Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.578
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731879

ABSTRACT

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2 variants capable of breakthrough infections have attracted global attention. These variants have significant mutations in the receptor-binding domain (RBD) of the spike protein and the membrane (M) protein, which may imply an enhanced ability to evade immune responses. In this study, an examination of co-mutations within the spike RBD and their potential correlation with mutations in the M protein was conducted. The EVmutation method was utilized to analyze the distribution of the mutations to elucidate the relationship between the mutations in the spike RBD and the alterations in the M protein. Additionally, the Sequence-to-Sequence Transformer Model (S2STM) was employed to establish mapping between the amino acid sequences of the spike RBD and M proteins, offering a novel and efficient approach for streamlined sequence analysis and the exploration of their interrelationship. Certain mutations in the spike RBD, G339D-S373P-S375F and Q493R-Q498R-Y505, are associated with a heightened propensity for inducing mutations at specific sites within the M protein, especially sites 3 and 19/63. These results shed light on the concept of mutational synergy between the spike RBD and M proteins, illuminating a potential mechanism that could be driving the evolution of SARS-CoV-2.


Subject(s)
COVID-19 , Machine Learning , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Humans , COVID-19/virology , COVID-19/genetics , Viral Matrix Proteins/genetics , Viral Matrix Proteins/chemistry , Coronavirus M Proteins/genetics , Protein Domains/genetics , Amino Acid Sequence , Protein Binding
2.
Commun Biol ; 7(1): 634, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796621

ABSTRACT

Ebola virus (EBOV) matrix protein VP40 can assemble and bud as virus-like particles (VLPs) when expressed alone in mammalian cells. Nucleoprotein (NP) could be recruited to VLPs as inclusion body (IB) when co-expressed, and increase VLP production. However, the mechanism behind it remains unclear. Here, we use a computational approach to study NP-VP40 interactions. Our simulations indicate that NP may enhance VLP production through stabilizing VP40 filaments and accelerating the VLP budding step. Further, both the relative timing and amount of NP expression compared to VP40 are important for the effective production of IB-containing VLPs. We predict that relative NP/VP40 expression ratio and time are important for efficient production of IB-containing VLPs. We conclude that disrupting the expression timing and amount of NP and VP40 could provide new avenues to treat EBOV infection. This work provides quantitative insights into EBOV proteins interactions and how virion generation and drug efficacy could be influenced.


Subject(s)
Ebolavirus , Viral Core Proteins , Ebolavirus/metabolism , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Humans , Virion/metabolism , Virion/genetics , Nucleoproteins/metabolism , Nucleoproteins/genetics , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/genetics , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/metabolism
3.
Front Biosci (Landmark Ed) ; 29(5): 195, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38812326

ABSTRACT

BACKGROUND: To investigate the immune responses and protection ability of ultraviolet light (UV)-inactivated recombinant vesicular stomatitis (rVSV)-based vectors that expressed a fusion protein consisting of four copies of the influenza matrix 2 protein ectodomain (tM2e) and the Dendritic Cell (DC)-targeting domain of the Ebola Glycoprotein (EΔM), (rVSV-EΔM-tM2e). METHOD: In our previous study, we demonstrated the effectiveness of rVSV-EΔM-tM2e to induce robust immune responses against influenza M2e and protect against lethal challenges from H1N1 and H3N2 strains. Here, we used UV to inactivate rVSV-EΔM-tM2e and tested its immunogenicity and protection in BALB/c mice from a mouse-adapted H1N1 influenza challenge. Using Enzyme-Linked Immunosorbent Assay (ELISA) and Antibody-Dependent Cellular Cytotoxicity (ADCC), the influenza anti-M2e immune responses specific to human, avian and swine influenza strains induced were characterized. Likewise, the specificity of the anti-M2e immune responses induced in recognizing M2e antigen on the surface of the cell was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. RESULTS: Like the live attenuated rVSV-EΔM-tM2e, the UV-inactivated rVSV-EΔM-tM2e was highly immunogenic against different influenza M2e from strains of different hosts, including human, swine, and avian, and protected against influenza H1N1 challenge in mice. The FACS analysis demonstrated that the induced immune responses can recognize influenza M2 antigens from human, swine and avian influenza strains. Moreover, the rVSV-EΔM-tM2e also induced ADCC activity against influenza M2e from different host strains. CONCLUSIONS: These findings suggest that UV-inactivated rVSV-EΔM-tM2e could be used as an inactivated vaccine against influenza viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Ultraviolet Rays , Animals , Influenza Vaccines/immunology , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Mice , Humans , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Vesiculovirus/immunology , Vesiculovirus/genetics , Vaccines, Inactivated/immunology
4.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38714444

ABSTRACT

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Subject(s)
Adenoviridae , Administration, Intranasal , Antibodies, Viral , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Viral Matrix Proteins , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Adenoviridae/genetics , Adenoviridae/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Vaccine Efficacy , Nucleoproteins/immunology , Nucleoproteins/genetics , Viral Core Proteins/immunology , Viral Core Proteins/genetics , Injections, Intramuscular , Viroporin Proteins
5.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732219

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus etiologically associated with benign and malignant diseases. Since the pathogenic mechanisms of EBV are not fully understood, understanding EBV genetic diversity is an ongoing goal. Therefore, the present work describes the genetic diversity of the lytic gene BZLF1 in a sampling of 70 EBV-positive cases from southeastern Brazil. Additionally, together with the genetic regions previously characterized, the aim of the present study was to determine the impact of viral genetic factors that may influence EBV genetic diversity. Accordingly, the phylogenetic analysis of the BZLF1 indicated two main clades with high support, BZ-A and BZ-B (PP > 0.85). Thus, the BZ-A clade was the most diverse clade associated with the main polymorphisms investigated, including the haplotype Type 1 + V3 (p < 0.001). Furthermore, the multigene phylogenetic analysis (MLA) between BZLF1 and the oncogene LMP1 showed specific clusters, revealing haplotypic segregation that previous single-gene phylogenies from both genes failed to demonstrate. Surprisingly, the LMP1 Raji-related variant clusters were shown to be more diverse, associated with BZ-A/B and the Type 2/1 + V3 haplotypes. Finally, due to the high haplotypic diversity of the Raji-related variants, the number of DNA recombination-inducing motifs (DRIMs) was evaluated within the different clusters defined by the MLA. Similarly, the haplotype BZ-A + Raji was shown to harbor a greater number of DRIMs (p < 0.001). These results call attention to the high haplotype diversity of EBV in southeast Brazil and strengthen the hypothesis of the recombinant potential of South American Raji-related variants via the LMP1 oncogene.


Subject(s)
Epstein-Barr Virus Infections , Genetic Variation , Herpesvirus 4, Human , Phylogeny , Recombination, Genetic , Herpesvirus 4, Human/genetics , Humans , Brazil , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Trans-Activators/genetics , Male , Female , Haplotypes/genetics , Adult , Viral Matrix Proteins/genetics , Child , Middle Aged , Adolescent , Virus Latency/genetics , Child, Preschool , Young Adult
6.
Viruses ; 16(5)2024 04 28.
Article in English | MEDLINE | ID: mdl-38793581

ABSTRACT

Rabies is a fatal encephalitic infectious disease caused by the rabies virus (RABV). RABV is highly neurotropic and replicates in neuronal cell lines in vitro. The RABV fixed strain, HEP-Flury, was produced via passaging in primary chicken embryonic fibroblast cells. HEP-Flury showed rapid adaptation when propagated in mouse neuroblastoma (MNA) cells. In this study, we compared the growth of our previously constructed recombinant HEP (rHEP) strain-based on the sequence of the HEP (HEP-Flury) strain-with that of the original HEP strain. The original HEP strain exhibited higher titer than rHEP and a single substitution at position 80 in the matrix (M) protein M(D80N) after incubation in MNA cells, which was absent in rHEP. In vivo, intracerebral inoculation of the rHEP-M(D80N) strain with this substitution resulted in enhanced viral growth in the mouse brain and a significant loss of body weight in the adult mice. The number of viral antigen-positive cells in the brains of adult mice inoculated with the rHEP-M(D80N) strain was significantly higher than that with the rHEP strain at 5 days post-inoculation. Our findings demonstrate that a single amino acid substitution in the M protein M(D80N) is associated with neurovirulence in mice owing to adaptation to mouse neuronal cells.


Subject(s)
Amino Acid Substitution , Brain , Rabies virus , Rabies , Viral Matrix Proteins , Animals , Rabies virus/genetics , Rabies virus/pathogenicity , Mice , Virulence , Brain/virology , Brain/pathology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Rabies/virology , Neurons/virology , Neurons/pathology , Virus Replication , Cell Line
7.
ACS Nano ; 18(20): 12905-12916, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38721835

ABSTRACT

For most frequent respiratory viruses, there is an urgent need for a universal influenza vaccine to provide cross-protection against intra- and heterosubtypes. We previously developed an Escherichia coli fusion protein expressed extracellular domain of matrix 2 (M2e) and nucleoprotein, named NM2e, and then combined it with an aluminum adjuvant, forming a universal vaccine. Although NM2e has demonstrated a protective effect against the influenza virus in mice to some extent, further improvement is still needed for the induction of immune responses ensuring adequate cross-protection against influenza. Herein, we fabricated a cationic solid lipid nanoadjuvant using poly(lactic acid) (PLA) and dimethyl-dioctadecyl-ammonium bromide (DDAB) and loaded NM2e to generate an NM2e@DDAB/PLA nanovaccine (Nv). In vitro experiments suggested that bone marrow-derived dendritic cells incubated with Nv exhibited ∼4-fold higher antigen (Ag) uptake than NM2e at 16 h along with efficient activation by NM2e@DDAB/PLA Nv. In vivo experiments revealed that Ag of the Nv group stayed in lymph nodes (LNs) for more than 14 days after initial immunization and DCs in LNs were evidently activated and matured. Furthermore, the Nv primed T and B cells for robust humoral and cellular immune responses after immunization. It also induced a ratio of IgG2a/IgG1 higher than that of NM2e to a considerable extent. Moreover, NM2e@DDAB/PLA Nv quickly restored body weight and improved survival of homo- and heterosubtype influenza challenged mice, and the cross-protection efficiency was over 90%. Collectively, our study demonstrated that NM2e@DDAB/PLA Nv could offer notable protection against homo- and heterosubtype influenza virus challenges, offering the potential for the development of a universal influenza vaccine.


Subject(s)
Adjuvants, Immunologic , Influenza Vaccines , Polyesters , Quaternary Ammonium Compounds , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/administration & dosage , Animals , Mice , Polyesters/chemistry , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Quaternary Ammonium Compounds/chemistry , Female , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Nanoparticles/chemistry , Cross Protection/immunology , Adjuvants, Vaccine/chemistry , Viral Matrix Proteins/immunology
8.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704431

ABSTRACT

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Subject(s)
Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
9.
Protein Sci ; 33(5): e4978, 2024 May.
Article in English | MEDLINE | ID: mdl-38591637

ABSTRACT

The Ebola virus (EBOV) is a lipid-enveloped virus with a negative sense RNA genome that can cause severe and often fatal viral hemorrhagic fever. The assembly and budding of EBOV is regulated by the matrix protein, VP40, which is a peripheral protein that associates with anionic lipids at the inner leaflet of the plasma membrane. VP40 is sufficient to form virus-like particles (VLPs) from cells, which are nearly indistinguishable from authentic virions. Due to the restrictions of studying EBOV in BSL-4 facilities, VP40 has served as a surrogate in cellular studies to examine the EBOV assembly and budding process from the host cell plasma membrane. VP40 is a dimer where inhibition of dimer formation halts budding and formation of new VLPs as well as VP40 localization to the plasma membrane inner leaflet. To better understand VP40 dimer stability and critical amino acids to VP40 dimer formation, we integrated computational approaches with experimental validation. Site saturation/alanine scanning calculation, combined with molecular mechanics-based generalized Born with Poisson-Boltzmann surface area (MM-GB/PBSA) method and molecular dynamics simulations were used to predict the energetic contribution of amino acids to VP40 dimer stability and the hydrogen bonding network across the dimer interface. These studies revealed several previously unknown interactions and critical residues predicted to impact VP40 dimer formation. In vitro and cellular studies were then pursued for a subset of VP40 mutations demonstrating reduction in dimer formation (in vitro) or plasma membrane localization (in cells). Together, the computational and experimental approaches revealed critical residues for VP40 dimer stability in an alpha-helical interface (between residues 106-117) as well as in a loop region (between residues 52-61) below this alpha-helical region. This study sheds light on the structural origins of VP40 dimer formation and may inform the design of a small molecule that can disrupt VP40 dimer stability.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Ebolavirus/genetics , Ebolavirus/metabolism , Hemorrhagic Fever, Ebola/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation , Amino Acids/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism
10.
J Med Virol ; 96(5): e29634, 2024 May.
Article in English | MEDLINE | ID: mdl-38682578

ABSTRACT

Metabolic reprogramming induced by Epstein-Barr virus (EBV) often mirrors metabolic changes observed in cancer cells. Accumulating evidence suggests that lytic reactivation is crucial in EBV-associated oncogenesis. The aim of this study was to explore the role of metabolite changes in EBV-associated malignancies and viral life cycle control. We first revealed that EBV (LMP1) accelerates the secretion of the oncometabolite D-2HG, and serum D-2HG level is a potential diagnostic biomarker for NPC. EBV (LMP1)-driven metabolite changes disrupts the homeostasis of global DNA methylation and demethylation, which have a significantly inhibitory effect on active DNA demethylation and 5hmC content. We found that loss of 5hmC indicates a poor prognosis for NPC patients, and that 5hmC modification is a restriction factor of EBV reactivation. We confirmed a novel EBV reactivation inhibitor, α-KG, which inhibits the expression of EBV lytic genes with CpG-containing ZREs and the latent-lytic switch by enhancing 5hmC modification. Our results demonstrate a novel mechanism of which metabolite abnormality driven by EBV controls the viral lytic reactivation through epigenetic modification. This study presents a potential strategy for blocking EBV reactivation, and provides potential targets for the diagnosis and therapy of NPC.


Subject(s)
DNA Methylation , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Virus Activation , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/genetics , Epigenesis, Genetic , Disease Progression
11.
Viruses ; 16(4)2024 04 04.
Article in English | MEDLINE | ID: mdl-38675906

ABSTRACT

The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Signal Transduction , Viral Matrix Proteins , Humans , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Herpesvirus 4, Human/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Cytokines/metabolism , Cytokines/immunology , Animals , Immunomodulation , Host-Pathogen Interactions/immunology , NF-kappa B/metabolism , Virus Latency/immunology
12.
Virology ; 595: 110097, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685171

ABSTRACT

Current influenza vaccine is not effective in providing cross-protection against variants. We evaluated the immunogenicity and efficacy of multi-subtype neuraminidase (NA) and M2 ectodomain virus-like particle (m-cNA-M2e VLP) and chimeric M2e-H3 stalk protein vaccines (M2e-H3 stalk) in ferrets. Our results showed that ferrets with recombinant m-cNA-M2e VLP or M2e-H3 stalk vaccination induced multi-vaccine antigen specific IgG antibodies (M2e, H3 stalk, NA), NA inhibition, antibody-secreting cells, and IFN-γ secreting cell responses. Ferrets immunized with either m-cNA-M2e VLP or M2e-H3 stalk vaccine were protected from H1N1 and H3N2 influenza viruses by lowering viral titers in nasal washes, trachea, and lungs after challenge. Vaccinated ferret antisera conferred broad humoral immunity in naïve mice. Our findings provide evidence that immunity to M2e and HA-stalk or M2e plus multi-subtype NA proteins induces cross-protection in ferrets.


Subject(s)
Antibodies, Viral , Cross Protection , Ferrets , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Cross Protection/immunology , Antibodies, Viral/immunology , Neuraminidase/immunology , Neuraminidase/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Mice , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Viroporin Proteins , Viral Proteins
13.
ACS Infect Dis ; 10(5): 1552-1560, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38623820

ABSTRACT

Tyrosine cross-linking has recently been used to produce nanoclusters (NCs) from peptides to enhance their immunogenicity. In this study, NCs were generated using the ectodomain of the ion channel Matrix 2 (M2e) protein, a conserved influenza surface antigen. The NCs were administered via intranasal (IN) or intramuscular (IM) routes in a mouse model in a prime-boost regimen in the presence of the adjuvant CpG. After boost, a significant increase in anti-M2e IgG and its subtypes was observed in the serum and lungs of mice vaccinated through the IM and IN routes; however, significant enhancement in anti-M2e IgA in lungs was observed only in the IN group. Analysis of cytokine concentrations in stimulated splenocyte cultures indicated a Th1/Th17-biased response. Mice were challenged with a lethal dose of A/California/07/2009 (H1N1pdm), A/Puerto Rico/08/1934 (H1N1), or A/Hong Kong/08/1968 (H3N2) strains. Mice that received M2e NCs + CpG were significantly protected against these strains and showed decreased lung viral titers compared with the naive mice and M2e NC-alone groups. The IN-vaccinated group showed superior protection against the H3N2 strain as compared to the IM group. This research extends our earlier efforts involving the tyrosine-based cross-linking method and highlights the potential of this technology in enhancing the immunogenicity of short peptide immunogens.


Subject(s)
Antibodies, Viral , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Tyrosine , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Tyrosine/chemistry , Tyrosine/pharmacology , Influenza A Virus, H1N1 Subtype/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Mice, Inbred BALB C , Influenza A Virus, H3N2 Subtype/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Lung/virology , Lung/immunology , Administration, Intranasal , Injections, Intramuscular , Cytokines , Cross Protection , Viroporin Proteins
14.
Ann Diagn Pathol ; 70: 152286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447253

ABSTRACT

Epstein-Barr virus (EBV) is responsible for many B cell lymphoproliferative disorders (LPD) spanning subclinical infection to immunodeficiency-related neoplasms. EBV establishes a latent infection in the host B cell as defined histologically by the expression of EBV latent membrane proteins and nuclear antigens. Herein, we characterize the latency patterns of immunodeficiency-related neoplasms including post-transplant lymphoproliferative disorders (PTLD) and therapy-related LPD (formerly iatrogenic) with latent membrane protein-1 (LMP-1) and EBV nuclear antigen-2 (EBNA-2) immunohistochemistry. The latency pattern was correlated with immunodeficiency and dysregulation (IDD) status and time from transplant procedure. 38 cases of EBV+ PTLD in comparison to 27 cases of classic Hodgkin lymphoma (CHL) and diffuse large B cell lymphoma (DLBCL) arising in either the therapy-related immunodeficiency setting (n = 12) or without an identified immunodeficiency (n = 15) were evaluated for EBV-encoded small RNAs by in situ hybridization (EBER-ISH) and for LMP-1 and EBNA-2 by immunohistochemistry. A full spectrum of EBV latency patterns was observed across PTLD in contrast to CHL and DLBCL arising in the therapy-related immunodeficiency setting. Polymorphic-PTLD (12 of 16 cases, 75 %) and DLBCL-PTLD (9 of 11 cases, 82 %) showed the greatest proportion of cases with latency III pattern. Whereas, EBV+ CHL in an immunocompetent patient showed exclusively latency II pattern (13 of 13 cases, 100 %). The majority of EBV+ PTLD occurred by three years of transplant procedure date and were enriched for latency III pattern (21 of 22 cases, 95 %). Immunohistochemical identification of EBV latency by LMP-1 and EBNA-2 can help classify PTLD in comparison to other EBV+ B cell LPD and lymphomas arising in therapy-related immunodeficiency and non-immunodeficiency settings.


Subject(s)
Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Hodgkin Disease , Lymphoma, Large B-Cell, Diffuse , Lymphoproliferative Disorders , Viral Matrix Proteins , Viral Proteins , Virus Latency , Humans , Lymphoproliferative Disorders/virology , Lymphoproliferative Disorders/pathology , Lymphoproliferative Disorders/diagnosis , Herpesvirus 4, Human/isolation & purification , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Male , Epstein-Barr Virus Nuclear Antigens/metabolism , Female , Adult , Middle Aged , Viral Matrix Proteins/metabolism , Hodgkin Disease/virology , Hodgkin Disease/pathology , Lymphoma, Large B-Cell, Diffuse/virology , Lymphoma, Large B-Cell, Diffuse/pathology , Aged , Young Adult , Adolescent , Immunohistochemistry , Child , Lymphoma/virology , Lymphoma/pathology , In Situ Hybridization
15.
J Phys Chem B ; 128(11): 2595-2606, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38477117

ABSTRACT

The HIV-1 assembly process begins with a newly synthesized Gag polyprotein being targeted to the inner leaflet of the plasma membrane of the infected cells to form immature viral particles. Gag-membrane interactions are mediated through the myristoylated (Myr) N-terminal matrix (MA) domain of Gag, which eventually multimerize on the membrane to form trimers and higher order oligomers. The study of the structure and dynamics of peripheral membrane proteins like MA has been challenging for both experimental and computational studies due to the complex transient dynamics of protein-membrane interactions. Although the roles of anionic phospholipids (PIP2, PS) and the Myr group in the membrane targeting and stable membrane binding of MA are now well-established, the cooperative interactions between the MA monomers and MA-membrane remain elusive in the context of viral assembly and release. Our present study focuses on the membrane binding dynamics of a higher order oligomeric structure of MA protein (a dimer of trimers), which has not been explored before. Employing time-lagged independent component analysis (tICA) to our microsecond-long trajectories, we investigate conformational changes of the matrix protein induced by membrane binding. Interestingly, the Myr switch of an MA monomer correlates with the conformational switch of adjacent monomers in the same trimer. Together, our findings suggest complex protein dynamics during the formation of the immature HIV-1 lattice; while MA trimerization facilitates Myr insertion, MA trimer-trimer interactions in the immature lattice can hinder the same.


Subject(s)
HIV-1 , gag Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/metabolism , Virus Assembly , Cell Membrane/metabolism , Protein Binding , Viral Matrix Proteins/chemistry
16.
Infect Genet Evol ; 120: 105586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508363

ABSTRACT

EBV latent membrane protein 1 (LMP-1) is an important oncogene involved in the induction and maintenance of EBV infection and the activation of several cell survival and proliferative pathways. The genetic diversity of LMP-1 has an important role in immunogenicity and tumorigenicity allowing escape from host cell immunity and more metastatic potential of LMP-1 variants. This study explored the evolutionary of LMP-1 in EBV-infected patients at an advanced stage of nasopharyngeal carcinoma (NPC). Detection of genetic variability in LMP-1 genes was carried out using Sanger sequencing. Bioinformatic analysis was conducted for translation and nucleotide alignment. Phylogenetic analysis was used to construct a Bayesian tree for a deeper understanding of the genetic relationships, evolutionary connections, and variations between sequences. Genetic characterization of LMP-1 in NPC patients revealed the detection of polymorphism in LMP-1 Sequences. Motifs were identified within three critical LMP-1 domains, such as PQQAT within CTAR1 and YYD within CTAR2. The presence of the JACK3 region at specific sites within CTAR3, as well as repeat regions at positions (122-132) and (133-143) within CTAR3, was also annotated. Additionally, several mutations were detected including 30 and 69 bp deletions, 33 bp repeats, and 15 bp insertion. Although LMP-1 strains appear to be genetically diverse, they are closely related to 3 reference strains: prototype B95.8, Med- 30 bp deletion, and Med + 30 bp deletion. In our study, one of the strains harboring the 30 bp deletion had both bone and bone marrow metastasis which could be attributed to the fact that LMP-1 is involved in tumor metastasis, evasion and migration of NPC cells. This study provided valuable insights into genetic variability in LMP-1 sequences of EBV in NPC patients. Further functional studies would provide a more comprehensive understanding of the molecular characteristics, epidemiology, and clinical implications of LMP-1 polymorphisms in EBV-related malignancies.


Subject(s)
Computational Biology , Epstein-Barr Virus Infections , Genetic Variation , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Phylogeny , Viral Matrix Proteins , Viral Matrix Proteins/genetics , Humans , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/genetics , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/genetics , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Computational Biology/methods , Evolution, Molecular , Bayes Theorem , Male
17.
J Biol Chem ; 300(5): 107213, 2024 May.
Article in English | MEDLINE | ID: mdl-38522519

ABSTRACT

Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.


Subject(s)
Cell Membrane , Ebolavirus , Static Electricity , Virus Assembly , Virus Release , Ebolavirus/metabolism , Ebolavirus/genetics , Humans , Cell Membrane/metabolism , Phosphatidylserines/metabolism , Phosphatidylserines/chemistry , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/chemistry , Virion/metabolism , Virion/genetics , Protein Binding , Viral Core Proteins/metabolism , Viral Core Proteins/chemistry , Viral Core Proteins/genetics , HEK293 Cells , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Amino Acid Substitution , Mutation , Phosphatidylinositol 4,5-Diphosphate/metabolism , Nucleoproteins
18.
Cytokine ; 176: 156546, 2024 04.
Article in English | MEDLINE | ID: mdl-38359558

ABSTRACT

Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are essential. Though the exact roles of defense mechanisms are unidentified, virus-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. Identifying the CMV antigens that trigger these protective immune responses will help us choose the most suitable CMV-related proteins for future vaccines. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets for antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins for their ability to induce specific antibody responses and cytokine production in a mouse model. We observed a significant CMV-antigen-specific antibody response to UL80a/pp38 and UL83/pp65 (E/C>2.0). Mice immunized with UL80a/pp38 had significantly higher concentrations of GM-CSF, IFN-γ, IL-2, IL-4, IL-5, and IL-17A (p<0.05). Mice immunized with UL83/pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Ratios of Th1 to Th2 cytokines revealed a Th1 cytokine bias in mice immunized with UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB. We suggest that stimulation with multiple CMV-related proteins, which include UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future novel vaccines and immune-based therapeutic design.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus Vaccines , Humans , Animals , Mice , Cytomegalovirus , Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-17 , Cytokines , Interleukin-2 , Interleukin-4 , Viral Matrix Proteins , Antigens, Viral , Antibodies, Viral , Phosphoproteins
19.
Molecules ; 29(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338365

ABSTRACT

The influenza BM2 transmembrane domain (BM2TM), an acid-activated proton channel, is an attractive antiviral target due to its essential roles during influenza virus replication, whereas no effective inhibitors have been reported for BM2. In this study, we draw inspiration from the properties of cyclodextrins (CDs) and hypothesize that CDs of appropriate sizes may possess the potential to act as inhibitors of the BM2TM proton channel. To explore this possibility, molecular dynamics simulations were employed to assess their inhibitory capabilities. Our findings reveal that CD4, CD5, and CD6 are capable of binding to the BM2TM proton channel, resulting in disrupted water networks and reduced hydrogen bond occupancy between H19 and the solvent within the BM2TM channel necessary for proton conduction. Notably, CD4 completely obstructs the BM2TM water channel. Based on these observations, we propose that CD4, CD5, and CD6 individually contribute to diminishing the proton transfer efficiency of the BM2 protein, and CD4 demonstrates promising potential as an inhibitor for the BM2 proton channel.


Subject(s)
Cyclodextrins , Influenza, Human , Humans , Protons , Cyclodextrins/pharmacology , Cyclodextrins/metabolism , Influenza B virus/chemistry , Influenza B virus/metabolism , Molecular Dynamics Simulation , Viral Matrix Proteins/chemistry
20.
Sci Adv ; 10(9): eadm7030, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416838

ABSTRACT

Throughout history, coronaviruses have posed challenges to both public health and the global economy; nevertheless, methods to combat them remain rudimentary, primarily due to the absence of experiments to understand the function of various viral components. Among these, membrane (M) proteins are one of the most elusive because of their small size and challenges with expression. Here, we report the development of an expression system to produce tens to hundreds of milligrams of M protein per liter of Escherichia coli culture. These large yields render many previously inaccessible structural and biophysical experiments feasible. Using cryo-electron microscopy and atomic force microscopy, we image and characterize individual membrane-incorporated M protein dimers and discover membrane thinning in the vicinity, which we validated with molecular dynamics simulations. Our results suggest that the resulting line tension, along with predicted induction of local membrane curvature, could ultimately drive viral assembly and budding.


Subject(s)
COVID-19 , Lipid Bilayers , Humans , Lipid Bilayers/chemistry , SARS-CoV-2/metabolism , Cryoelectron Microscopy , Viral Matrix Proteins/metabolism , Membrane Proteins , Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...