Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.642
Filter
1.
Biochemistry (Mosc) ; 89(4): 726-736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831508

ABSTRACT

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.


Subject(s)
Intermediate Filaments , Vimentin , Vimentin/metabolism , Vimentin/chemistry , Humans , Intermediate Filaments/metabolism , Animals , Intermediate Filament Proteins/metabolism , Intermediate Filament Proteins/chemistry
2.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822516

ABSTRACT

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Subject(s)
Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , A549 Cells , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Cadherins/genetics , Cadherins/metabolism , Cell Movement/genetics , Cell Movement/drug effects , Diphtheria Toxin/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, Transgenic, Suicide , Promoter Regions, Genetic/genetics , Vimentin/genetics , Vimentin/metabolism
3.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 592-597, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825905

ABSTRACT

Objective: To investigate the expression of DARS2 and its clinical significance in colorectal cancer. Methods: In this study, bioinformatics tools, especially gene expression profile interactive analysis 2 (GEPIA2), were used to conduct an in-depth analysis of DARS2 expression in colorectal cancer tissues. Immunohistochemical staining was carried out in 108 colorectal cancer specimens and 30 normal colorectal tissues obtained from the First Affiliated Hospital of Nanchang University, Nanchang, China. Colorectal cancer cell lines (HCT116 and SW480) were transfected with small interfering RNA (siRNA) and DARS2 overexpression plasmid to examine the effects of DARS2 knockdown and overexpression on cell function. To assess the effects on cell function, CCK8 and transwell migration assays were used to assess proliferation and cell motility, respectively. Additionally, protein immunoblotting was employed to scrutinize the expression of proteins associated with the epithelial-mesenchymal transition of colorectal cancer cells. Results: DARS2 exhibited a pronounced upregulation in expression within colorectal cancer tissues compared to their normal epithelial counterparts. Furthermore, DARS2 expression was higher in colorectal cancer of stage Ⅲ-Ⅳ than those of stage Ⅰ-Ⅱ, exhibiting a significant correlation with N staging, M staging, and pathological staging (P<0.05). Kaplan-Meier analyses showed a decreased overall survival rate in colorectal cancer with DARS2 expression compared to those without DARS2 expression (P<0.05). In the siRNA transfection group, there was a significant reduction in cell proliferation and migration (P<0.01 and P<0.05, respectively). Conversely, the transfection of DARS2 overexpression plasmids substantially increased both cell proliferation and migration (P<0.05). Additionally, immunoblotting revealed that DARS2 knockdown led to an upregulation of E-cadherin expression and a downregulation of N-cadherin and vimentin expression. In contrast, DARS2 overexpression resulted in increased N-cadherin and vimentin expression, coupled with reduction in E-cadherin expression. Conclusions: There is a strong association between DARS2 expression and colorectal cancer progression. Silencing DARS2 inhibits cell proliferation and migration, exerting a discernible influence on the epithelial-mesenchymal transition process.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , RNA, Small Interfering , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , RNA, Small Interfering/genetics , Cell Line, Tumor , Vimentin/metabolism , Vimentin/genetics , Cadherins/metabolism , Cadherins/genetics , Survival Rate , HCT116 Cells , Neoplasm Staging , Up-Regulation , Gene Expression Regulation, Neoplastic , Clinical Relevance
4.
J R Soc Interface ; 21(215): 20230641, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835244

ABSTRACT

Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.


Subject(s)
Cell Movement , Cell Polarity , Centrosome , Microtubules , Vimentin , Animals , Centrosome/metabolism , Mice , Vimentin/metabolism , Cell Polarity/physiology , Microtubules/metabolism , Acetylation , Cell Movement/physiology , Fibroblasts/metabolism , Fibroblasts/cytology , Mice, Knockout
5.
Head Neck Pathol ; 18(1): 40, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727794

ABSTRACT

BACKGROUND: Odontogenic lesions constitute a heterogeneous group of lesions. CLIC4 protein regulates different cellular processes, including epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation. This study analyzed CLIC4, E-cadherin, Vimentin, and α-SMA immunoexpression in epithelial odontogenic lesions that exhibit different biological behavior. METHODS: It analyzed the immunoexpression of CLIC4, E-cadherin, and Vimentin in the epithelial cells, as well as CLIC4 and α-SMA in the mesenchymal cells, of ameloblastoma (AM) (n = 16), odontogenic keratocyst (OKC) (n = 20), and adenomatoid odontogenic tumor (AOT) (n = 8). Immunoexpressions were categorized as score 0 (0% positive cells), 1 (< 25%), 2 (≥ 25% - < 50%), 3 (≥ 50% - < 75%), or 4 (≥ 75%). RESULTS: Cytoplasmic CLIC4 immunoexpression was higher in AM and AOT (p < 0.001) epithelial cells. Nuclear-cytoplasmic CLIC4 was higher in OKC's epithelial lining (p < 0.001). Membrane (p = 0.012) and membrane-cytoplasmic (p < 0.001) E-cadherin immunoexpression were higher in OKC, while cytoplasmic E-cadherin expression was higher in AM and AOT (p < 0.001). Vimentin immunoexpression was higher in AM and AOT (p < 0.001). Stromal CLIC4 was higher in AM and OKC (p = 0.008). Similarly, α-SMA immunoexpression was higher in AM and OKC (p = 0.037). Correlations in these proteins' immunoexpression were observed in AM and OKC (p < 0.05). CONCLUSIONS: CLIC4 seems to regulate the epithelial-mesenchymal transition, modifying E-cadherin and Vimentin expression. In mesenchymal cells, CLIC4 may play a role in fibroblast-myofibroblast transdifferentiation. CLIC4 may be associated with epithelial odontogenic lesions with aggressive biological behavior.


Subject(s)
Ameloblastoma , Cadherins , Chloride Channels , Epithelial-Mesenchymal Transition , Odontogenic Tumors , Vimentin , Humans , Epithelial-Mesenchymal Transition/physiology , Chloride Channels/metabolism , Chloride Channels/analysis , Cadherins/metabolism , Odontogenic Tumors/pathology , Odontogenic Tumors/metabolism , Ameloblastoma/pathology , Ameloblastoma/metabolism , Vimentin/metabolism , Adult , Female , Odontogenic Cysts/pathology , Odontogenic Cysts/metabolism , Male , Actins/metabolism , Young Adult , Middle Aged , Antigens, CD/metabolism , Adolescent
6.
Anal Cell Pathol (Amst) ; 2024: 8645534, 2024.
Article in English | MEDLINE | ID: mdl-38715919

ABSTRACT

Materials and Methods: Hsa_circ_0051908 expression was determined using RT-qPCR. HCC cell proliferation, apoptosis, invasion, and migration were assessed using CCK-8 assay, EdU staining, TUNEL staining, flow cytometry, and transwell assay. The molecular mechanism was analyzed using western blotting. In addition, the role of hsa_circ_0051908 in tumor growth was evaluated in vivo. Results: Hsa_circ_0051908 expression was increased in both HCC tissues and cell lines. The proliferation, migration, and invasion of HCC cells were significantly decreased after hsa_circ_0051908 knockdown, while cell apoptosis was notably increased. Furthermore, we found that hsa_circ_0051908 silencing downregulated vimentin and Snail and upregulated E-cadherin. In vivo, hsa_circ_0051908 silencing significantly inhibited the growth of the tumor. Conclusions: Our data provide evidence that hsa_circ_0051908 promotes HCC progression partially by mediating the epithelial-mesenchymal transition process, and it may be used for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Epithelial-Mesenchymal Transition , Liver Neoplasms , RNA, Circular , Animals , Humans , Male , Apoptosis/genetics , Cadherins/metabolism , Cadherins/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , RNA, Circular/genetics , RNA, Circular/metabolism , Vimentin/metabolism , Vimentin/genetics
7.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727931

ABSTRACT

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Subject(s)
Apoptosis , Breast Neoplasms , Hyaluronan Receptors , RNA, Small Interfering , Female , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors/antagonists & inhibitors , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , RNA, Small Interfering/genetics , Vimentin/metabolism , Vimentin/genetics
8.
J Clin Periodontol ; 51(7): 806-817, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708491

ABSTRACT

AIM: To qualitatively and quantitatively evaluate the formation and maturation of peri-implant soft tissues around 'immediate' and 'delayed' implants. MATERIALS AND METHODS: Miniaturized titanium implants were placed in either maxillary first molar (mxM1) fresh extraction sockets or healed mxM1 sites in mice. Peri-implant soft tissues were evaluated at multiple timepoints to assess the molecular mechanisms of attachment and the efficacy of the soft tissue as a barrier. A healthy junctional epithelium (JE) served as positive control. RESULTS: No differences were observed in the rate of soft-tissue integration of immediate versus delayed implants; however, overall, mucosal integration took at least twice as long as osseointegration in this model. Qualitative assessment of Vimentin expression over the time course of soft-tissue integration indicated an initially disorganized peri-implant connective tissue envelope that gradually matured with time. Quantitative analyses showed significantly less total collagen in peri-implant connective tissues compared to connective tissue around teeth around implants. Quantitative analyses also showed a gradual increase in expression of hemidesmosomal attachment proteins in the peri-implant epithelium (PIE), which was accompanied by a significant inflammatory marker reduction. CONCLUSIONS: Within the timeframe examined, quantitative analyses showed that connective tissue maturation never reached that observed around teeth. Hemidesmosomal attachment protein expression levels were also significantly reduced compared to those in an intact JE, although quantitative analyses indicated that macrophage density in the peri-implant environment was reduced over time, suggesting an improvement in PIE barrier functions. Perhaps most unexpectedly, maturation of the peri-implant soft tissues was a significantly slower process than osseointegration.


Subject(s)
Dental Implants , Osseointegration , Animals , Mice , Osseointegration/physiology , Tooth Socket/surgery , Epithelial Attachment , Dental Implantation, Endosseous/methods , Immediate Dental Implant Loading , Titanium , Connective Tissue , Vimentin/analysis , Vimentin/metabolism , Collagen/metabolism , Gingiva , Time Factors
9.
ACS Appl Bio Mater ; 7(6): 3997-4006, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38815185

ABSTRACT

Epithelial-mesenchymal transition (EMT) is critical for tumor invasion and many other cell-relevant processes. While much progress has been made about EMT, no report concerns the EMT of cells on topological biomaterial interfaces with significant nuclear deformation. Herein, we prepared a poly(lactide-co-glycolide) micropillar array with an appropriate dimension to enable significant deformation of cell nuclei and examined EMT of a human lung cancer epithelial cell (A549). We show that A549 cells undergo serious nuclear deformation on the micropillar array. The cells express more E-cadherin and less vimentin on the micropillar array than on the smooth surface. After transforming growth factor-ß1 (TGF-ß1) treatment, the expression of E-cadherin as an indicator of the epithelial phenotype is decreased and the expression of vimentin as an indicator of the mesenchymal phenotype is increased for the cells both on smooth surfaces and on micropillar arrays, indicating that EMT occurs even when the cell nuclei are deformed and the culture on the micropillar array more enhances the expression of vimentin. Expression of myosin phosphatase targeting subunit 1 is reduced in the cells on the micropillar array, possibly affecting the turnover of myosin light chain phosphorylation and actin assembly; this makes cells on the micropillar array prefer the epithelial-like phenotype and more sensitive to TGF-ß1. Overall, the micropillar array exhibits a promoting effect on the EMT.


Subject(s)
Biocompatible Materials , Epithelial-Mesenchymal Transition , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Vimentin/metabolism , A549 Cells , Materials Testing , Particle Size , Cadherins/metabolism , Surface Properties
10.
Sci Rep ; 14(1): 12374, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811642

ABSTRACT

Circulating tumor cells (CTCs) have gathered attention as a biomarker for carcinomas. However, CTCs in sarcomas have received little attention. In this work, we investigated cell surface proteins and antibody combinations for immunofluorescence detection of sarcoma CTCs. A microfluidic device that combines filtration and immunoaffinity using gangliosides 2 and cell surface vimentin (CSV) antibodies was employed to capture CTCs. For CTC detection, antibodies against cytokeratins 7 and 8 (CK), pan-cytokeratin (panCK), or a combination of panCK and CSV were used. Thirty-nine blood samples were collected from 21 patients of various sarcoma subtypes. In the independent samples study, samples were subjected to one of three antibody combination choices. Significant difference in CTC enumeration was found between CK and panCK + CSV, and between panCK and panCK + CSV. Upon stratification of CK+ samples, those of metastatic disease had a higher CTC number than those of localized disease. In the paired samples study involving cytokeratin-positive sarcoma subtypes, using panCK antibody detected more CTCs than CK. Similarly, for osteosarcoma, using panCK + CSV combination resulted in a higher CTC count than panCK. This study emphasized deliberate selection of cell surface proteins for sarcoma CTC detection and subtype stratification for studying cancers as heterogeneous as sarcomas.


Subject(s)
Biomarkers, Tumor , Neoplastic Cells, Circulating , Sarcoma , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Sarcoma/pathology , Sarcoma/blood , Sarcoma/diagnosis , Sarcoma/metabolism , Biomarkers, Tumor/blood , Female , Male , Membrane Proteins/metabolism , Membrane Proteins/immunology , Keratins/immunology , Keratins/metabolism , Middle Aged , Adult , Vimentin/metabolism , Vimentin/immunology , Aged , Antibodies/immunology , Cell Line, Tumor
11.
Commun Biol ; 7(1): 658, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811770

ABSTRACT

The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin's effects on the transmission of cell contractile forces to the extracellular matrix.


Subject(s)
Actomyosin , Mechanotransduction, Cellular , Microtubules , Vimentin , Microtubules/metabolism , Actomyosin/metabolism , Vimentin/metabolism , Humans , Extracellular Matrix/metabolism , Animals
12.
Biomolecules ; 14(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38785974

ABSTRACT

Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1ß, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-ß1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.


Subject(s)
Disease Models, Animal , Ependymoglial Cells , Gliosis , Mice, Transgenic , Microglia , Animals , Gliosis/pathology , Gliosis/metabolism , Gliosis/chemically induced , Mice , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Ependymoglial Cells/drug effects , Retina/metabolism , Retina/pathology , Retina/drug effects , Hypoxia/metabolism , Hypoxia/pathology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/drug effects , Glial Fibrillary Acidic Protein/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Cytokines/metabolism , Vimentin/metabolism , Vimentin/genetics , Diphtheria Toxin
13.
PeerJ ; 12: e17360, 2024.
Article in English | MEDLINE | ID: mdl-38737746

ABSTRACT

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Subject(s)
Benzopyrans , Breast Neoplasms , Cadherins , Epithelial-Mesenchymal Transition , Twist-Related Protein 1 , Vimentin , Humans , Epithelial-Mesenchymal Transition/drug effects , Female , Cadherins/metabolism , Vimentin/metabolism , Vimentin/genetics , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Benzopyrans/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , MCF-7 Cells , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Neoplasm Invasiveness/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Nuclear Proteins
14.
Nat Commun ; 15(1): 3940, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750036

ABSTRACT

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Subject(s)
Cell Dedifferentiation , Cell Differentiation , Epithelial Cells , Hepatocytes , Animals , Hepatocytes/cytology , Hepatocytes/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Mice , Organoids/cytology , Organoids/metabolism , Epithelial-Mesenchymal Transition , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Cells, Cultured , Signal Transduction , Vimentin/metabolism , Hippo Signaling Pathway , Liver/cytology , Liver/metabolism , Mice, Inbred C57BL , Male , Cell Culture Techniques/methods
15.
Methods Cell Biol ; 187: 117-137, 2024.
Article in English | MEDLINE | ID: mdl-38705622

ABSTRACT

Correlative microscopy is an important approach for bridging the resolution gap between fluorescence light and electron microscopy. Here, we describe a fast and simple method for correlative immunofluorescence and immunogold labeling on the same section to elucidate the localization of phosphorylated vimentin (P-Vim), a robust feature of pulmonary vascular remodeling in cells of human lung small arteries. The lung is a complex, soft and difficult tissue to prepare for transmission electron microscopy (TEM). Detailing the molecular composition of small pulmonary arteries (<500µm) would be of great significance for research and diagnostics. Using the classical methods of immunochemistry (either hydrophilic resin or thin cryosections), is difficult to locate small arteries for analysis by TEM. To address this problem and to observe the same structures by both light and electron microscopy, correlative microscopy is a reliable approach. Immunofluorescence enables us to know the distribution of P-Vim in cells but does not provide ultrastructural detail on its localization. Labeled structures selected by fluorescence microscope can be identified and further analyzed by TEM at high resolution. With our method, the morphology of the arteries is well preserved, enabling the localization of P-Vim inside pulmonary endothelial cells. By applying this approach, fluorescent signals can be directly correlated to the corresponding subcellular structures in areas of interest.


Subject(s)
Lung , Vimentin , Humans , Vimentin/metabolism , Phosphorylation , Lung/metabolism , Lung/ultrastructure , Microscopy, Fluorescence/methods , Pulmonary Artery/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/ultrastructure , Fluorescent Antibody Technique/methods , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Microscopy, Electron, Transmission/methods , Microscopy, Electron/methods
16.
Neurosurg Focus ; 56(5): E17, 2024 May.
Article in English | MEDLINE | ID: mdl-38691868

ABSTRACT

OBJECTIVE: There is a lack of effective drugs to treat the progression and recurrence of chordoma, which is widely resistant to treatment in chemotherapy. The authors investigated the functional and therapeutic relevance of the E1A-binding protein p300 (EP300) in chordoma. METHODS: The expression of EP300 and vimentin was examined in specimens from 9 patients with primary and recurrent chordoma with immunohistochemistry. The biological functions of EP300 were evaluated with Cell Counting Kit-8, clonogenic assays, and transwell assays. The effects of EP300 inhibitors (C646 and SGC-CBP30) on chordoma cell motility were assessed with these assays. The effect of the combination of EP300 inhibitors and cisplatin on chordoma cells was evaluated with clonogenic assays. Reverse transcription quantitative polymerase chain reaction and Western blot techniques were used to explore the potential mechanism of EP300 through upregulation of the expression of vimentin to promote the progression of chordoma. RESULTS: Immunohistochemistry analysis revealed a positive correlation between elevated EP300 expression levels and recurrence. The upregulation of EP300 stimulated the growth of and increased the migratory and invasive capabilities of chordoma cells, along with upregulating vimentin expression and consequently impacting their invasive properties. Conversely, EP300 inhibitors decreased cell proliferation and downregulated vimentin. Furthermore, the combination of EP300 inhibition and cisplatin exhibited an enhanced anticancer effect on chordoma cells, indicating that EP300 may influence chordoma sensitivity to chemotherapy. CONCLUSIONS: These findings indicate that EP300 functions as an oncogene in chordoma. Targeting EP300 offers a novel approach to the development and clinical treatment of chordoma.


Subject(s)
Chordoma , Disease Progression , E1A-Associated p300 Protein , Up-Regulation , Vimentin , Humans , Chordoma/genetics , Chordoma/metabolism , Vimentin/metabolism , Vimentin/genetics , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Male , Up-Regulation/drug effects , Female , Middle Aged , Adult , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Movement/drug effects , Cell Line, Tumor , Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/genetics , Gene Expression Regulation, Neoplastic/drug effects
17.
Methods Cell Biol ; 187: 205-222, 2024.
Article in English | MEDLINE | ID: mdl-38705625

ABSTRACT

Correlated super-resolution fluorescence microscopy and cryo-electron microscopy enables imaging with both high labeling specificity and high resolution. Naturally, combining two sophisticated imaging techniques within one workflow also introduces new requirements on hardware, such as the need for a super-resolution fluorescence capable microscope that can be used to image cryogenic samples. In this chapter, we describe the design and use of the "cryoscope"; a microscope designed for single-molecule localization microscopy (SMLM) of cryoEM samples that fits right into established cryoEM workflows. We demonstrate the results that can be achieved with our microscope by imaging fluorescently labeled vimentin, an intermediate filament, within U2OS cells grown on EM grids, and we provide detailed 3d models that encompass the entire design of the microscope.


Subject(s)
Cryoelectron Microscopy , Microscopy, Fluorescence , Microscopy, Fluorescence/methods , Cryoelectron Microscopy/methods , Humans , Vimentin/metabolism , Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods , Cell Line, Tumor
18.
Methods Cell Biol ; 187: 223-248, 2024.
Article in English | MEDLINE | ID: mdl-38705626

ABSTRACT

Super-resolution cryo-correlative light and electron microscopy (SRcryoCLEM) is emerging as a powerful method to enable targeted in situ structural studies of biological samples. By combining the high specificity and localization accuracy of single-molecule localization microscopy (cryoSMLM) with the high resolution of cryo-electron tomography (cryoET), this method enables accurately targeted data acquisition and the observation and identification of biomolecules within their natural cellular context. Despite its potential, the adaptation of SRcryoCLEM has been hindered by the need for specialized equipment and expertise. In this chapter, we outline a workflow for cryoSMLM and cryoET-based SRcryoCLEM, and we demonstrate that, given the right tools, it is possible to incorporate cryoSMLM into an established cryoET workflow. Using Vimentin as an exemplary target of interest, we demonstrate all stages of an SRcryoCLEM experiment: performing cryoSMLM, targeting cryoET acquisition based on single-molecule localization maps, and correlation of cryoSMLM and cryoET datasets using scNodes, a software package dedicated to SRcryoCLEM. By showing how SRcryoCLEM enables the imaging of specific intracellular components in situ, we hope to facilitate adoption of the technique within the field of cryoEM.


Subject(s)
Cryoelectron Microscopy , Cryoelectron Microscopy/methods , Humans , Single Molecule Imaging/methods , Electron Microscope Tomography/methods , Software , Image Processing, Computer-Assisted/methods , Vimentin/metabolism , Animals
19.
J Virol ; 98(5): e0019524, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38656209

ABSTRACT

The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE: Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.


Subject(s)
Encephalitis Virus, Japanese , Vimentin , Viral Nonstructural Proteins , Virus Replication , Animals , Humans , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , HEK293 Cells , Host-Pathogen Interactions , Phosphorylation , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases/metabolism , Vimentin/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics
20.
Respir Res ; 25(1): 157, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594676

ABSTRACT

BACKGROUND: Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS: CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 µg), or gram-positive peptidoglycan (PGN, 100 µg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS: Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION: Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.


Subject(s)
Lung Diseases , Monocytes , Mice , Animals , Monocytes/metabolism , Liposomes/metabolism , Vimentin/metabolism , Lipopolysaccharides/pharmacology , Clodronic Acid/pharmacology , Clodronic Acid/metabolism , CD8-Positive T-Lymphocytes , Lung , Macrophages/metabolism , Lung Diseases/metabolism , Environmental Exposure , Collagen/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...