Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Vet Q ; 44(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712855

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Lactams , Leucine/analogs & derivatives , Plant Extracts , Sulfonic Acids , Vigna , Coronavirus, Feline/drug effects , Antiviral Agents/pharmacology , Animals , Plant Extracts/pharmacology , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Vigna/chemistry , Virus Replication/drug effects , Cell Line
2.
Braz J Biol ; 84: e281236, 2024.
Article in English | MEDLINE | ID: mdl-38775525

ABSTRACT

Munguba butter has bioactive compounds such as vitamin E and phytosterols, which has valued its application in the development of new products, with advantages in its use in emulsified formulations. Therefore, the objective was to develop and evaluate the stability of a nanoemulsion containing munguba butter as the oily phase. Munguba butter was extracted by the ultrasound assisted method and its HLB (hydrophilic-lipophilic balance) was determined. Next, formulations varying the concentration of butter from 1-40% were developed and classified into liquid or solid emulsion and phase separation. Liquid emulsions were evaluated for hydrodynamic particle diameter, polydispersity index (PDI), Zeta potential (ζ), rheological characterization, and stability assays. The butter had an HLB of 6.98. The NE 1.0% formulation was selected and demonstrated to be unstable at high temperatures (45 ± 2 °C) and remained stable at room temperature, refrigeration and light radiation for 90 days. Munguba butter, because it has high amounts of saturated fatty acids, hinders its application in the development of new products. However, the success in the development of the NE 1.0% formulation is noteworthy, remaining stable when exposed to refrigeration, room temperature and light radiation.


Subject(s)
Emulsions , Emulsions/chemistry , Vigna/chemistry , Butter/analysis , Particle Size , Drug Stability , Rheology
3.
Int J Biol Macromol ; 270(Pt 2): 132049, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704060

ABSTRACT

In this study, we examined the possibility of using industrial microwave processing to enhance the gelling properties and reduce the starch digestibility of mung bean flour (MBF). MBF (12.6 % moisture) was microwaved at a power of 6 W/g to different final temperatures (100-130 °C), and then its structural and functional properties were characterized. The microwave treatment had little impact on the crystalline structure or amylose content of the starch, but it roughened the starch granule surfaces and decreased the short-range ordered structure and degree of branching. In addition, the extent of mung bean protein denaturation caused by the microwave treatment depended on the final temperature. Slightly denaturing the proteins (100 °C) did not affect the nature of the gels (protein phase dispersed in a starch phase) but the gel network became more compact. Moderately denaturing the proteins (110-120 °C) led to more compact and homogeneous starch-protein double network gels. Excessive protein denaturation (130 °C) caused the gel structure to become more heterogeneous. As a result, the facilitated tangles between starch chains by more linear starch molecules after debranching, and the protein network produced by moderate protein denaturation led to the formation of stronger gel and the improvement of plasticity during large deformation (large amplitude oscillatory shear-LAOS). Starch recrystallization, lipid complexion, and protein network retard starch digestion in the MBF gels. In conclusion, an industrial microwave treatment improved the gelling and digestive properties of MBF, and Lissajous curve has good adaptability in characterizing the viscoelasticity of gels under large deformations.


Subject(s)
Flour , Gels , Microwaves , Protein Denaturation , Rheology , Starch , Vigna , Starch/chemistry , Vigna/chemistry , Gels/chemistry , Plant Proteins/chemistry , Temperature , Amylose/chemistry
4.
Food Chem ; 449: 139263, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38657553

ABSTRACT

Crab meatballs with more unsaturated fat tend to spoil. Ginger essential oil (GEO) with oxidation resistance was encapsulated into microcapsules (GM) by complex cohesion of mung bean protein isolate (MBPI) and chitosan (CS) in a ratio of 8:1 at pH = 6.4, encapsulation efficiency (EE) and payload (PL) of GM (D50 = 26.16 ± 0.45 µm) with high thermal stability were 78.35 ± 1.02% and 55.43 ± 0.64%. GM (0.6%, w/w) did not interfere with the original flavor of crab meatballs, and lowered values of pH, thiobarbituric acid reactive substances (TBARS) and total bacteria counts (TBC) of the products than those spiked with GEO and the control. The prediction accuracy of the logistic first-order growth kinetic equation in line with TBC (2.84%) was better than that of zero-order and Arrhenius coupled equation based on pH (7.48%) and TBARS (5.94%), but all of them could predict the shelf life of crab meatballs containing GM stored at 4-25 °C.


Subject(s)
Chitosan , Drug Compounding , Food Preservation , Food Storage , Oils, Volatile , Vigna , Zingiber officinale , Chitosan/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Animals , Food Preservation/methods , Zingiber officinale/chemistry , Vigna/chemistry , Vigna/growth & development , Plant Proteins/chemistry , Brachyura/chemistry , Brachyura/microbiology , Shellfish/analysis , Shellfish/microbiology
5.
Food Chem ; 449: 139147, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581784

ABSTRACT

Mung bean protein isolate (MBPI) has attracted much attention as an emerging plant protein. However, its application was limited by the poor gelling characteristics. Thus, the effect of sanxan (SAN) on the gelling behavior of MBPI under microbial transglutaminase (MTG)-induced condition were explored in this study. The results demonstrated that SAN remarkably enhanced the storage modulus, water-holding capacity and mechanical strength. Furthermore, SAN changed the microstructure of MBPI gels to become more dense and ordered. The results of zeta potential indicated the electrostatic interactions existed between SAN and MBPI. The incorporation of SAN altered the secondary structure and molecular conformation of MBPI, and hydrophobic interactions and hydrogen bonding were necessary to maintain the network structure. Additionally, in vitro digestion simulation results exhibited that SAN remarkably improved the capability of MBPI gels to deliver bioactive substances. These findings provided a practical strategy to use natural SAN to improve legume protein gels.


Subject(s)
Gels , Plant Proteins , Transglutaminases , Vigna , Transglutaminases/chemistry , Transglutaminases/metabolism , Vigna/chemistry , Gels/chemistry , Plant Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Hydrogen Bonding
6.
Food Chem ; 449: 139187, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604029

ABSTRACT

Pickering emulsions stabilized by protein particles are of great interest for use in real food systems. This study was to investigate the properties of microgel particles prepared from different plant proteins, i.e., soybean protein isolate (SPI), pea protein isolate (PPI), mung bean protein isolate (MPI), chia seed protein isolate (CSPI), and chickpea protein isolate (CPI). MPI protein particles had most desirable Pickering emulsion forming ability. The particles of SPI and PPI had similar particle size (316.23 nm and 294.80 nm) and surface hydrophobicity (2238.40 and 2001.13) and emulsion forming ability, while the CSPI and CPI particle stabilized emulsions had the least desirable properties. The MPI and PPI particle stabilized Pickering emulsions produced better quality ice cream than the one produced by SPI particle-stabilized emulsions. These findings provide insight into the properties of Pickering emulsions stabilized by different plant protein particles and help expand their application in emulsions and ice cream.


Subject(s)
Emulsions , Particle Size , Plant Proteins , Emulsions/chemistry , Plant Proteins/chemistry , Microgels/chemistry , Hydrophobic and Hydrophilic Interactions , Ice Cream/analysis , Cicer/chemistry , Vigna/chemistry
7.
Int J Biol Macromol ; 267(Pt 1): 131488, 2024 May.
Article in English | MEDLINE | ID: mdl-38615862

ABSTRACT

This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.


Subject(s)
Amylopectin , Amylose , Starch , Vigna , Amylose/chemistry , Amylose/analysis , Amylopectin/chemistry , Viscosity , Vigna/chemistry , Starch/chemistry , Starch/metabolism , Elasticity , Digestion , Molecular Weight
8.
Article in English | MEDLINE | ID: mdl-38648105

ABSTRACT

Sprouts of black beans (Phaseolus vulgaris L.), soybeans (Glycine max L.) and mung beans (Vigna radiata L.) are widely consumed foods containing abundant nutrients with biological activities. They are commonly treated with sulphites for the preservation and extension of shelf-life. However, our previous investigation found that immersing the bean sprouts in sulphite might convert the active components into sulphur-containing derivatives, which can affect both the quality and safety of the sprouts. This study explores the use of FTIR in conjunction with chemometric techniques to differentiate between non-immersed (NI) and sodium sulphite immersed (SI) black bean, soybean and mung bean sprouts. A total of 168 batches of raw spectra were obtained from NI and SI-bean sprouts using FTIR spectroscopy. Four pre-processing techniques, three modelling assessment techniques and four model evaluation indices were examined for differences in performance. The results show that the multiplicative scatter correction is the most effective pre-processing method. Among the models, the accuracy rate of the three models was as follows: radial basis function neural network (95%) > convolutional neural network (91%) > random forest (82%). The overall findings indicate that FTIR spectroscopy, in conjunction with appropriate chemometric approaches, has a high potential for rapidly determining the difference between NI and SI-bean sprouts.


Subject(s)
Phaseolus , Sulfites , Spectroscopy, Fourier Transform Infrared , Sulfites/analysis , Sulfites/chemistry , Phaseolus/chemistry , Chemometrics , Glycine max/chemistry , Vigna/chemistry , Fabaceae/chemistry
9.
Food Funct ; 15(8): 4154-4169, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38482844

ABSTRACT

The consumption of dietary fiber is beneficial for gut health, but the role of bound polyphenols in dietary fiber has lacked systematic study. The aim of this study is to evaluate the ameliorative effect of mung bean coat dietary fiber (MDF) on DSS-induced ulcerative colitis in mice in the presence and absence of bound polyphenols. Compared to polyphenol-removed MDF (PR-MDF), MDF and formulated-MDF (F-MDF,backfilling polyphenols by the amount of extracted from MDF into PR-MDF) alleviated symptoms such as weight loss and colonic injury in mice with colitis, effectively reduced excessive inflammatory responses, and the bound polyphenols restored the integrity of the intestinal barrier by promoting the expression of tight junction proteins. Additionally, bound polyphenols restored the expression of autophagy-related proteins (mTOR, beclin-1, Atg5 and Atg7) and inhibited the excessive expression of apoptotic-related proteins (Bax, caspase-9, and caspase-3). Furthermore, bound polyphenols could ameliorate the dysregulation of the intestinal microbiota by increasing the abundance of beneficial bacteria and inhibiting the abundance of harmful bacteria. Thus, it can be concluded that the presence of bound polyphenols in MDF plays a key role in the alleviation of DSS-induced ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Dietary Fiber , Gastrointestinal Microbiome , Polyphenols , Vigna , Animals , Polyphenols/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Dietary Fiber/pharmacology , Dextran Sulfate/adverse effects , Vigna/chemistry , Male , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred C57BL , Disease Models, Animal , Humans
10.
J Microbiol Biotechnol ; 34(4): 846-853, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38379340

ABSTRACT

Adzuki bean (Vigna angularis), which provides plant-based proteins and functional substances, requires a long soaking time during processing, which limits its usefulness to industries and consumers. To improve this, ultrasonic treatment using high pressure and shear force was judged to be an appropriate pretreatment method. This study aimed to determine the optimal conditions of ultrasound treatment for the improved hydration of adzuki beans using the response surface methodology (RSM). Independent variables chosen to regulate the hydration process of the adzuki beans were the soaking time (2-14 h, X1), treatment intensity (150-750 W, X2), and treatment time (1-10 min, X3). Dependent variables chosen to assess the differences in the beans post-immersion were moisture content, water activity, and hardness. The optimal conditions for treatment deduced through RSM were a soaking time of 12.9 h, treatment intensity of 600 W, and treatment time of 8.65 min. In this optimal condition, the values predicted for the dependent variables were a moisture content of 58.32%, water activity of 0.9979 aw, and hardness of 14.63 N. Upon experimentation, the results obtained were a moisture content of 58.28 ± 0.56%, water activity of 0.9885 ± 0.0040 aw, and hardness of 13.01 ± 2.82 g, confirming results similar to the predicted values. Proper ultrasound treatment caused cracks in the hilum, which greatly affects the water absorption of adzuki beans, accelerating the rate of hydration. These results are expected to help determine economically efficient processing conditions for specific purposes, in addition to solving industrial problems associated with the low hydration rate of adzuki beans.


Subject(s)
Food Handling , Vigna , Water , Vigna/chemistry , Water/chemistry , Food Handling/methods , Ultrasonics , Hardness , Time Factors , Ultrasonic Waves , Seeds/chemistry , Fabaceae/chemistry
11.
Food Chem ; 444: 138626, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38309079

ABSTRACT

The intake of plant-based proteins is rapidly growing around the world due to their nutritional and functional properties, as well as growing demand for vegetarian and vegan diets. Mung bean seeds have been traditionally consumed in Asian countries due to their unique botanical and health-promoting characteristics. In recent years, mung bean protein isolate (MBPI) has attracted much attention due to its ideal techno-functional features, such as water and oil absorption capacity, solubility, emulsifying, foaming, and thermal properties. Therefore, it can be utilized in a native or modified form in different food sectors, such as biodegradable/edible films, colloidal systems, and plant-based alternative products. This study provides a comprehensive review on the extraction methods, amino acid profile, structure, physicochemical properties, modifications, and food applications of MBPI.


Subject(s)
Fabaceae , Vigna , Vigna/chemistry , Fabaceae/chemistry , Chemical Phenomena , Solubility , Plant Proteins/chemistry
12.
Int J Biol Macromol ; 260(Pt 2): 129616, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266839

ABSTRACT

Nitrogen fertilizer can affect the seed quality of mung bean. However, the effects of nitrogen fertilizer on the properties of mung bean protein (MBP) remain unclear. We investigated the effects of four nitrogen fertilization levels on the physicochemical, structural, functional, thermal, and rheological properties of MBP. The results showed that the amino acid and protein contents of mung bean flour were maximized under 90 kg ha-1 of applied nitrogen treatment. Nitrogen fertilization can alter the secondary and tertiary structure of MBP. The main manifestations are an increase in the proportion of ß-sheet, the exposure of more chromophores and hydrophobic groups, and the formation of loose porous aggregates. These changes improved the solubility, oil absorption capacity, emulsion activity, and foaming stability of MBP. Meanwhile, Thermodynamic and rheological analyses showed that the thermal stability, apparent viscosity, and gel elasticity of MBP were all increased under nitrogen fertilizer treatment. Correlation analysis showed that protein properties are closely related to changes in structure. In conclusion, nitrogen fertilization can improve the protein properties of MBP by modulating the structure of protein molecules. This study provides a theoretical basis for the optimization of mung bean cultivation and the further development of high-quality mung bean protein foods.


Subject(s)
Fabaceae , Vigna , Vigna/chemistry , Fertilizers , Nitrogen/pharmacology , Fabaceae/chemistry , Amino Acids
13.
Food Chem ; 443: 138518, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38280365

ABSTRACT

Effects of heat treatment (100 °C) at different moisture content (13-70 %) on the structural, gelation and digestive properties of starch in real mung bean flour (MBF) systems are investigated. The results showed that the structural destruction of the starch, the starch-lipid complexion and starch-protein interaction were promoted with increasing moisture content. The starch-protein interaction was mainly driven by hydrophobic interaction forces, leading the increase of total phase transition enthalpy. Even though starch retained ordered structure after heating at 50 %-70 % moisture, the typical pasting curve almost disappeared. The less leached amylose to construct the continuous phase, and more flexible amylopectin swollen granules dispersed in the matrix may weakened the viscoelasticity of the gels. As a result, two distinct gel textures were presented: soft solids with good water-binding capacity (below 30 %) and pasty fluids (above 40 %). Starch-lipid/protein interactions were demonstrated to retard the digestion rate of starch during MBS gelatinization according to the two-stage first-order kinetic and LOS (logarithm of the slope) models.


Subject(s)
Fabaceae , Vigna , Starch/chemistry , Vigna/chemistry , Flour/analysis , Hot Temperature , Amylose/chemistry , Lipids
14.
Food Chem ; 442: 138477, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38278107

ABSTRACT

Mung bean protein possesses several health benefits, and aqueous processing methods are used for its production. However, mung bean protein yields are different with different methods, which are actually different in conditions (e.g., pH, temperature, and time). Herein, liquid chromatography tandem mass spectrometry identified 28 endopeptidases and exopeptidases in mung bean protein extract, and the positions of 8S and 11S globulins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel were confirmed in our experimental conditions. The SDS-PAGE, trichloroacetic acid-nitrogen solubility index, and free amino acid analysis revealed that (1) 8S globulins showed strong resistance to the endopeptidases (optimal at pH 5 and 50 °C) at pH 3-9, and 11S globulin exhibit strong resistance expect at pH 3-3.5; (2) the exopeptidases (optimal at pH 6 and 50 °C) preferred to liberate methionine and tryptophan. These proteases negatively affected protein yield, and short production time and low temperature were recommended.


Subject(s)
Fabaceae , Globulins , Vigna , Vigna/chemistry , Peptide Hydrolases , Fabaceae/chemistry , Globulins/chemistry , Endopeptidases , Exopeptidases
15.
J Sci Food Agric ; 104(5): 2561-2573, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37935642

ABSTRACT

Plant protein is rapidly becoming more of a prime interest to consumers for its nutritional and functional properties, as well as the potential to replace animal protein. In the frame of alternative protein new sources, mung bean is becoming another legume crop that could provide high quality plant protein after soybean and pea. In particular, the 8S globulins in mung bean protein have high structural similarity and homology with soybean ß-conglycinin (7S globulin), with 68% sequence identity. Currently, mung bean protein has gained popularity in food industry because of its high nutritional value and peculiar functional properties. In that regard, various modification technologies have been applied to further broaden its application. Here, we provide a review of the composition, nutritional value, production methods, functional properties and modification technologies of mung bean protein. Furthermore, its potential applications in the new plant-based products, meat products, noodles, edible packaging films and bioactive compound carriers are highlighted to facilitate its utilization as an alternative plant protein, thus meeting consumer demands for high quality plant protein resources. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Vigna , Animals , Vigna/chemistry , Plant Proteins/metabolism , Fabaceae/chemistry , Glycine max
16.
Int J Biol Macromol ; 254(Pt 1): 127616, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918607

ABSTRACT

Four different methods of maillard reaction including ultrasound (150 W, 10 min) assisted, classical wet heating (80 °C, 60min), moderate water bath heating (60°C, 12 to 30 h) and dry state method (60 °C, 79 % relative humidity and 48 h) were used to Mung bean protein isolate - Maltodexrtin conjugates (MPI-MD) preparation. The samples prepared under ultrasound and wet heating were chosen for further analysis according to degree of graft and UV-absorbance at 420 nm. Higher glycosylation at short time and lower browning were obtained under ultrasound treatment. Covalent attachment in conjugates confirmed by SDS-polyacrylamide gel electrophoresis. The structural analysis revealed prominent unfolding effect of ultrasound waves on the protein's molecules. The decrease of α-helix content was related to the exposure of buried amino group residues during reaction. Glycation of MPI under ultrasound caused changes in tertiary structure of protein and leads to decrease in the fluorescence intensity compared with native and wet heating treatments. FTIR spectra confirmed the conjugation of the MPI and MD and suggested that protein structure was changed and ultrasound promoted the graft reaction more than wet heating treatment. Conjugated MPI showed higher emulsification and solubility index than MPI, moreover the effect of ultrasonic waves on ameliorated functional properties was impressive than those for wet heating treatment. Overall, this study showed use of ultrasonication in maillard reaction was a suitable method for producing MPI- MD conjugates and improved the efficiency of graft reaction and functional properties of grafts.


Subject(s)
Vigna , Vigna/chemistry , Maillard Reaction , Ultrasonics , Hydrophobic and Hydrophilic Interactions , Emulsions/chemistry
17.
J Sci Food Agric ; 104(3): 1656-1667, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851693

ABSTRACT

BACKGROUND: The effects of exogenous brassinolide (BR) treatment (3.0 µmol L-1 ) on phenolic biosynthesis in mung bean sprouts were investigated. This investigation included the analysis of sugar content, substrates within the phenylpropane pathway, energy substances, enzymatic activity within the phenylpropane pathway, sugar metabolism and energy metabolism. RESULTS: Results showed that BR treatment significantly increased the levels of total phenolics, p-hydroxybenzoic acid, p-coumaric acid, gallic acid, fumalic acid and caffeic acid. This enhancement was accomplished through the elevation of l-phenylalanine levels and the activation of enzymes associated with the phenylpropane pathway in mung bean sprouts, including phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and 4-coumarate CoA ligase. Furthermore, BR treatment induced alterations in sugar metabolism in mung bean sprouts as evidenced by the increased levels of glucose, fructose, sucrose and phosphoenolpyruvate. Moreover, increased activity was observed for enzymes linked to sucrose metabolism and glycolysis in the BR-treated group. Concurrently, BR treatment bolstered the levels of adenosine triphosphate and energy charge in mung bean sprouts, which was attributed to the activation of H+ -adenosine triphosphatase, Ca2+ -adenosine triphosphatase and succinic dehydrogenase. CONCLUSION: These results suggest that BR treatment can accelerate the accumulation of phenolic compounds in mung bean sprouts. This effect is achieved not only through the activation of the phenylpropane pathway, but also through the modulation of sugar and energy metabolism. The modulation provides ample energy and a substrate for the biosynthesis of phenolics. © 2023 Society of Chemical Industry.


Subject(s)
Vigna , Vigna/chemistry , Sugars/metabolism , Energy Metabolism , Sucrose/metabolism , Adenosine Triphosphatases/metabolism
18.
J Sci Food Agric ; 104(6): 3665-3675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158728

ABSTRACT

BACKGROUND: The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS: MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, ß-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of ß-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION: Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Vigna , Vigna/chemistry , Protein Hydrolysates/chemistry , Plant Proteins/chemistry , Solubility
19.
Food Chem ; 440: 138228, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38150901

ABSTRACT

The effects of heat moisture treatment (HMT) times on the physicochemical properties of three bean flours and their starch were analyzed. The colors of L*, b* and ΔE values increased significantly with time. The adzuki bean and pea flours showed better WAI and SP, and better gelation of starch at 2 h. The rheological properties of mixed HMT dough (3:7) exhibited the typical solid-like weak gel behavior. HMT had a significantly decreased on the pasting viscosity of bean flour starch with treated time. HMT caused the starch granules damage, but did not radically change the crystal type. FTIR results showed more proteins attached to the surface of starch granules, and the short-range molecular order decreased the DO at 2 h. In vitro digestibility inferred that RDS converted into SDS and RS. These results indicated that HMT significantly affected the digestibility and physicochemical properties of bean flours.


Subject(s)
Phaseolus , Vigna , Vigna/chemistry , Flour , Phaseolus/metabolism , Pisum sativum , Hot Temperature , Starch/chemistry
20.
Chem Biodivers ; 20(11): e202300797, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37751377

ABSTRACT

Vigna unguiculata L. Walp. is an African crop spread worldwide mainly for pulses production. Despite being a neglected and under-utilized food, cowpea leaves are a rich source of phytochemicals and micronutrients. The aim of the work is to characterize the phytochemical composition of cowpea leaves by an optimized ultrasound-assisted extraction (USAE) and to compare raw and boiled leaves. A three-level factorial design (Box-Behnken) was employed for the optimization of the USAE considering three different parameters (% ethanol, drug-to-solvent ratio, and number of cycles). The optimized extracts were characterized by LC/MS/MS. Finally, leaves were boiled at 100 °C for 30 min to simulate traditional cooking procedures and compared to raw leaves. The best extraction condition was EtOH/H2 O 1 : 2 v/v, drug to solvent ratio 1 : 47 w/v, and 3 extraction cycles. The phytochemicals identified mainly belong to the family of phenolic acids, flavonoids, terpenoids, and alkaloids. Boiled leaves revealed a significant loss of most phytochemicals and a net decrease of their antioxidant activity compared to the raw ones. The results highlight the potential nutraceutical value of cowpea leaves whilst the impoverishment triggered by traditional consumer habits pushes the need to evaluate alternative cooking procedures helpful in the maintenance of their phytochemical properties.


Subject(s)
Vigna , Vigna/chemistry , Tandem Mass Spectrometry , Phytochemicals , Ethanol/chemistry , Solvents , Habits
SELECTION OF CITATIONS
SEARCH DETAIL
...