Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.570
Filter
1.
Commun Biol ; 7(1): 634, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796621

ABSTRACT

Ebola virus (EBOV) matrix protein VP40 can assemble and bud as virus-like particles (VLPs) when expressed alone in mammalian cells. Nucleoprotein (NP) could be recruited to VLPs as inclusion body (IB) when co-expressed, and increase VLP production. However, the mechanism behind it remains unclear. Here, we use a computational approach to study NP-VP40 interactions. Our simulations indicate that NP may enhance VLP production through stabilizing VP40 filaments and accelerating the VLP budding step. Further, both the relative timing and amount of NP expression compared to VP40 are important for the effective production of IB-containing VLPs. We predict that relative NP/VP40 expression ratio and time are important for efficient production of IB-containing VLPs. We conclude that disrupting the expression timing and amount of NP and VP40 could provide new avenues to treat EBOV infection. This work provides quantitative insights into EBOV proteins interactions and how virion generation and drug efficacy could be influenced.


Subject(s)
Ebolavirus , Viral Core Proteins , Ebolavirus/metabolism , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Humans , Virion/metabolism , Virion/genetics , Nucleoproteins/metabolism , Nucleoproteins/genetics , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/genetics , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/metabolism
2.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38714444

ABSTRACT

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Subject(s)
Adenoviridae , Administration, Intranasal , Antibodies, Viral , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Viral Matrix Proteins , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Adenoviridae/genetics , Adenoviridae/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Vaccine Efficacy , Nucleoproteins/immunology , Nucleoproteins/genetics , Viral Core Proteins/immunology , Viral Core Proteins/genetics , Injections, Intramuscular , Viroporin Proteins
3.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38567974

ABSTRACT

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Subject(s)
Arsenic Trioxide , Cell Nucleus , DNA, Circular , DNA, Viral , Hepatitis B virus , Hepatitis B , Sumoylation , Virus Replication , Arsenic Trioxide/pharmacology , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Virus Replication/drug effects , Hepatitis B/virology , Hepatitis B/drug therapy , Hepatitis B/metabolism , Sumoylation/drug effects , DNA, Circular/genetics , DNA, Circular/metabolism , Cell Nucleus/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Antiviral Agents/pharmacology , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Hep G2 Cells
4.
Sci Adv ; 10(16): eadl6144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640233

ABSTRACT

Nucleoprotein (NP) is a key structural protein of influenza ribonucleoprotein complexes and is central to viral RNA packing and trafficking. NP also determines the sensitivity of influenza to myxovirus resistance protein 1 (MxA), an innate immunity factor that restricts influenza replication. A few critical MxA-resistant mutations have been identified in NP, including the highly conserved proline-283 substitution. This essential proline-283 substitution impairs influenza growth, a fitness defect that becomes particularly prominent at febrile temperature (39°C) when host chaperones are depleted. Here, we biophysically characterize proline-283 NP and serine-283 NP to test whether the fitness defect is caused by the proline-283 substitution introducing folding defects. We show that the proline-283 substitution changes the folding pathway of NP, making NP more aggregation prone during folding, but does not alter the native structure of the protein. These findings suggest that influenza has evolved to hijack host chaperones to promote the folding of otherwise biophysically incompetent viral proteins that enable innate immune system escape.


Subject(s)
Influenza, Human , Humans , Viral Core Proteins/genetics , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , RNA-Binding Proteins/metabolism , Nucleocapsid Proteins/metabolism , Myxovirus Resistance Proteins
5.
Dokl Biochem Biophys ; 516(1): 93-97, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38539009

ABSTRACT

Influenza A virus has a wide natural areal among birds, mammals, and humans. One of the main regulatory adaptors of the virus host range is the major NP protein of the viral nucleocapsid. Phylogenetic analysis of the NP protein of different viruses has revealed the existence of two phylogenetic cohorts in human influenza virus population. Cohort I includes classical human viruses that caused epidemics in 1957, 1968, 1977. Cohort II includes the H1N1/2009pdm virus, which had a mixed avian-swine origin but caused global human pandemic. Also, the highly virulent H5N1 avian influenza virus emerged in 2021 and caused outbreaks of lethal infections in mammals including humans, appeared to have the NP gene of the second phylogenetic cohort and, therefore, by the type of adaptation to human is similar to the H1N1/2009pdm virus and seems to possess a high epidemic potential for humans. The data obtained shed light on pathways and dynamics of adaptation of avian influenza viruses to humans and propose phylogenetic algorithm for systemic monitoring of dangerous virus strains to predict epidemic harbingers and take immediate preventive measures.


Subject(s)
Host Specificity , Phylogeny , Humans , Animals , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Influenza, Human/virology , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza A Virus, H1N1 Subtype/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Influenza A virus/genetics , Influenza A Virus, H5N1 Subtype/genetics
6.
J Viral Hepat ; 31(6): 320-323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483043

ABSTRACT

Hepatitis C core antigen (HCVcAg) is becoming increasingly recognized as an alternative to molecular testing for the confirmation of chronic hepatitis C. However, there are limited data on the performance of this assay in a genotype 3 (GT3) predominant country like Pakistan. We conducted a study to evaluate the diagnostic performance of HCVcAg against the HCV polymerase chain reaction (PCR) molecular test. HCV antibody-positive patients requiring confirmatory testing were recruited from August to October 2018 at the Pakistan Kidney and Liver Institute and Research Center (PKLI&RC), Lahore, Pakistan. Patients with previously known diagnoses or treatment histories were excluded. The Abbott HCV Ag assay was used for HCVcAg testing. Results ≥3.00 fmol/L were considered positive for HCVcAg. The Abbott RealTime HCV assay was used for PCR testing with a lower detection limit of ≥12 IU/mL. We computed the sensitivity, specificity and correlation of HCVcAg against HCV PCR. A total of 394 patients were recruited. The median age of the patients was 42 years. Most participants were females (51.5%, n = 203), 30.7% (n = 121) had HTN, 10.4% DM (n = 41) and 5% had APRI ≥2. The overall sensitivity was 98.0% and the specificity was 98.6%. The lowest detection limit of cAg was an HCV RNA value of 4657 IU/mL. The levels of cAg were highly correlated with those of HCV RNA by Spearman's rank correlation test (r = 0.935, p < .001). HCVcAg represents a suitable alternative with high sensitivity and specificity compared with HCV PCR in the GT3-predominant population and can be incorporated into algorithms to improve linkage to care.


Subject(s)
Genotype , Hepacivirus , Hepatitis C Antigens , Hepatitis C, Chronic , Polymerase Chain Reaction , Sensitivity and Specificity , Viral Core Proteins , Humans , Female , Male , Pakistan , Hepacivirus/genetics , Hepacivirus/immunology , Adult , Middle Aged , Hepatitis C, Chronic/diagnosis , Hepatitis C, Chronic/virology , Viral Core Proteins/genetics , Viral Core Proteins/immunology , Hepatitis C Antigens/blood , Polymerase Chain Reaction/methods , Young Adult , Aged , RNA, Viral
7.
J Virol Methods ; 326: 114907, 2024 May.
Article in English | MEDLINE | ID: mdl-38432358

ABSTRACT

Adenovirus protein VII (pVII) is a highly basic core protein, bearing resemblance to mammalian histones. Despite its diverse functions, a comprehensive understanding of its structural intricacies and the mechanisms underlying its functions remain elusive, primarily due to the complexity of producing a good amount of soluble pVII. This study aimed to optimise the expression and purification of recombinant pVII from four different adenoviruses with a simple vector construct. This study successfully determined the optimal conditions for efficiently purifying pVII across four adenovirus species, revealing the differential preference for bacterial expression systems. The One Shot BL21 Star (DE3) proved favourable over Rosetta 2 (DE3) pLysS with consistent levels of expression between IPTG-induced and auto-induction. We demonstrated that combining chemical and mechanical cell lysis is possible and highly effective. Other noteworthy benefits were observed in using RNase during sample processing. The addition of RNase has significantly improved the quality and quantity of the purified protein as confirmed by chromatographic and western blot analyses. These findings established a solid groundwork for pVII purification methodologies and carry the significant potential to assist in unveiling the core structure of pVII, its arrangement within the core, DNA condensation intricacies, and potential pathways for nuclear transport.


Subject(s)
Adenoviridae Infections , Viral Core Proteins , Animals , Viral Core Proteins/genetics , Adenoviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Ribonucleases/metabolism , Mammals/metabolism
8.
Free Radic Biol Med ; 212: 199-206, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38103659

ABSTRACT

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, leading to liver steatosis, fibrosis, and hepatocellular carcinoma (HCC). Despite the accumulation of clinical data showing the impact of amino acid substitutions at positions 70 (R70Q/H) and/or 91 (L91M) in the HCV core protein in progressive liver diseases, including HCC, the underlying mechanisms have not been elucidated. We analyzed 72 liver biopsy specimens from patients with chronic HCV genotype 1b (HCV-1b) infection prior to antiviral treatment. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear factor erythroid 2-related factor 2 (NRF2) in the nucleus were quantified using liver tissue immunohistochemistry. The effects of amino acid substitutions in the HCV core region on hepatocellular oxidative stress were investigated using wild-type or double-mutant (R70Q/H+L91M) HCV-1b core transfection and stable expression in human hepatoma HuH-7 cells. Overall, 24, 19, 11, and 18 patients had the wild-type, R70Q/H, L91M, and R70Q/H+L91M genotypes, respectively, in the HCV core. A significantly higher accumulation of hepatocellular 8-OHdG and a lower NRF2/8-OHdG ratio were observed in patients with R70Q/H+L91M than in those with the wild-type disease. Increased levels of intracellular superoxide and hydrogen peroxide in the cytoplasm and mitochondria, mRNA expression of enzymes generating oxidative stress, and nuclear expression of nicotinamide adenine dinucleotide phosphate oxidase 4 were augmented in cells treated with R70Q+L91M. HCV core proteins harboring either or both substitutions of R70Q/H or L91M enhanced hepatocellular oxidative stress in vivo and in vitro. These amino acid substitutions may affect HCC development by enhancing hepatic oxidative stress in patients with chronic HCV-1b infection.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C, Chronic , Hepatitis C , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepacivirus/genetics , Liver Neoplasms/pathology , Amino Acid Substitution , NF-E2-Related Factor 2/genetics , Hepatitis C/genetics , Hepatitis C, Chronic/genetics , Oxidative Stress/genetics , 8-Hydroxy-2'-Deoxyguanosine , Viral Core Proteins/genetics , Viral Core Proteins/pharmacology , Viral Core Proteins/therapeutic use , Genotype
9.
Emerg Microbes Infect ; 12(2): 2270073, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37823597

ABSTRACT

Influenza A viruses (IAVs) continue to cause tremendous economic losses to the global animal industry and respiratory diseases and deaths among humans. The nuclear import of the vRNP complex, composed of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), polymerase acidic protein (PA), nucleoprotein (NP), and viral RNA, is essential for the efficient replication of IAV. Host factors involved in this process can be targeted for the development of countermeasures against IAV infection. Here, we found that Ankyrin Repeat and BTB Domain Containing 1 (ABTB1) promotes the replication of IAV, and positively regulates the nuclear import of the vRNP complex. ABTB1 did not interact directly with NP, indicating that ABTB1 plays an indirect role in facilitating the nuclear import of the vRNP complex. Immunoprecipitation and mass spectrometry revealed that Tripartite Motif Containing 4 (TRIM4) interacts with ABTB1. We found that TRIM4 relies on its E3 ubiquitin ligase activity to inhibit the replication of IAV by targeting and degrading NP within the incoming vRNP complex as well as the newly synthesized NP. ABTB1 interacted with TRIM4, leading to TRIM4 degradation through the proteasome system. Notably, ABTB1-mediated degradation of TRIM4 blocked the effect of TRIM4 on NP stability, and largely counteracted the inhibitory effect of TRIM4 on IAV replication. Our findings define a novel role for ABTB1 in aiding the nuclear import of the vRNP complex of IAV by counteracting the destabilizing effect of TRIM4 on the viral NP protein.


Subject(s)
Influenza A virus , Nucleoproteins , Animals , Humans , Nucleoproteins/genetics , Nucleoproteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Influenza A virus/physiology , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Protein Binding , Virus Replication/physiology , Repressor Proteins/metabolism
10.
Antiviral Res ; 218: 105715, 2023 10.
Article in English | MEDLINE | ID: mdl-37683938

ABSTRACT

The core protein allosteric modulators (CpAMs) have shown great potential as highly effective antiviral drugs against hepatitis B virus (HBV) in preclinical studies and clinical trials. In this study, we evaluated a small molecule compound called QL-007, which could potentially influence capsid assembly, using HBV replicated and susceptible cell models as well as mice infected with rAAV-HBV. QL-007 significantly inhibited HBV replication in a dose-dependent manner both in vitro and in vivo, resulting in significant decreases in HBV DNA, 3.5 kb HBV RNA and HBeAg. Furthermore, QL-007 not only induced the formation of misshaped Cp149 capsids but also possessed the capability to disassemble HBV capsids. It is noteworthy that QL-007 effectively reduced cccDNA biosynthesis in de novo infections. Mechanistically, QL-007 blocked the encapsidation of pgRNA and induced aberrant polymers assembly at concentrations ≥100 nM, while having no impact on the stability of core proteins. In conclusion, our findings underscore the potential of QL-007 as an effective agent against HBV replication and introduce it as a novel CpAM for the antiviral treatment of chronic hepatitis B.


Subject(s)
Hepatitis B virus , Hepatitis B , Animals , Mice , Capsid , Virus Assembly , Viral Core Proteins/genetics , Capsid Proteins/metabolism , Antiviral Agents/therapeutic use , Virus Replication
11.
Sci Rep ; 13(1): 13584, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604854

ABSTRACT

Chronic hepatitis B virus (HBV) infection is a major medical concern worldwide. Current treatments for HBV infection effectively inhibit virus replication; however, these treatments cannot cure HBV and novel treatment-strategies should be necessary. In this study, we identified tripartite motif-containing protein 26 (TRIM26) could be a supportive factor for HBV replication. Small interfering RNA-mediated TRIM26 knockdown (KD) modestly attenuated HBV replication in human hepatocytes. Endogenous TRIM26 physically interacted with HBV core protein (HBc), but not polymerase and HBx, through the TRIM26 SPRY domain. Unexpectedly, TRIM26 inhibited HBc ubiquitination even though TRIM26 is an E3 ligase. HBc was degraded by TRIM26 KD in Huh-7 cells, whereas the reduction was restored by a proteasome inhibitor. RING domain-deleted TRIM26 mutant (TRIM26ΔR), a dominant negative form of TRIM26, sequestered TRIM26 from HBc, resulting in promoting HBc degradation. Taking together, this study demonstrated that HBV utilizes TRIM26 to avoid the proteasome-dependent HBc degradation. The interaction between TRIM26 and HBc might be a novel therapeutic target against HBV infection.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/genetics , Proteasome Endopeptidase Complex , Viral Core Proteins/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
12.
Virology ; 586: 76-90, 2023 09.
Article in English | MEDLINE | ID: mdl-37490813

ABSTRACT

Globally, a chronic-hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC). The transcription factor hypoxia-inducible factor 1 (HIF1) is often elevated in HCC, including HBV-associated HCC. Previous studies have suggested that the expression of the HIF1 subunit, HIF1α, is elevated in HBV-infected hepatocytes; however, whether HIF1 activity affects the HBV lifecycle has not been fully explored. We used a liver-derived cell line and ex vivo cultured primary hepatocytes as models to determine how HIF1 affects the HBV lifecycle. We observed that HIF1 elevates HBV RNA transcript levels, core protein levels, core protein localization to the cytoplasm, and HBV genome replication. Attenuating the transcription activity of HIF1 blocked HIF1-mediated effects on the HBV lifecycle. Our studies show that HIF1 regulates various stages of the HBV lifecycle in hepatocytes and could be a therapeutic target for blocking HBV replication and the development of HBV-associated diseases.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B virus/genetics , Liver Neoplasms/pathology , Viral Core Proteins/genetics , Hypoxia , Virus Replication/physiology
13.
Sci Adv ; 9(14): eade9910, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37027464

ABSTRACT

Out of the three core proteins in human adenovirus, protein V is believed to connect the inner capsid surface to the outer genome layer. Here, we explored mechanical properties and in vitro disassembly of particles lacking protein V (Ad5-ΔV). Ad5-ΔV particles were softer and less brittle than the wild-type ones (Ad5-wt), but they were more prone to release pentons under mechanical fatigue. In Ad5-ΔV, core components did not readily diffuse out of partially disrupted capsids, and the core appeared more condensed than in Ad5-wt. These observations suggest that instead of condensing the genome, protein V antagonizes the condensing action of the other core proteins. Protein V provides mechanical reinforcement and facilitates genome release by keeping DNA connected to capsid fragments that detach during disruption. This scenario is in line with the location of protein V in the virion and its role in Ad5 cell entry.


Subject(s)
Adenoviruses, Human , Capsid , Humans , Capsid/metabolism , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Adenoviridae/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Adenoviruses, Human/metabolism
14.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36305789

ABSTRACT

Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal (SL) partners of cancer-specific mutations. Similarly, SL interactions of viral-induced hypomorphs can potentially be targeted as host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for SL partners of GBF1 revealed ARF1 as the top hit, disruption of which selectively killed cells that synthesize 3A alone or in the context of a poliovirus replicon. Thus, viral protein interactions can induce hypomorphs that render host cells selectively vulnerable to perturbations that leave uninfected cells otherwise unscathed. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2.


Subject(s)
Guanine Nucleotide Exchange Factors , Poliovirus , Viral Core Proteins , Humans , Guanine Nucleotide Exchange Factors/metabolism , Synthetic Lethal Mutations , Virus Replication , Gene Expression Regulation, Viral , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Host-Pathogen Interactions
15.
J Virol ; 96(21): e0136222, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36226986

ABSTRACT

Hepatitis B virus (HBV) infection is a major health burden worldwide, and currently there is no cure. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle for antiviral trement. HBV core protein (HBc) has emerged as a promising antiviral target, as it plays important roles in critical steps of the viral life cycle. However, whether HBc could regulate HBV cccDNA transcription remains under debate. In this study, different approaches were used to address this question. In synthesized HBV cccDNA and HBVcircle transfection assays, lack of HBc showed no effect on transcription of HBV RNA as well as HBV surface antigen (HBsAg) production in a hepatoma cell line and primary human hepatocytes. Reconstitution of HBc did not alter the expression of cccDNA-derived HBV markers. Similar results were obtained from an in vivo mouse model harboring cccDNA. Chromatin immunoprecipitation (ChIP) or ChIP sequencing assays revealed transcription regulation of HBc-deficient cccDNA chromatin similar to that of wild-type cccDNA. Furthermore, treatment with capsid assembly modulators (CAMs) dramatically reduced extracellular HBV DNA but could not alter viral RNA and HBsAg. Our results demonstrate that HBc neither affects histone modifications and transcription factor binding of cccDNA nor directly influences cccDNA transcription. Although CAMs could reduce HBc binding to cccDNA, they do not suppress cccDNA transcriptional activity. Thus, therapeutics targeting capsid or HBc should not be expected to sufficiently reduce cccDNA transcription. IMPORTANCE Hepatitis B virus (HBV) core protein (HBc) has emerged as a promising antiviral target. However, whether HBc can regulate HBV covalently closed circular DNA (cccDNA) transcription remains elusive. This study illustrated that HBc has no effect on epigenetic regulation of cccDNA, and it does not participate in cccDNA transcription. Given that HBc is dispensable for cccDNA transcription, novel cccDNA-targeting therapeutics are needed for an HBV cure.


Subject(s)
DNA, Circular , Hepatitis B , Animals , Humans , Mice , Antiviral Agents , Capsid Proteins/genetics , DNA, Circular/genetics , DNA, Viral/genetics , Epigenesis, Genetic , Hepatitis B/genetics , Hepatitis B Surface Antigens , Hepatitis B virus/physiology , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Virus Replication/genetics , Transcription, Genetic
16.
Viruses ; 14(8)2022 07 31.
Article in English | MEDLINE | ID: mdl-36016316

ABSTRACT

Hepatitis C virus is the major cause of chronic liver diseases and the only cytoplasmic RNA virus known to be oncogenic in humans. The viral genome gives rise to ten mature proteins and to additional proteins, which are the products of alternative translation initiation mechanisms. A protein-known as ARFP (alternative reading frame protein) or Core+1 protein-is synthesized by an open reading frame overlapping the HCV Core coding region in the (+1) frame of genotype 1a. Almost 20 years after its discovery, we still know little of the biological role of the ARFP/Core+1 protein. Here, our differential proteomic analysis of stable hepatoma cell lines expressing the Core+1/Long isoform of HCV-1a relates the expression of the Core+1/Long isoform with the progression of the pathology of HCV liver disease to cancer.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Hepacivirus/genetics , Hepacivirus/metabolism , Hepatitis C Antigens , Humans , Protein Isoforms/metabolism , Proteomics , Viral Core Proteins/genetics , Viral Core Proteins/metabolism
17.
J Virol ; 96(15): e0071822, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35867543

ABSTRACT

Hepatitis B virus (HBV) core protein (HBc), the building block of the viral capsid, plays a critical role throughout the HBV life cycle. There are two highly conserved lysine residues, namely, K7 and K96, on HBc, which have been proposed to function at various stages of viral replication, potentially through lysine-specific posttranslational modifications (PTMs). Here, we substituted K7 and K96 with alanine or arginine, which would also block potential PTMs on these two lysine residues, and tested the effects of these substitutions on HBV replication and infection. We found that the two lysine residues were dispensable for all intracellular steps of HBV replication. In particular, all mutants were competent to form the covalently closed circular DNA (cccDNA) via the intracellular amplification pathway, indicating that K7 and K96, or any PTMs of these residues, were not essential for nucleocapsid uncoating, a prerequisite for cccDNA formation. Furthermore, we found that K7A and K7R mutations did not affect de novo cccDNA formation and RNA transcription during infection, indicating that K7 or any PTMs of this residue were dispensable for HBV infection. In addition, we demonstrated that the HBc K7 coding sequence (AAA), as part of the HBV polyadenylation signal UAUAAA, was indispensable for viral RNA production, implicating this cis requirement at the RNA level, instead of any function of HBc-K7, likely constrains the identity of the 7th residue of HBc. In conclusion, our results provided novel insights regarding the roles of lysine residues on HBc, and their coding sequences, in the HBV life cycle. IMPORTANCE Hepatitis B virus (HBV) infection remains a public health burden that affects 296 million individuals worldwide. HBV core protein (HBc) is involved in almost all steps in the HBV life cycle. There are two conserved lysine residues on HBc. Here, we found that neither of them is essential for HBV intracellular replication, including the formation of covalently closed circular DNA (cccDNA), the molecular basis for establishing and sustaining the HBV infection. However, K96 is critical for virion morphogenesis, while the K7 coding sequence, but not HBc-K7 itself, is indispensable, as part of the RNA polyadenylation signal, for HBV RNA production from cccDNA. Our results provide novel insights regarding the role of the conserved lysine residues on HBc, and their coding sequences, in viral replication, and should facilitate the development of antiviral drugs against the HBV capsid protein.


Subject(s)
Amino Acid Substitution , Conserved Sequence , DNA, Circular , Hepatitis B Core Antigens , Hepatitis B virus , Hepatitis B , Lysine , Viral Core Proteins , Amino Acid Sequence , Conserved Sequence/genetics , DNA, Circular/biosynthesis , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B/virology , Hepatitis B Core Antigens/chemistry , Hepatitis B Core Antigens/genetics , Hepatitis B Core Antigens/metabolism , Hepatitis B virus/chemistry , Hepatitis B virus/genetics , Hepatitis B virus/growth & development , Hepatitis B virus/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Mutation , Nucleocapsid/metabolism , Polyadenylation/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Viral Core Proteins/chemistry , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Virion/growth & development , Virus Replication/genetics
18.
Transpl Immunol ; 74: 101651, 2022 10.
Article in English | MEDLINE | ID: mdl-35764239

ABSTRACT

BACKGROUND AND AIM: Hepatitis C is one of the leading causes of liver disease in the world and despite extensive research, there is still no vaccine against it. Researchers have identified cell-based therapies as an alternative strategy in advanced liver disorders. The aim of this study was to transfer the hepatitis C virus core protein (HCVcp) gene into mesenchymal stem cells and to evaluate its immunogenicity after injection into mice. MATERIALS AND METHODS: The present study had two experimental and animal stages. In the first step, by designing a vector containing the HCVcp gene and transferring it into the mesenchymal stem cell, gene expression and protein production by the mesenchymal stem cell manipulated by PCR and SDS-PAGE were confirmed. In the second stage, by injecting manipulated mesenchymal stem cells into mice, the level of humoral immune stimulation and splenocytes proliferation was assessed by the ELISA commercial kit. RESULTS: According to molecular studies, the expression of HCVcp was confirmed by mesenchymal stem cells. Also, splenocytes proliferation rate (0.316 ± 0.029) and antibody titer (284 ± 47) in mice treated with manipulated mesenchymal stem cells were significantly increased compared to the control group. CONCLUSION: The results of the present study showed that the use of genetically engineered mesenchymal stem cells while maintaining the immunomodulatory properties of these cells can stimulate specific immune system responses against hepatitis C central protein.


Subject(s)
Hepatitis C , Mesenchymal Stem Cells , Animals , Genetic Engineering , Hepacivirus , Mice , Mice, Inbred BALB C , Viral Core Proteins/genetics , Viral Core Proteins/metabolism
19.
Microbiol Spectr ; 10(3): e0034522, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35579445

ABSTRACT

How the hepatitis C virus (HCV) core antigen (HCVcAg) assay performs in detecting recently acquired HCV infection among people living with HIV (PLWH) and HIV-negative men who have sex with men (MSM) is rarely assessed in the Asia-Pacific region. High-risk participants, including PLWH with sexually transmitted infections (STIs), HCV clearance by antivirals or spontaneously, or elevated aminotransferases, HIV-negative MSM with STIs or on HIV preexposure prophylaxis, and low-risk PLWH were enrolled. Blood samples were subjected to 3-stage pooled-plasma HCV RNA testing every 3 to 6 months until detection of HCV viremia or completion of the 1-year follow-up. The samples at enrollment and all of the archived samples preceding the detection of HCV RNA during follow-up were tested for HCVcAg. During June 2019 and February 2021, 1,639 blood samples from 744 high-risk and 727 low-risk PLWH and 86 HIV-negative participants were tested for both HCV RNA and HCVcAg. Of 62 samples positive for HCV RNA, 54 (87.1%) were positive for HCVcAg. Of 1,577 samples negative for HCV RNA, 1,568 (99.4%) were negative for HCVcAg. The mean HCV RNA load of the 8 individual samples positive for HCV RNA but negative for HCVcAg was 3.2 (range, 2.5 to 3.9) log10 IU/mL, and that of the remaining 54 samples with concordant results was 6.2 (range, 1.3 to 8.5) log10 IU/mL. The positive predictive value (PPV) and negative predictive value (NPV) of HCVcAg were 85.7% and 99.5%, respectively. In at-risk populations, HCVcAg has a high specificity and NPV but lower sensitivity and PPV, particularly in individuals with low HCV RNA loads. IMPORTANCE The HCV core antigen assay has a high specificity of 99.4% and negative predictive value of 99.5% but a lower sensitivity of 87.1% and positive predictive value of 85.7% in the diagnosis of recently acquired HCV infection in high-risk populations. Our findings are informative for many countries confronted with limited resources to timely identify acute HCV infections and provide effective direct-acting antivirals to halt onward transmission.


Subject(s)
HIV Infections , Hepatitis C, Chronic , Hepatitis C , Sexual and Gender Minorities , Antiviral Agents/therapeutic use , HIV Infections/diagnosis , HIV Infections/drug therapy , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatitis C Antigens/genetics , Hepatitis C Antigens/therapeutic use , Hepatitis C, Chronic/diagnosis , Homosexuality, Male , Humans , Male , RNA, Viral/genetics , Sensitivity and Specificity , Viral Core Proteins/genetics , Viral Core Proteins/therapeutic use
20.
Viruses ; 14(3)2022 03 03.
Article in English | MEDLINE | ID: mdl-35336928

ABSTRACT

Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , RNA Viruses , Antibodies, Viral , Humans , Membrane Glycoproteins , Nucleocapsid , Nucleocapsid Proteins , Nucleoproteins , Viral Core Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...