunology , Herpesvirus 1, Human/immunology , Interferon-beta/immunology , Neurons/immunology , Toll-Like Receptor 3/immunology , Vesiculovirus/immunology , Animals , Cell Line , Cerebral Cortex/pathology , Cerebral Cortex/virology , Fibroblasts/pathology , Fibroblasts/virology , Humans , Interferon-beta/genetics , Mice , Mice, Knockout , Neurons/pathology , Neurons/virology , Toll-Like Receptor 3/genetics
16.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33507144

ABSTRACT

The zebrafish (Danio rerio) possesses evolutionarily conserved innate and adaptive immunity as a mammal and has recently become a popular vertebrate model to exploit infection and immunity. Antiviral RNA interference (RNAi) has been illuminated in various model organisms, including Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans and mice. However, to date, there is no report on the antiviral RNAi pathway of zebrafish. Here, we have evaluated the possible use of zebrafish to study antiviral RNAi with Sindbis virus (SINV), vesicular stomatitis virus (VSV) and Nodamura virus (NoV). We find that SINVs and NoVs induce the production of virus-derived small interfering RNAs (vsiRNAs), the hallmark of antiviral RNAi, with a preference for a length of 22 nucleotides, after infection of larval zebrafish. Meanwhile, the suppressor of RNAi (VSR) protein, NoV B2, may affect the accumulation of the NoV in zebrafish. Furthermore, taking advantage of the fact that zebrafish argonaute-2 (Ago2) protein is naturally deficient in cleavage compared with that of mammals, we provide evidence that the slicing activity of human Ago2 can virtually inhibit the accumulation of RNA virus after being ectopically expressed in larval zebrafish. Thus, zebrafish may be a unique model organism to study the antiviral RNAi pathway.


Subject(s)
RNA Interference , RNA Virus Infections/virology , RNA Viruses/physiology , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Zebrafish/virology , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Immunity, Innate , Models, Animal , Nodaviridae/immunology , Nodaviridae/physiology , RNA Virus Infections/immunology , RNA Viruses/immunology , Sindbis Virus/immunology , Sindbis Virus/physiology , Vesiculovirus/immunology , Vesiculovirus/physiology , Zebrafish/genetics , Zebrafish/immunology , Zebrafish Proteins/metabolism
17.
Virology ; 555: 44-55, 2021 03.
Article in English | MEDLINE | ID: mdl-33453650

ABSTRACT

Ovarian cancer is the third most common female cancer, with poor survival in later stages of metastatic spread. We test a chimeric virus consisting of genes from Lassa and vesicular stomatitis viruses, LASV-VSV; the native VSV glycoprotein is replaced by the Lassa glycoprotein, greatly reducing neurotropism. Human ovarian cancer cells in immunocompromised nude mice were lethal in controls. Chemotherapeutic paclitaxel and cisplatin showed modest cancer inhibition and survival extension. In contrast, a single intraperitoneal injection of LASV-VSV selectively infected and killed ovarian cancer cells, generating long-term survival. Mice with human ovarian cancer cells in brain showed rapid deterioration; LASV-VSV microinjection into brain blocked cancer growth, and generated long-term survival. Treatment of immunocompetent mice with infected mouse ovarian cancer cells blocked growth of non-infected ovarian cancer cells peritoneally and in brain. These results suggest LASV-VSV is a viable candidate for further study and may be of use in the treatment of ovarian cancer.


Subject(s)
Lassa virus/immunology , Oncolytic Virotherapy/methods , Ovarian Neoplasms/therapy , Vesiculovirus/immunology , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude
18.
PLoS Pathog ; 17(1): e1009111, 2021 01.
Article in English | MEDLINE | ID: mdl-33411856

ABSTRACT

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.


Subject(s)
Antiviral Agents/metabolism , Immunity, Innate/immunology , Interferon Type I/metabolism , Proteins/metabolism , Rhabdoviridae Infections/immunology , Secretory Pathway , Vesiculovirus/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , HeLa Cells , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteins/genetics , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/virology , Signal Transduction , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Vesiculovirus/physiology
19.
Cell Mol Immunol ; 18(6): 1450-1462, 2021 06.
Article in English | MEDLINE | ID: mdl-31767975

ABSTRACT

Innate immunity plays a prominent role in the host defense against pathogens and must be precisely regulated. As vital orchestrators in cholesterol homeostasis, microRNA-33/33* have been widely investigated in cellular metabolism. However, their role in antiviral innate immunity is largely unknown. Here, we report that VSV stimulation decreased the expression of miR-33/33* through an IFNAR-dependent manner in macrophages. Overexpression of miR-33/33* resulted in impaired RIG-I signaling, enhancing viral load and lethality whereas attenuating type I interferon production both in vitro and in vivo. In addition, miR-33/33* specifically prevented the mitochondrial adaptor mitochondrial antiviral-signaling protein (MAVS) from forming activated aggregates by targeting adenosine monophosphate activated protein kinase (AMPK), subsequently impeding the mitophagy-mediated elimination of damaged mitochondria and disturbing mitochondrial homeostasis which is indispensable for efficient MAVS activation. Our findings establish miR-33/33* as negative modulators of the RNA virus-triggered innate immune response and identify a previously unknown regulatory mechanism linking mitochondrial homeostasis with antiviral signaling pathways.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenylate Kinase/metabolism , Immunity, Innate , MicroRNAs/metabolism , Vesiculovirus/immunology , Animals , Antagomirs/pharmacology , Base Sequence , DEAD Box Protein 58/metabolism , Down-Regulation/drug effects , Gene Silencing/drug effects , HEK293 Cells , HeLa Cells , Humans , Immunity, Innate/drug effects , Interferon Type I/metabolism , Macrophages/drug effects , Macrophages/pathology , Macrophages/virology , Mice, Inbred C57BL , MicroRNAs/genetics , Mitophagy/drug effects , Models, Biological , Protein Aggregates/drug effects , Receptor, Interferon alpha-beta/metabolism , Receptors, Immunologic/metabolism , Signal Transduction/drug effects
20.
Nat Commun ; 11(1): 6000, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33243993

ABSTRACT

Virus infection may induce excessive interferon (IFN) responses that can lead to host tissue injury or even death. ß-arrestin 2 regulates multiple cellular events through the G protein-coupled receptor (GPCR) signaling pathways. Here we demonstrate that ß-arrestin 2 also promotes virus-induced production of IFN-ß and clearance of viruses in macrophages. ß-arrestin 2 interacts with cyclic GMP-AMP synthase (cGAS) and increases the binding of dsDNA to cGAS to enhance cyclic GMP-AMP (cGAMP) production and the downstream stimulator of interferon genes (STING) and innate immune responses. Mechanistically, deacetylation of ß-arrestin 2 at Lys171 facilitates the activation of the cGAS-STING signaling and the production of IFN-ß. In vitro, viral infection induces the degradation of ß-arrestin 2 to facilitate immune evasion, while a ß-blocker, carvedilol, rescues ß-arrestin 2 expression to maintain the antiviral immune response. Our results thus identify a viral immune-evasion pathway via the degradation of ß-arrestin 2, and also hint that carvedilol, approved for treating heart failure, can potentially be repurposed as an antiviral drug candidate.


Subject(s)
Carvedilol/pharmacology , Immune Evasion/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Virus Diseases/immunology , beta-Arrestin 2/metabolism , Animals , Carvedilol/therapeutic use , Disease Models, Animal , Drug Repositioning , HEK293 Cells , Herpesvirus 1, Human/immunology , Humans , Immune Evasion/drug effects , Interferon-beta/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Primary Cell Culture , Proteolysis/drug effects , RAW 264.7 Cells , RNA-Seq , Sendai virus/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Vesiculovirus/immunology , Virus Diseases/drug therapy , Virus Diseases/virology , beta-Arrestin 2/agonists , beta-Arrestin 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...