ABSTRACT
In this work, a new mega-method of sample preparation called "QuEChERSER" (more than QuEChERS) is being presented for the first time. Fast, efficient, and cost-effective analysis of chemical contaminants in meat is useful for international trade, domestic monitoring, risk assessment, and other purposes. The goal of this study was to develop and validate a simple high-throughput mega-method for residual analysis of 161 pesticides, 63 veterinary drugs, 24 metabolites, and 14 legacy environmental contaminants (polychlorinated biphenyls) in bovine muscle for implementation in routine laboratory analyses. Sample preparation of 2 g test portions entailed QuEChERS-based extraction with 10 mL of 4:1 (v/v) acetonitrile/water, and then 204 µL was taken, diluted, and ultracentrifuged prior to analysis of veterinary drugs and pesticides by ultra-high-performance liquid chromatography-tandem mass spectrometry. The remaining extract was salted out with 4:1 (w/w) anhydrous MgSO4/NaCl, and 1 mL was transferred to an autosampler vial for automated mini-cartridge solid-phase extraction (Instrument Top Sample Preparation) cleanup with immediate injection using fast low-pressure gas chromatography-tandem mass spectrometry analysis. The automated cleanup and both instruments were all operated in parallel in 13-15 min cycle times per sample. Method validation according to United States Department of Agriculture requirements demonstrated that 221 (85%) of the 259 analytes gave average recovery between 70 and 120% and interday relative standard deviation of ≤25%. Analysis of a certified reference material for veterinary drugs in freeze-dried bovine muscle was also very accurate, further demonstrating that the QuEChERSER mega-method can be implemented to save time, labor, and resources compared to current practices to use multiple methods to cover the same analytical scope.
Subject(s)
Chromatography, High Pressure Liquid/methods , Environmental Pollutants/analysis , Meat/analysis , Pesticides/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Veterinary Drugs/analysis , Animals , Cattle , Environmental Pollutants/isolation & purification , Food Contamination/analysis , Muscle, Skeletal/chemistry , Pesticide Residues/analysis , Pesticide Residues/isolation & purification , Pesticides/isolation & purification , Robotics/instrumentation , Robotics/methods , Veterinary Drugs/isolation & purificationABSTRACT
A dispersive liquid-liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 µL dichloromethane (extract solvent) and 1250 µL ACN (dispersive solvent) in 500 µL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N2 steam. The residue was resuspended into 50 µL of water-ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na2 B4 O7 ) and di-sodium hydrogen phosphate (Na2 HPO4 ) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s.