Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4443, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932124

ABSTRACT

Fragmented and piecemeal evidence from animal and human studies suggests that vestibular information is transmitted to the striatum, a part of the basal ganglia that degenerates in Parkinson's Disease. Nonetheless, surprisingly little is known about the precise effects of activation of the vestibular system on the striatum. Electrophysiological studies have yielded inconsistent results, with many studies reporting only sparse responses to vestibular stimulation in the dorsomedial striatum. In this study, we sought to elucidate the effects of electrical stimulation of the peripheral vestibular system on electrophysiological responses in the tail of the rat striatum, a newly discovered region for sensory input. Rats were anaesthetised with urethane and a bipolar stimulating electrode was placed in the round window in order to activate the peripheral vestibular system. A recording electrode was positioned in the tail of the striatum. Local field potentials (LFPs) were recorded ipsilaterally and contralaterally to the stimulation using a range of current parameters. In order to confirm that the vestibular system was activated, video-oculography was used to monitor vestibular nystagmus. At current amplitudes that evoked vestibular nystagmus, clear triphasic LFPs were evoked in the bilateral tail of the striatum, with the first phase of the waveform exhibiting latencies of less than 22 ms. The LFP amplitude increased with increasing current amplitude (P ≤ 0.0001). In order to exclude the possibility that the LFPs were evoked by the activation of the auditory system, the cochlea was surgically lesioned in some animals. In these animals the LFPs persisted despite the cochlear lesions, which were verified histologically. Overall, the results obtained suggest that there are vestibular projections to the tail of the striatum, which could possibly arise from projections via the vestibular nucleus or cerebellum and the parafasicular nucleus of the thalamus.


Subject(s)
Corpus Striatum , Local Field Potential Measurement , Vestibular System , Animals , Rats , Corpus Striatum/anatomy & histology , Corpus Striatum/physiology , Vestibular System/physiology , Male , Rats, Wistar , Electric Stimulation , Urethane , Electrodes , Anesthesia , Intralaminar Thalamic Nuclei/physiology , Vestibular Nuclei/physiology , Cerebellum/physiology
2.
Hear Res ; 431: 108740, 2023 04.
Article in English | MEDLINE | ID: mdl-36948126

ABSTRACT

To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.


Subject(s)
Lateral Line System , Mitochondria , Neurons , Lateral Line System/cytology , Lateral Line System/physiology , Animals , Zebrafish , Neurons/cytology , Vestibular System/cytology , Vestibular System/physiology , Biosensing Techniques
3.
J Neurophysiol ; 125(6): 2191-2205, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33881904

ABSTRACT

Galvanic vestibular stimulation (GVS) is used to assess vestibular system function, but vestibulospinal responses can exhibit variability depending on protocols or intensities used. Here, we measured head acceleration in healthy subjects to identify an objective motor threshold on which to base GVS intensity when assessing standing postural responses. Thirteen healthy right-handed subjects stood on a force platform, eyes closed, and head facing forward. An accelerometer was placed on the vertex to detect head acceleration, and electromyography activity of the right soleus was recorded. GVS (200 ms; current steps 0.5, from 1 mA to 4 mA) was applied in a binaural and bipolar configuration. 1) GVS induced a biphasic accelerometer response at a latency of 15 ms. Based on response amplitude, we constructed a recruitment curve for all participants and determined the motor threshold. In parallel, the method of limits was used to devise a more rapid approach to determine motor threshold. 2) We observed significant differences between motor threshold based on a recruitment curve and all perceptual thresholds reported either by the subject (sensation of movement) or a standing experimenter observing the participant (perception of movement). No significant difference was observed between the motor threshold based on the method of limits and perceptual thresholds of movement. 3) Using orthogonal polynomial contrasts, we observed a linear progression between multiples of the objective motor threshold (0.5, 0.75, 1, 1.5× motor threshold) and the 95% confidence ellipse area, the first peak of center of pressure displacement velocity, and the short and medium latency responses in the soleus. Hence, an objective motor threshold for GVS based on head acceleration was identified in standing participants and a recruitment curve could be constructed for all participants. These novel approaches could enable better understanding of changes in the vestibular system in different conditions or over time.NEW & NOTEWORTHY Galvanic vestibular stimulation (GVS) has been used to assess the vestibular system, but the significant interindividual variability in the responses makes it difficult to quantitatively compare them between individuals or conditions. Using an accelerometer to quantify head movement induced by GVS, we were able to determine an objective motor threshold and construct a recruitment curve for all participants. These methods could help assess changes in the vestibular system under different conditions.


Subject(s)
Head Movements/physiology , Muscle, Skeletal/physiology , Standing Position , Vestibular System/physiology , Accelerometry , Adult , Electric Stimulation/methods , Electromyography , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...