Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.011
Filter
1.
Recent Pat Biotechnol ; 18(4): 316-331, 2024.
Article in English | MEDLINE | ID: mdl-38817009

ABSTRACT

BACKGROUND: Since the COVID-19 outbreak in early 2020, researchers and studies are continuing to find drugs and/or vaccines against the disease. As shown before, medicinal plants can be very good sources against viruses because of their secondary compounds which may cure diseases and help in survival of patients. There is a growing trend in the filed patents in this field. AIMS: In the present study, we test and suggest the inhibitory potential of five herbal based extracts including 7α-acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol with antivirus activity on the models of the significant antiviral targets for COVID-19 like spike glycoprotein, Papain-like protease (PLpro), non-structural protein 15 (NSP15), RNA-dependent RNA polymerase and core protease by molecular docking study. METHODS: The Salvia rythida root was extracted, dried, and pulverized by a milling machine. The aqueous phase and the dichloromethane phase of the root extractive were separated by two-phase extraction using a separatory funnel. The separation was performed using the column chromatography method. The model of the important antivirus drug target of COVID-19 was obtained from the Protein Data Bank (PDB) and modified. TO study the binding difference between the studied molecules, the docking study was performed. RESULTS: These herbal compounds are extracted from Salvia rhytidea, Curcuma zeodaria, Frankincense, Peganum harmala, and Cannabis herbs, respectively. The binding energies of all compounds on COVID-19 main targets are located in the limited area of 2.22-5.30 kcal/mol. This range of binding energies can support our hypothesis for the presence of the inhibitory effects of the secondary metabolites of mentioned structures on COVID-19. Generally, among the investigated herbal structures, Cannabidiol and 7α- acetoxyroyleanone compounds with the highest binding energy have the most inhibitory potential. The least inhibitory effects are related to the Curzerene and Incensole structures by the lowest binding affinity. CONCLUSION: The general arrangement of the basis of the potential barrier of binding energies is in the order below: Cannabidiol > 7α-acetoxyroyleanone > Harmaline> Incensole > Curzerene. Finally, the range of docking scores for investigated herbal compounds on the mentioned targets indicates that the probably inhibitory effects on these targets obey the following order: main protease> RNA-dependent RNA polymerase> PLpro> NSP15> spike glycoprotein.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Cannabidiol , Molecular Docking Simulation , Plant Extracts , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Cannabidiol/chemistry , Cannabidiol/pharmacology , SARS-CoV-2/drug effects , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Harmaline/pharmacology , Harmaline/chemistry , COVID-19/virology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Patents as Topic , Secondary Metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732151

ABSTRACT

The influenza A virus nonstructural protein 1 (NS1), which is crucial for viral replication and immune evasion, has been identified as a significant drug target with substantial potential to contribute to the fight against influenza. The emergence of drug-resistant influenza A virus strains highlights the urgent need for novel therapeutics. This study proposes a combined theoretical criterion for the virtual screening of molecular libraries to identify candidate NS1 inhibitors. By applying the criterion to the ZINC Natural Product database, followed by ligand-based virtual screening and molecular docking, we proposed the most promising candidate as a potential NS1 inhibitor. Subsequently, the selected natural compound was experimentally evaluated, revealing measurable virus replication inhibition activity in cell culture. This approach offers a promising avenue for developing novel anti-influenza agents targeting the NS1 protein.


Subject(s)
Antiviral Agents , Biological Products , Molecular Docking Simulation , Viral Nonstructural Proteins , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Biological Products/pharmacology , Biological Products/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Influenza A virus/drug effects , Animals , Madin Darby Canine Kidney Cells , Dogs
3.
Chem Biol Interact ; 396: 111040, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38735453

ABSTRACT

Global warming and climate change have made dengue disease a global health issue. More than 50 % of the world's population is at danger of dengue virus (DENV) infection, according to the World Health Organization (WHO). Therefore, a clinically approved dengue fever vaccination and effective treatment are needed. Peptide medication development is new pharmaceutical research. Here we intend to recognize the structural features inhibiting the DENV NS2B/NS3 serine protease for a series of peptide-hybrid inhibitors (R1-R2-Lys-R3-NH2) by the 3D-QSAR technique. Comparative molecular field analysis (q2 = 0.613, r2 = 0.938, r2pred = 0.820) and comparative molecular similarity indices analysis (q2 = 0.640, r2 = 0.928, r2pred = 0.693) were established, revealing minor, electropositive, H-bond acceptor groups at the R1 position, minor, electropositive, H-bond donor groups at the R2 position, and bulky, hydrophobic groups at the R3 position for higher inhibitory activity. Docking studies revealed extensive H-bond and hydrophobic interactions in the binding of tripeptide analogues to the NS2B/NS3 protease. This study provides an insight into the key structural features for the design of peptide-based inhibitors of DENV NS2B/NS3 protease.


Subject(s)
Dengue Virus , Molecular Docking Simulation , Peptides , Quantitative Structure-Activity Relationship , Serine Endopeptidases , Viral Nonstructural Proteins , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Dengue Virus/drug effects , Dengue Virus/enzymology , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Peptides/chemistry , Peptides/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Binding Sites , Hydrogen Bonding , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Viral Proteases
4.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792162

ABSTRACT

Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5'-3' polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication-transcription complex (RTC), playing an indispensable role in the coronavirus life cycle and thereby making it a promising target for broad-spectrum antiviral therapies. The imidazole scaffold, known for its antiviral potential, has been proposed as a potential scaffold. In this study, a fluorescence-based assay was designed by labeling dsDNA substrates with a commercial fluorophore and monitoring signal changes upon Nsp13 helicase activity. Optimization and high-throughput screening validated the feasibility of this approach. In accordance with the structural characteristics of ADP, we employed a structural-based design strategy to synthesize three classes of imidazole-based compounds through substitution reaction. Through in vitro activity research, pharmacokinetic parameter analysis, and molecular docking simulation, we identified compounds A16 (IC50 = 1.25 µM) and B3 (IC50 = 0.98 µM) as potential lead antiviral compounds for further targeted drug research.


Subject(s)
Antiviral Agents , Imidazoles , Molecular Docking Simulation , SARS-CoV-2 , Viral Nonstructural Proteins , Imidazoles/chemistry , Imidazoles/pharmacology , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Humans , COVID-19 Drug Treatment , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA Helicases/chemistry , Fluorescent Dyes/chemistry , Methyltransferases
5.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792173

ABSTRACT

The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.


Subject(s)
Antiviral Agents , Enzyme Inhibitors , Methyltransferases , Molecular Dynamics Simulation , SARS-CoV-2 , Viral Nonstructural Proteins , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Methyltransferases/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Drug Evaluation, Preclinical , COVID-19 Drug Treatment , COVID-19/virology , Binding Sites , Exoribonucleases
6.
Sci Rep ; 14(1): 9262, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649402

ABSTRACT

Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.


Subject(s)
Antiviral Agents , Hepacivirus , Hepatitis B virus , Molecular Docking Simulation , Neural Networks, Computer , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Hepatitis B virus/drug effects , Hepacivirus/drug effects , Humans , Drug Design , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Hepatitis B/virology , Hepatitis B/drug therapy , Ligands , Molecular Dynamics Simulation , Hepatitis C/drug therapy , Hepatitis C/virology
7.
Sci Rep ; 14(1): 9801, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684706

ABSTRACT

The Covid-19 pandemic outbreak has accelerated tremendous efforts to discover a therapeutic strategy that targets severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to control viral infection. Various viral proteins have been identified as potential drug targets, however, to date, no specific therapeutic cure is available against the SARS-CoV-2. To address this issue, the present work reports a systematic cheminformatic approach to identify the potent andrographolide derivatives that can target methyltransferases of SARS-CoV-2, i.e. nsp14 and nsp16 which are crucial for the replication of the virus and host immune evasion. A consensus of cheminformatics methodologies including virtual screening, molecular docking, ADMET profiling, molecular dynamics simulations, free-energy landscape analysis, molecular mechanics generalized born surface area (MM-GBSA), and density functional theory (DFT) was utilized. Our study reveals two new andrographolide derivatives (PubChem CID: 2734589 and 138968421) as natural bioactive molecules that can form stable complexes with both proteins via hydrophobic interactions, hydrogen bonds and electrostatic interactions. The toxicity analysis predicts class four toxicity for both compounds with LD50 value in the range of 500-700 mg/kg. MD simulation reveals the stable formation of the complex for both the compounds and their average trajectory values were found to be lower than the control inhibitor and protein alone. MMGBSA analysis corroborates the MD simulation result and showed the lowest energy for the compounds 2734589 and 138968421. The DFT and MEP analysis also predicts the better reactivity and stability of both the hit compounds. Overall, both andrographolide derivatives exhibit good potential as potent inhibitors for both nsp14 and nsp16 proteins, however, in-vitro and in vivo assessment would be required to prove their efficacy and safety in clinical settings. Moreover, the drug discovery strategy aiming at the dual target approach might serve as a useful model for inventing novel drug molecules for various other diseases.


Subject(s)
Antiviral Agents , Diterpenes , Methyltransferases , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Viral Nonstructural Proteins , Diterpenes/pharmacology , Diterpenes/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Methyltransferases/antagonists & inhibitors , Methyltransferases/chemistry , Methyltransferases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Cheminformatics/methods , COVID-19/virology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , COVID-19 Drug Treatment
8.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673962

ABSTRACT

In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level.


Subject(s)
Antiviral Agents , Dengue , Protease Inhibitors , Zika Virus Infection , Animals , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , DEAD-box RNA Helicases , Dengue/drug therapy , Dengue/virology , Dengue Virus/drug effects , Nucleoside-Triphosphatase , Protease Inhibitors/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Proteases , Zika Virus/drug effects , Zika Virus/enzymology , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
9.
ACS Infect Dis ; 10(5): 1780-1792, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38651692

ABSTRACT

The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Nucleosides , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , Humans , Nucleosides/pharmacology , Nucleosides/chemistry , Animals , Drug Discovery , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Chlorocebus aethiops , Vero Cells , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase
10.
J Virol ; 98(4): e0184423, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38436247

ABSTRACT

Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.


Subject(s)
Myxovirus Resistance Proteins , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Animals , Cell Line , Interferons/immunology , Interferons/metabolism , Mutation , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/enzymology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/growth & development , Porcine respiratory and reproductive syndrome virus/metabolism , Protein Binding , Swine/virology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
11.
ChemMedChem ; 19(10): e202400095, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38456332

ABSTRACT

We have assembled a computational pipeline based on virtual screening, docking techniques, and nonequilibrium molecular dynamics simulations, with the goal of identifying possible inhibitors of the SARS-CoV-2 NSP13 helicase, catalyzing by ATP hydrolysis the unwinding of double or single-stranded RNA in the viral replication process inside the host cell. The druggable sites for broad-spectrum inhibitors are represented by the RNA binding sites at the 5' entrance and 3' exit of the central channel, a structural motif that is highly conserved across coronaviruses. Potential binders were first generated using structure-based ligand techniques. Their potency was estimated by using four popular docking scoring functions. Common docking hits for NSP13 were finally tested using advanced nonequilibrium alchemical techniques for binding free energy calculations on a high-performing parallel cluster. Four potential NSP13 inhibitors with potency from submicrimolar to nanomolar were finally identified.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Ligands , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Drug Design , Humans , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Molecular Dynamics Simulation , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA Helicases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Binding Sites , Methyltransferases
12.
SLAS Discov ; 29(3): 100145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301954

ABSTRACT

SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13R392C variant, which is predominant in currently circulating lineages. Using in vitro gel- and fluorescence-based assays, we found that both nsp13 and nsp13R392C have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13R392C variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.


Subject(s)
Antiviral Agents , Methyltransferases , SARS-CoV-2 , Viral Nonstructural Proteins , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Humans , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Mutation/genetics , RNA, Viral/genetics , RNA Helicases/antagonists & inhibitors , RNA Helicases/genetics , RNA Helicases/metabolism , Virus Replication/drug effects , Virus Replication/genetics , COVID-19/virology
13.
Adv Biol (Weinh) ; 8(5): e2300570, 2024 May.
Article in English | MEDLINE | ID: mdl-38381052

ABSTRACT

Paritaprevir is an orally bioavailable, macrocyclic drug used for treating chronic Hepatitis C virus (HCV) infection. Its structures have been elusive to the public until recently when one of the crystal forms is solved by microcrystal electron diffraction (MicroED). In this work, the MicroED structures of two distinct polymorphic crystal forms of paritaprevir are reported from the same experiment. The different polymorphs show conformational changes in the macrocyclic core, as well as the cyclopropyl sulfonamide and methyl pyrazinamide substituents. Molecular docking shows that one of the conformations fits well into the active site pocket of the HCV non-structural 3/4A (NS3/4A) serine protease target, and can interact with the pocket and catalytic triad via hydrophobic interactions and hydrogen bonds. These results can provide further insight for optimization of the binding of acyl sulfonamide inhibitors to the HCV NS3/4A serine protease. In addition, this also demonstrates the opportunity to derive different polymorphs and distinct macrocycle conformations from the same experiments using MicroED.


Subject(s)
Cyclopropanes , Lactams, Macrocyclic , Molecular Docking Simulation , Proline , Sulfonamides , Sulfonamides/chemistry , Sulfonamides/pharmacology , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
14.
J Biol Chem ; 299(11): 105341, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832873

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2, the causative agent of coronavirus disease 2019, has resulted in the largest pandemic in recent history. Current therapeutic strategies to mitigate this disease have focused on the development of vaccines and on drugs that inhibit the viral 3CL protease or RNA-dependent RNA polymerase enzymes. A less-explored and potentially complementary drug target is Nsp15, a uracil-specific RNA endonuclease that shields coronaviruses and other nidoviruses from mammalian innate immune defenses. Here, we perform a high-throughput screen of over 100,000 small molecules to identify Nsp15 inhibitors. We characterize the potency, mechanism, selectivity, and predicted binding mode of five lead compounds. We show that one of these, IPA-3, is an irreversible inhibitor that might act via covalent modification of Cys residues within Nsp15. Moreover, we demonstrate that three of these inhibitors (hexachlorophene, IPA-3, and CID5675221) block severe acute respiratory syndrome coronavirus 2 replication in cells at subtoxic doses. This study provides a pipeline for the identification of Nsp15 inhibitors and pinpoints lead compounds for further development against coronavirus disease 2019 and related coronavirus infections.


Subject(s)
Antiviral Agents , Endoribonucleases , SARS-CoV-2 , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects
15.
Nature ; 615(7953): 678-686, 2023 03.
Article in English | MEDLINE | ID: mdl-36922586

ABSTRACT

Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.


Subject(s)
Antiviral Agents , Dengue Virus , Dengue , Primates , Viral Nonstructural Proteins , Animals , Humans , Mice , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Clinical Trials, Phase I as Topic , Dengue/drug therapy , Dengue/prevention & control , Dengue/virology , Dengue Virus/classification , Dengue Virus/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Viral , In Vitro Techniques , Molecular Targeted Therapy , Primates/virology , Protein Binding/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication
16.
Front Cell Infect Microbiol ; 12: 896504, 2022.
Article in English | MEDLINE | ID: mdl-35967852

ABSTRACT

The gut microbiome profile of COVID-19 patients was found to correlate with a viral load of SARS-CoV-2, COVID-19 severity, and dysfunctional immune responses, suggesting that gut microbiota may be involved in anti-infection. In order to investigate the role of gut microbiota in anti-infection against SARS-CoV-2, we established a high-throughput in vitro screening system for COVID-19 therapeutics by targeting the endoribonuclease (Nsp15). We also evaluated the activity inhibition of the target by substances of intestinal origin, using a mouse model in an attempt to explore the interactions between gut microbiota and SARS-CoV-2. The results unexpectedly revealed that antibiotic treatment induced the appearance of substances with Nsp15 activity inhibition in the intestine of mice. Comprehensive analysis based on functional profiling of the fecal metagenomes and endoribonuclease assay of antibiotic-enriched bacteria and metabolites demonstrated that the Nsp15 inhibitors were the primary bile acids that accumulated in the gut as a result of antibiotic-induced deficiency of bile acid metabolizing microbes. This study provides a new perspective on the development of COVID-19 therapeutics using primary bile acids.


Subject(s)
Bile Acids and Salts , COVID-19 Drug Treatment , COVID-19 , Endoribonucleases , Gastrointestinal Microbiome , SARS-CoV-2 , Viral Nonstructural Proteins , Animals , Anti-Bacterial Agents/pharmacology , Bile Acids and Salts/physiology , COVID-19/physiopathology , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/metabolism , Endoribonucleases/physiology , Gastrointestinal Microbiome/physiology , Mice , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/physiology
17.
Molecules ; 27(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35807364

ABSTRACT

Dengue virus (DENV) is a danger to more than 400 million people in the world, and there is no specific treatment. Thus, there is an urgent need to develop an effective method to combat this pathology. NS2B/NS3 protease is an important biological target due it being necessary for viral replication and the fact that it promotes the spread of the infection. Thus, this study aimed to design DENV NS2B/NS3pro allosteric inhibitors from a matrix compound. The search was conducted using the Swiss Similarity tool. The compounds were subjected to molecular docking calculations, molecular dynamics simulations (MD) and free energy calculations. The molecular docking results showed that two compounds, ZINC000001680989 and ZINC000001679427, were promising and performed important hydrogen interactions with the Asn152, Leu149 and Ala164 residues, showing the same interactions obtained in the literature. In the MD, the results indicated that five residues, Lys74, Leu76, Asn152, Leu149 and Ala166, contribute to the stability of the ligand at the allosteric site for all of the simulated systems. Hydrophobic, electrostatic and van der Waals interactions had significant effects on binding affinity. Physicochemical properties, lipophilicity, water solubility, pharmacokinetics, druglikeness and medicinal chemistry were evaluated for four compounds that were more promising, showed negative indices for the potential penetration of the Blood Brain Barrier and expressed high human intestinal absorption, indicating a low risk of central nervous system depression or drowsiness as the the side effects. The compound ZINC000006694490 exhibited an alert with a plausible level of toxicity for the purine base chemical moiety, indicating hepatotoxicity and chromosome damage in vivo in mouse, rat and human organisms. All of the compounds selected in this study showed a synthetic accessibility (SA) score lower than 4, suggesting the ease of new syntheses. The results corroborate with other studies in the literature, and the computational approach used here can contribute to the discovery of new and potent anti-dengue agents.


Subject(s)
Dengue Virus , Protease Inhibitors , Viral Nonstructural Proteins , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue Virus/enzymology , Humans , Mice , Molecular Docking Simulation , Peptide Hydrolases/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , RNA Helicases/antagonists & inhibitors , RNA Helicases/chemistry , Rats , Serine Endopeptidases/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
18.
ACS Infect Dis ; 8(8): 1533-1542, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35822715

ABSTRACT

SARS-CoV-2 non-structural protein 13 (nsp13) is a highly conserved helicase and RNA 5'-triphosphatase. It uses the energy derived from the hydrolysis of nucleoside triphosphates for directional movement along the nucleic acids and promotes the unwinding of double-stranded nucleic acids. Nsp13 is essential for replication and propagation of all human and non-human coronaviruses. Combined with its defined nucleotide binding site and druggability, nsp13 is one of the most promising candidates for the development of pan-coronavirus therapeutics. Here, we report the development and optimization of bioluminescence assays for kinetic characterization of nsp13 ATPase activity in the presence and absence of single-stranded DNA. Screening of a library of 5000 small molecules in the presence of single-stranded DNA resulted in the discovery of six nsp13 small-molecule inhibitors with IC50 values ranging from 6 ± 0.5 to 50 ± 6 µM. In addition to providing validated methods for high-throughput screening of nsp13 in drug discovery campaigns, the reproducible screening hits we present here could potentially be chemistry starting points toward the development of more potent and selective nsp13 inhibitors, enabling the discovery of antiviral therapeutics.


Subject(s)
Methyltransferases/metabolism , RNA Helicases/metabolism , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/metabolism , Adenosine Triphosphatases , COVID-19/virology , DNA, Single-Stranded , Humans , Methyltransferases/antagonists & inhibitors , Nucleic Acids/metabolism , RNA Helicases/antagonists & inhibitors , SARS-CoV-2/physiology , Viral Nonstructural Proteins/antagonists & inhibitors
19.
Antiviral Res ; 204: 105364, 2022 08.
Article in English | MEDLINE | ID: mdl-35716929

ABSTRACT

Viral exoribonucleases are uncommon in the world of RNA viruses. To date, they have only been identified in the Arenaviridae and the Coronaviridae families. The exoribonucleases of these viruses play a crucial role in the pathogenicity and interplay with host innate immune response. Moreover, coronaviruses exoribonuclease is also involved in a proofreading mechanism ensuring the genetic stability of the viral genome. Because of their key roles in virus life cycle, they constitute attractive target for drug design. Here we developed a sensitive, robust and reliable fluorescence polarization assay to measure the exoribonuclease activity and its inhibition in vitro. The effectiveness of the method was validated on three different viral exoribonucleases, including SARS-CoV-2, Lymphocytic Choriomeningitis and Machupo viruses. We performed a screening of a focused library consisting of 113 metal chelators. Hit compounds were recovered with an IC50 at micromolar level. We confirmed 3 hits in SARS-CoV-2 infected Vero-E6 cells.


Subject(s)
Antiviral Agents , Arenavirus , Exoribonucleases , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Arenavirus/drug effects , Chlorocebus aethiops , Exoribonucleases/antagonists & inhibitors , Fluorescence Polarization , SARS-CoV-2/drug effects , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors
20.
J Med Chem ; 65(9): 6555-6572, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35475620

ABSTRACT

Zika virus (ZIKV) is a human pathogenic arbovirus. So far, neither a specific treatment nor a vaccination against ZIKV infections has been approved. Starting from our previously described lead structure, a series of 29 new macrocyclic inhibitors of the Zika virus protease containing different linker motifs have been synthesized. By selecting hydrophobic d-amino acids as part of the linker, numerous inhibitors with Ki values < 5 nM were obtained. For 12 inhibitors, crystal structures in complex with the ZIKV protease up to 1.30 Å resolution were determined, which contribute to the understanding of the observed structure-activity relationship (SAR). In immunofluorescence assays, an antiviral effect was observed for compound 26 containing a d-homocyclohexylalanine residue in its linker segment. Due to its excellent selectivity profile and low cytotoxicity, this inhibitor scaffold could be a suitable starting point for the development of peptidic drugs against the Zika virus and related flaviviruses.


Subject(s)
Zika Virus Infection , Zika Virus , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Zika Virus/drug effects , Zika Virus/enzymology , Zika Virus Infection/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...