Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.824
Filter
1.
Arch Dermatol Res ; 316(7): 343, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847915

ABSTRACT

While mechanical vibration lessens discomfort associated with injection site pain (ISP), many local anesthetic injectors (LAIs) do not use vibratory anesthetic devices (VADs). Injector preference of vibration device is influenced by functional concerns, but qualitatively there is an element of adoption that is driven by visual feedback. We sought to capture operator preferences of vibration device design elements to further understand why injectors do not use these devices. We conducted a survey of image preferences among nurses and medical assistants employed at 8 dermatological clinics to investigate barriers to VAD use. Images were electronically modified with features distinct from the original device (a VAD commonly used in clinical practice). Participants rated their likelihood and comfort of use of each VAD represented in the images. Two-sample t-tests were used to compare the rating of the unmodified VAD to each modified VAD within participants. A response rate of 100% was achieved with 35 participants (average age, 38.5 years; 6 (17.1%) male, 29 (82.9%) female). Despite 28 (80%) participants knowing that mechanical vibration reduces ISP, only 16 (45.7%) endorsed ever using mechanical vibration as topical anesthetic. Images modified by pattern, color, and sterility covering were rated significantly lower than the original, unmodified VAD image (plain white VAD), confirming that visual feedback does impact adoption. Through independent comment categorization, aesthetics were found to be important to LAIs. Aesthetic preferences opposing functional concerns may factor into the lack of VAD use. Defining these visual preference barriers to adoption may help promote VAD use during dermatologic procedures.


Subject(s)
Anesthetics, Local , Vibration , Humans , Vibration/therapeutic use , Vibration/adverse effects , Female , Male , Adult , Cross-Sectional Studies , Anesthetics, Local/administration & dosage , Surveys and Questionnaires/statistics & numerical data , Anesthesia, Local/methods , Middle Aged , Equipment Design , Pain, Procedural/prevention & control , Pain, Procedural/etiology , Pain, Procedural/diagnosis
2.
PLoS One ; 19(5): e0298263, 2024.
Article in English | MEDLINE | ID: mdl-38722883

ABSTRACT

The design of tuned mass damper (TMD) parameters is influenced by the soil-structure-TMD coupling system; thus, it is important to consider the soil-structure interaction (SSI) for the vibration control effect of the TMD. Recently, the acquisition of TMD parameters considering soil-structure interactions has only remained at the theoretical stage, lacking relevant experimental verification. Traditional TMD face the problems of occupying a large building space, increasing construction costs, and non-replaceable components. In this study, an assembled wall-type damping TMD was designed. By comparing the dynamic response of the uncontrolled and controlled structures equipped with the newly assembled wall-type damping TMD in the shaking table test on a soft soil foundation, we analyzed whether the SSI effect was considered in the TMD design parameters on the damping effect of the newly assembled wall-type tuned mass damper. The TMD parameters optimized using the artificial intelligence algorithm were verified experimentally. The results indicated that the traditional TMD design parameters were discordant because the SSI effect was not considered. The SSI effect in the soil effectively reduces the dynamic response of the superstructure. By considering the SSI effect and improving the multi-population genetic algorithm, a wall-type damping TMD with optimized parameters can achieve a good damping effect.


Subject(s)
Algorithms , Soil , Soil/chemistry , Earthquakes , Vibration
3.
Med Eng Phys ; 128: 104169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789212

ABSTRACT

Despite the fact that lower back pain caused by degenerative lumbar spine pathologies seriously affects the quality of life, however, there is a paucity of research on the biomechanical properties of different auxiliary fixation systems for its primary treatment (oblique lumbar interbody fusion) under vibratory environments. In order to study the effects of different fixation systems of OLIF surgery on the vibration characteristics of the human lumbar spine under whole-body vibration (WBV), a finite element (FE) model of OLIF surgery with five different fixation systems was established by modifying a previously established model of the normal lumbar spine (L1-S1). In this study, a compressive follower load of 500 N and a sinusoidal axial vertical load of ±40 N at the frequency of 5 Hz with a duration of 0.6 s was applied. The results showed that the bilateral pedicle screw fixation model had the highest resistance to cage subsidence and maintenance of disc height under WBV. In contrast, the lateral plate fixation model exerted very high stresses on important tissues, which would be detrimental to the patient's late recovery and reduction of complications. Therefore, this study suggests that drivers and related practitioners who are often in vibrating environments should have bilateral pedicle screws for OLIF surgery, and side plates are not recommended to be used as a separate immobilization system. Additionally, the lateral plate is not recommended to be used as a separate fixation system.


Subject(s)
Finite Element Analysis , Lumbar Vertebrae , Spinal Fusion , Vibration , Spinal Fusion/instrumentation , Lumbar Vertebrae/surgery , Humans , Biomechanical Phenomena , Pedicle Screws
4.
Biointerphases ; 19(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38738942

ABSTRACT

Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).


Subject(s)
Lipid Bilayers , Spectrum Analysis , Lipid Bilayers/chemistry , Spectrum Analysis/methods , Vibration , Phospholipids/chemistry , Membrane Lipids/chemistry
5.
Sci Robot ; 9(90): eadl0085, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809994

ABSTRACT

Sensory feedback for prosthesis control is typically based on encoding sensory information in specific types of sensory stimuli that the users interpret to adjust the control of the prosthesis. However, in physiological conditions, the afferent feedback received from peripheral nerves is not only processed consciously but also modulates spinal reflex loops that contribute to the neural information driving muscles. Spinal pathways are relevant for sensory-motor integration, but they are commonly not leveraged for prosthesis control. We propose an approach to improve sensory-motor integration for prosthesis control based on modulating the excitability of spinal circuits through the vibration of tendons in a closed loop with muscle activity. We measured muscle signals in healthy participants and amputees during different motor tasks, and we closed the loop by applying vibration on tendons connected to the muscles, which modulated the excitability of motor neurons. The control signals to the prosthesis were thus the combination of voluntary control and additional spinal reflex inputs induced by tendon vibration. Results showed that closed-loop tendon vibration was able to modulate the neural drive to the muscles. When closed-loop tendon vibration was used, participants could achieve similar or better control performance in interfaces using muscle activation than without stimulation. Stimulation could even improve prosthetic grasping in amputees. Overall, our results indicate that closed-loop tendon vibration can integrate spinal reflex pathways in the myocontrol system and open the possibility of incorporating natural feedback loops in prosthesis control.


Subject(s)
Amputees , Artificial Limbs , Feedback, Sensory , Hand , Muscle, Skeletal , Prosthesis Design , Reflex , Vibration , Humans , Adult , Hand/physiology , Male , Female , Feedback, Sensory/physiology , Reflex/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Electromyography , Tendons/physiology , Motor Neurons/physiology , Middle Aged , Hand Strength/physiology , Young Adult
6.
Exp Gerontol ; 192: 112450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710456

ABSTRACT

Limited research exists regarding the effects of resistance exercise (RE) combined with whole body vibration (WBV), blood flow restriction (BFR), or both on the neuropsychological performance of working memory (WM) in late-middle-aged and older adults and regarding the physiological mechanisms underlying this effect. This study thus explored the acute molecular and neurophysiological mechanisms underlying WM performance following RE combined with WBV, BFR, or both. Sixty-six participants were randomly assigned into a WBV, BFR, or WBV + BFR group. Before and after the participants engaged in a single bout of isometric RE combined with WBV, BFR, or both, this study gathered data on several neurocognitive measures of WM performance, namely, accuracy rate (AR), reaction time (RT), and brain event-related potential (specifically P3 latency and amplitude), and data on biochemical indices, such as the levels of insulin-like growth factor-1 (IGF-1), norepinephrine (NE), and brain-derived neurotrophic factor (BDNF). Although none of the RE modalities significantly affected RTs and P3 latencies, ARs and P3 amplitudes significantly improved in the WBV and WBV + BFR groups. The WBV + BFR group exhibited greater improvements than the WBV group did. Following acute RE combined with WBV, BFR, or both, IGF-1 and NE levels significantly increased in all groups, whereas BDNF levels did not change. Crucially, only the changes in NE levels were significantly correlated with improvements in ARs in the WBV + BFR and WBV groups. The findings suggest that combining acute RE with WBV, BFR, or both could distinctively mitigate neurocognitive decline in late-middle-aged and older adults.


Subject(s)
Brain-Derived Neurotrophic Factor , Insulin-Like Growth Factor I , Memory, Short-Term , Reaction Time , Resistance Training , Vibration , Humans , Resistance Training/methods , Male , Female , Middle Aged , Vibration/therapeutic use , Aged , Brain-Derived Neurotrophic Factor/blood , Memory, Short-Term/physiology , Insulin-Like Growth Factor I/metabolism , Cognition/physiology , Norepinephrine/blood , Regional Blood Flow/physiology , Brain/physiology
7.
ACS Appl Mater Interfaces ; 16(19): 25160-25168, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701174

ABSTRACT

Fiber has been considered as an ideal material for virus insulation due to the readily available electrostatic adsorption. However, restricted by the electrostatic attenuation and filtration performance decline, their long-lasting applications are unable to satisfy the requirements of medical protective equipment for major medical and health emergencies such as global epidemics, which results in both a waste of resources and environmental pollution. We overcame these issues by constructing a fiber-in-tube structure, achieving the robust reusability of fibrous membranes. Core fibers within the hollow could form generators with tube walls of shell fibers to provide persistent, renewable static electricity via piezoelectricity and triboelectricity. The PM0.3 insulation efficiency achieved 98% even after 72 h of humidity and heat aging, through beating and acoustic waves, which is greatly improved compared with that of traditional nonwoven fabric (∼10% insulation). A mask spun with our fiber also has a low breathing resistance (differential pressure <24.4 Pa/cm2). We offer an approach to enrich multifunctional fiber for developing electrifiable filters, which make the fiber-in-tube filtration membrane able to durably maintain a higher level of protective performance to reduce the replacement and provide a new train of thought for the preparation of other high-performance protective products.


Subject(s)
Filtration , Static Electricity , Vibration , Filtration/instrumentation , Sound , SARS-CoV-2/isolation & purification , Textiles , Humans
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124377, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38701580

ABSTRACT

Tryptophan (Trp) residue provides characteristic vibrational markers to the middle wavenumber spectral region of the Raman spectra recorded from peptides and proteins. In this report, we were particularly interested in eight Trp Raman markers, referred to as Wi (i = 1,…,8). All responsible for pronounced Raman lines, these markers originate from indole moiety, a bicyclic conjugated segment involved in the Trp structure. Numerous investigations have previously attempted to relate the variations observed in the spectral features of these markers to the environmental changes of Trp residues. To emphasize the most important points we can mention (i) the variations in the Raman profile of W4 (∼1360 cm-1) and W5 (∼1340 cm-1), frequently observed as a doublet with variable intensity ratio. These two markers were thought to result from a Fermi-resonance effect between certain planar and nonplanar modes; (ii) the changes observed in the wavenumbers and relative intensities of W4, W7 (∼880 cm-1) and W8 (∼760 cm-1) were supposed to be related to the accessibility of Trp to surrounding water molecules; and (iii) the wavenumber fluctuations of W3 (∼1550 cm-1), taken as a Trp side chain orientational marker. However, some ambiguities still exist regarding the interpretation of these markers, needing further clarification. Herein, upon a joint experimental and theoretical analysis based on a multiconformational approach, attention was paid to the relationships between structural and vibrational features of three indole-containing compounds with increasing structural complexity, i.e., skatole (3-methylindole), tryptophan, and tripeptide Gly-Trp-Gly. This study clearly shows that the existing assignments given to certain Trp Raman markers should be reconsidered, especially those based on the Fermi-resonance origin of W4-W5 (∼1360-1340 cm-1) doublet, as well as the purely environmental dependence of W7 and W8 markers.


Subject(s)
Spectrum Analysis, Raman , Tryptophan , Vibration , Tryptophan/chemistry , Tryptophan/analysis , Spectrum Analysis, Raman/methods , Molecular Conformation , Indoles/chemistry
9.
Sci Rep ; 14(1): 10774, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38729999

ABSTRACT

Muscular dystrophies (MD) are a group of genetic neuromuscular disorders that cause progressive weakness and loss of muscles over time, influencing 1 in 3500-5000 children worldwide. New and exciting treatment options have led to a critical need for a clinical post-marketing surveillance tool to confirm the efficacy and safety of these treatments after individuals receive them in a commercial setting. For MDs, functional gait assessment is a common approach to evaluate the efficacy of the treatments because muscle weakness is reflected in individuals' walking patterns. However, there is little incentive for the family to continue to travel for such assessments due to the lack of access to specialty centers. While various existing sensing devices, such as cameras, force plates, and wearables can assess gait at home, they are limited by privacy concerns, area of coverage, and discomfort in carrying devices, which is not practical for long-term, continuous monitoring in daily settings. In this study, we introduce a novel functional gait assessment system using ambient floor vibrations, which is non-invasive and scalable, requiring only low-cost and sparsely deployed geophone sensors attached to the floor surface, suitable for in-home usage. Our system captures floor vibrations generated by footsteps from patients while they walk around and analyzes such vibrations to extract essential gait health information. To enhance interpretability and reliability under various sensing scenarios, we translate the signal patterns of floor vibration to pathological gait patterns related to MD, and develop a hierarchical learning algorithm that aggregates insights from individual footsteps to estimate a person's overall gait performance. When evaluated through real-world experiments with 36 subjects (including 15 patients with MD), our floor vibration sensing system achieves a 94.8% accuracy in predicting functional gait stages for patients with MD. Our approach enables accurate, accessible, and scalable functional gait assessment, bringing MD progressive tracking into real life.


Subject(s)
Gait , Muscular Dystrophies , Vibration , Humans , Child , Gait/physiology , Muscular Dystrophies/physiopathology , Muscular Dystrophies/diagnosis , Muscular Dystrophies/therapy , Male , Female , Gait Analysis/methods , Gait Analysis/instrumentation , Adolescent
11.
Exp Brain Res ; 242(6): 1481-1493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702470

ABSTRACT

The anterior (DA) and posterior parts of the deltoid (DP) show alternating contraction during shoulder flexion and extension movements. It is expected that an inhibitory spinal reflex between the DA and DP exists. In this study, spinal reflexes between the DA and DP were examined in healthy human subjects using post-stimulus time histogram (PSTH) and electromyogram averaging (EMG-A). Electrical conditioning stimulation was delivered to the axillary nerve branch that innervates the DA (DA nerve) and DP (DP nerve) with the intensity below the motor threshold. In the PSTH study, the stimulation to the DA and DP nerves inhibited (decrease in the firing probability) 31 of 54 DA motor units and 31 of 51 DP motor units. The inhibition was not provoked by cutaneous stimulation. The central synaptic delay of the inhibition between the DA and DP nerves was 1.5 ± 0.5 ms and 1.4 ± 0.4 ms (mean ± SD) longer than those of the homonymous facilitation of the DA and DP, respectively. In the EMG-A study, conditioning stimulation to the DA and DP nerves inhibited the rectified and averaged EMG of the DP and DA, respectively. The inhibition diminished with tonic vibration stimulation to the DA and DP and recovered 20-30 min after vibration removal. These findings suggest that oligo(di or tri)-synaptic inhibition mediated by group Ia afferents between the DA and DP exists in humans.


Subject(s)
Deltoid Muscle , Electric Stimulation , Electromyography , Neural Inhibition , Humans , Male , Adult , Deltoid Muscle/physiology , Deltoid Muscle/innervation , Female , Neural Inhibition/physiology , Young Adult , Vibration , Afferent Pathways/physiology
12.
Biosens Bioelectron ; 259: 116385, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38759310

ABSTRACT

Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.


Subject(s)
Biosensing Techniques , Cell Membrane , Electrochemical Techniques , Tin Compounds , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Animals , Rats , PC12 Cells , Tin Compounds/chemistry , Electrochemical Techniques/methods , Cell Membrane/chemistry , Cell Adhesion , Vibration , Surface Properties , Equipment Design
13.
Sci Rep ; 14(1): 12152, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802472

ABSTRACT

The spread of the COVID-19 virus has become a global health crisis, and finding effective treatments and preventions is a top priority. The field of quantum biology primarily focuses on energy or charge transfer, with a particular emphasis on photosynthesis. However, there is evidence to suggest that cellular receptors such as olfactory or neural receptors may also use vibration-assisted electron tunnelling to enhance their functions. Quantum tunnelling has also been observed in enzyme activity, which is relevant to the invasion of host cells by the SARS-CoV-2 virus. Additionally, COVID-19 appears to disrupt receptors such as olfactory receptors. These findings suggest that quantum effects could provide new insights into the mechanisms of biological systems and disease, including potential treatments for COVID-19. We have applied the open quantum system approach using Quantum State Diffusion to solve the non-linear stochastic Schrödinger equation (SSE) for COVID-19 virus infection. Our model includes the mechanism when the spike protein of the virus binds with an ACE2 receptor is considered as dimer. These two entities form a system and then coupled with the cell membrane, which is modelled as a set of harmonic oscillators (bath). By simulating the SSE, we find that there is vibration-assisted electron tunnelling happening in certain biological parameters and coupling regimes. Furthermore, our model contributes to the ongoing research to understand the fundamental nature of virus dynamics. It proposes that vibration-assisted electron tunneling could be a molecular phenomenon that augments the lock-and-key process for olfaction. This insight may enhance our understanding of the underlying mechanisms governing virus-receptor interactions and could potentially lead to the development of novel therapeutic strategies.


Subject(s)
COVID-19 , Quantum Theory , SARS-CoV-2 , Vibration , COVID-19/virology , COVID-19/metabolism , Humans , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Electrons , Pandemics
14.
J Acoust Soc Am ; 155(5): 3101-3117, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38722101

ABSTRACT

Cochlear implant (CI) users often report being unsatisfied by music listening through their hearing device. Vibrotactile stimulation could help alleviate those challenges. Previous research has shown that musical stimuli was given higher preference ratings by normal-hearing listeners when concurrent vibrotactile stimulation was congruent in intensity and timing with the corresponding auditory signal compared to incongruent. However, it is not known whether this is also the case for CI users. Therefore, in this experiment, we presented 18 CI users and 24 normal-hearing listeners with five melodies and five different audio-to-tactile maps. Each map varied the congruence between the audio and tactile signals related to intensity, fundamental frequency, and timing. Participants were asked to rate the maps from zero to 100, based on preference. It was shown that almost all normal-hearing listeners, as well as a subset of the CI users, preferred tactile stimulation, which was congruent with the audio in intensity and timing. However, many CI users had no difference in preference between timing aligned and timing unaligned stimuli. The results provide evidence that vibrotactile music enjoyment enhancement could be a solution for some CI users; however, more research is needed to understand which CI users can benefit from it most.


Subject(s)
Acoustic Stimulation , Auditory Perception , Cochlear Implants , Music , Humans , Female , Male , Adult , Middle Aged , Aged , Auditory Perception/physiology , Young Adult , Patient Preference , Cochlear Implantation/instrumentation , Touch Perception/physiology , Vibration , Touch
15.
Commun Biol ; 7(1): 600, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762693

ABSTRACT

Pending questions regarding cochlear amplification and tuning are hinged upon the organ of Corti (OoC) active mechanics: how outer hair cells modulate OoC vibrations. Our knowledge regarding OoC mechanics has advanced over the past decade thanks to the application of tomographic vibrometry. However, recent data from live cochlea experiments often led to diverging interpretations due to complicated interaction between passive and active responses, lack of image resolution in vibrometry, and ambiguous measurement angles. We present motion measurements and analyses of the OoC sub-components at the close-to-true cross-section, measured from acutely excised gerbil cochleae. Specifically, we focused on the vibrating patterns of the reticular lamina, the outer pillar cell, and the basilar membrane because they form a structural frame encasing active outer hair cells. For passive transmission, the OoC frame serves as a rigid truss. In contrast, motile outer hair cells exploit their frame structures to deflect the upper compartment of the OoC while minimally disturbing its bottom side (basilar membrane). Such asymmetric OoC vibrations due to outer hair cell motility explain how recent observations deviate from the classical cochlear amplification theory.


Subject(s)
Gerbillinae , Hair Cells, Auditory, Outer , Organ of Corti , Vibration , Animals , Gerbillinae/physiology , Hair Cells, Auditory, Outer/physiology , Organ of Corti/physiology , Organ of Corti/cytology , Cochlea/physiology , Cochlea/cytology , Basilar Membrane/physiology
16.
Sensors (Basel) ; 24(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38793928

ABSTRACT

In previous research, we presented an apparatus designed for comprehensive and systematic surveillance of trees against borers. This apparatus entailed the insertion of an uncoated waveguide into the tree trunk, enabling the transmission of micro-vibrations generated by moving or digging larvae to a piezoelectric probe. Subsequent recordings were then transmitted at predetermined intervals to a server, where analysis was conducted manually to assess the infestation status of the tree. However, this method is hampered by significant limitations when scaling to monitor thousands of trees across extensive spatial domains. In this study, we address this challenge by integrating signal processing techniques capable of distinguishing vibrations attributable to borers from those originating externally to the tree. Our primary innovation involves quantifying the impulses resulting from the fracturing of wood fibers due to borer activity. The device employs criteria such as impulse duration and a strategy of waiting for periods of relative quietness before commencing the counting of impulses. Additionally, we provide an annotated large-scale database comprising laboratory and field vibrational recordings, which will facilitate further advancements in this research domain.


Subject(s)
Trees , Vibration , Animals , Trees/physiology , Acoustics , Signal Processing, Computer-Assisted , Larva/physiology
17.
Sensors (Basel) ; 24(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793985

ABSTRACT

Sensory peripheral neuropathy is a common complication of diabetes mellitus and the biggest risk factor for diabetic foot ulcers. There is currently no available treatment that can reverse sensory loss in the diabetic population. The application of mechanical noise has been shown to improve vibration perception threshold or plantar sensation (through stochastic resonance) in the short term, but the therapeutic use, and longer-term effects have not been explored. In this study, vibrating insoles were therapeutically used by 22 participants, for 30 min per day, on a daily basis, for a month by persons with diabetic sensory peripheral neuropathy. The therapeutic application of vibrating insoles in this cohort significantly improved VPT by an average of 8.5 V (p = 0.001) post-intervention and 8.2 V (p < 0.001) post-washout. This statistically and clinically relevant improvement can play a role in protection against diabetic foot ulcers and the delay of subsequent lower-extremity amputation.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Foot , Vibration , Humans , Pilot Projects , Vibration/therapeutic use , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Female , Middle Aged , Diabetic Foot/therapy , Aged , Diabetic Neuropathies/therapy , Diabetic Neuropathies/physiopathology , Foot/physiopathology , Peripheral Nervous System Diseases/therapy , Peripheral Nervous System Diseases/physiopathology , Shoes , Sensation/physiology , Foot Orthoses
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124389, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38710137

ABSTRACT

Over the years, osteosarcoma therapy has had a significative improvement with the use of a multidrug regime strategy, increasing the survival rates from less than 20 % to circa 70 %. Different types of development of new antineoplastic agents are critical to achieve irreversible damage to cancer cells, while preserving the integrity of their healthy counterparts. In the present study, complexes with two and three Pd(II) centres linked by the biogenic polyamines: spermine (Pd2SpmCl4) and spermidine (Pd3Spd2Cl6) were tested against non-malignant (osteoblasts, HOb) and cancer (osteosarcoma, MG-63) human cell lines. Either alone or in combination according to the EURAMOS-1 protocol, they were used versus cisplatin as a drug reference. By evaluating the cytotoxic effects of both therapeutic approaches (single and drug combination) in HOb and MG-63 cell lines, the selective anti-tumoral potential is assessed. To understand the different treatments at a molecular level, Synchrotron Radiation Fourier Transform Infrared and Raman microspectroscopies were applied. Principal component analysis and hierarchical cluster analysis are applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug-to-cell impact. The main changes were observed for the B-DNA native conformation to either Z-DNA (higher in the presence of polynuclear complexes) or A-DNA (preferably after cisplatin exposure). Additionally, a higher effect upon variation in proteins content was detected in drug combination when compared to single drug administration proving the efficacy of the EURAMOS-1 protocol with the new drugs tested.


Subject(s)
Antineoplastic Agents , Osteosarcoma , Spectrum Analysis, Raman , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Spectrum Analysis, Raman/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Spectroscopy, Fourier Transform Infrared/methods , Vibration , Spermine/pharmacology , Spermine/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Spermidine/pharmacology , Spermidine/chemistry , Principal Component Analysis , Cell Survival/drug effects
19.
Bioinspir Biomim ; 19(4)2024 May 31.
Article in English | MEDLINE | ID: mdl-38701828

ABSTRACT

Environmental wind is a random phenomenon in both speed and direction, though it can be forecasted to some extent. An example of that is a gust which is an abrupt, but short-time change in wind speed and direction. Being a free and clean source for small-scale energy scavenging, attraction of wind is rapidly growing in the world of energy harvesters. In this paper, a leaf-like flapping wind energy harvester is introduced as the base structure in which a short-span airfoil is attached to the free end of a double-deck cantilever beam. A flap mechanism inspired by scales on sharks' skin and a tail mechanism inspired by birds' horizontal tail are proposed for integration to the base harvester to make it adaptive with respect to wind speed and direction, respectively. The use of the flap mechanism increases the leaf flapping frequency by +2.1 to +11.5 Hz at wind speeds of 1.5 to 6.0 m s-1. Therefore, since the output power of a vibrational harvester is a function of vibration frequency, a figure of merit or an efficiency parameter related to the output power will increase, as well. On the other hand, if there is a misalignment between the harvester's heading and wind direction due to change of the latter one, the harvesting performance deteriorates. Although the base harvester can realign in certain ranges of sideslip angle at each wind speed, when the tail mechanism is integrated into that, it broadens the range of realignable sideslip angles at all the investigated wind speeds by up to 80∘.


Subject(s)
Plant Leaves , Wind , Animals , Plant Leaves/physiology , Equipment Design , Vibration , Biomimetics/instrumentation , Biomimetics/methods , Birds/physiology
20.
Sci Rep ; 14(1): 12494, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822020

ABSTRACT

Whole-body vibration (WBV), a training method based on the stimulation of muscle contraction by mechanical vibration generated in a vibrating platform, is claimed to be effective in diabetes management. This meta-analysis evaluated WBV effects against other exercises, placebo, or no intervention in type-2 diabetes. Medline, Scopus, and Web of Science databases were systematically searched through June 2023. Randomized controlled trials reported the effect of WBV on glucose (hemoglobin A1C and fasting blood glucose), and lipid profiles (total cholesterol, triglycerides, high, and low-density lipoprotein) were included. Two researchers independently extracted the characteristics of the studies, participants, WBV intervention and comparisons, and the outcomes from the included articles. The Physiotherapy Evidence Database (PEDro) scale assessed trial quality. In this review, all articles had no high risk of bias according to the PEDro scale, with studies achieving optimal, excellent, and good scores. Network meta-analysis revealed that WBV was effective for reducing hemoglobin A1C when compared with conventional (mean difference: - 1.58%, 95%CrI: - 2.51, - 0.47) and resistance exercise (mean difference: - 1.32%, 95%CrI: - 1.96, - 0.33). WBV had also a desirable but insignificant effect on hemoglobin A1C compared to stretching and balance exercises, placebo, and no intervention. The current pairwise meta-analysis did not show that WBV favors fasting blood glucose and lipids. WBV may have potential advantages for glycemic control in type-2 diabetes. However, uncertainties in the findings remain due to the limited number of studies and their heterogeneity.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Lipids , Network Meta-Analysis , Randomized Controlled Trials as Topic , Vibration , Humans , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Vibration/therapeutic use , Blood Glucose/metabolism , Lipids/blood , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...