Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 621
Filter
1.
Nat Commun ; 15(1): 4704, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830845

ABSTRACT

Metabolic syndrome encompasses amongst other conditions like obesity and type-2 diabetes and is associated with gut microbiome (GM) dysbiosis. Fecal microbiota transplantation (FMT) has been explored to treat metabolic syndrome by restoring the GM; however, concerns on accidentally transferring pathogenic microbes remain. As a safer alternative, fecal virome transplantation (FVT, sterile-filtrated feces) has the advantage over FMT in that mainly bacteriophages are transferred. FVT from lean male donors have shown promise in alleviating the metabolic effects of high-fat diet in a preclinical mouse study. However, FVT still carries the risk of eukaryotic viral infections. To address this, recently developed methods are applied for removing or inactivating eukaryotic viruses in the viral component of FVT. Modified FVTs are compared with unmodified FVT and saline in a diet-induced obesity model on male C57BL/6 N mice. Contrasted with obese control, mice administered a modified FVT (nearly depleted for eukaryotic viruses) exhibits enhanced blood glucose clearance but not weight loss. The unmodified FVT improves liver pathology and reduces the proportions of immune cells in the adipose tissue with a non-uniform response. GM analysis suggests that bacteriophage-mediated GM modulation influences outcomes. Optimizing these approaches could lead to the development of safe bacteriophage-based therapies targeting metabolic syndrome through GM restoration.


Subject(s)
Diet, High-Fat , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Metabolic Syndrome , Mice, Inbred C57BL , Mice, Obese , Obesity , Virome , Animals , Male , Metabolic Syndrome/therapy , Obesity/therapy , Mice , Diet, High-Fat/adverse effects , Dysbiosis/therapy , Feces/virology , Feces/microbiology , Bacteriophages/physiology , Blood Glucose/metabolism , Disease Models, Animal , Liver/pathology , Liver/metabolism , Adipose Tissue
2.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38832467

ABSTRACT

BACKGROUND: Modern sequencing technologies offer extraordinary opportunities for virus discovery and virome analysis. Annotation of viral sequences from metagenomic data requires a complex series of steps to ensure accurate annotation of individual reads and assembled contigs. In addition, varying study designs will require project-specific statistical analyses. FINDINGS: Here we introduce Hecatomb, a bioinformatic platform coordinating commonly used tasks required for virome analysis. Hecatomb means "a great sacrifice." In this setting, Hecatomb is "sacrificing" false-positive viral annotations using extensive quality control and tiered-database searches. Hecatomb processes metagenomic data obtained from both short- and long-read sequencing technologies, providing annotations to individual sequences and assembled contigs. Results are provided in commonly used data formats useful for downstream analysis. Here we demonstrate the functionality of Hecatomb through the reanalysis of a primate enteric and a novel coral reef virome. CONCLUSION: Hecatomb provides an integrated platform to manage many commonly used steps for virome characterization, including rigorous quality control, host removal, and both read- and contig-based analysis. Each step is managed using the Snakemake workflow manager with dependency management using Conda. Hecatomb outputs several tables properly formatted for immediate use within popular data analysis and visualization tools, enabling effective data interpretation for a variety of study designs. Hecatomb is hosted on GitHub (github.com/shandley/hecatomb) and is available for installation from Bioconda and PyPI.


Subject(s)
Metagenomics , Software , Metagenomics/methods , Virome/genetics , Viruses/genetics , Viruses/classification , Animals , Computational Biology/methods , Genome, Viral , Metagenome
3.
Microbiome ; 12(1): 102, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840247

ABSTRACT

BACKGROUND: Mammalian intestine harbors a mass of phages that play important roles in maintaining gut microbial ecosystem and host health. Pig has become a common model for biomedical research and provides a large amount of meat for human consumption. However, the knowledge of gut phages in pigs is still limited. RESULTS: Here, we investigated the gut phageome in 112 pigs from seven pig breeds using PhaBOX strategy based on the metagenomic data. A total of 174,897 non-redundant gut phage genomes were assembled from 112 metagenomes. A total of 33,487 gut phage genomes were classified and these phages mainly belonged to phage families such as Ackermannviridae, Straboviridae, Peduoviridae, Zierdtviridae, Drexlerviridae, and Herelleviridae. The gut phages in seven pig breeds exhibited distinct communities and the gut phage communities changed with the age of pig. These gut phages were predicted to infect a broad range of 212 genera of prokaryotes, such as Candidatus Hamiltonella, Mycoplasma, Colwellia, and Lactobacillus. The data indicated that broad KEGG and CAZy functions were also enriched in gut phages of pigs. The gut phages also carried the antimicrobial resistance genes (ARGs) and the most abundant antimicrobial resistance genotype was diaminopyrimidine resistance. CONCLUSIONS: Our research delineates a landscape for gut phages in seven pig breeds and reveals that gut phages serve as a key reservoir of ARGs in pigs. Video Abstract.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Animals , Swine , Bacteriophages/genetics , Gastrointestinal Microbiome/genetics , Metagenomics , Genome, Viral , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Metagenome , Virome/genetics , Drug Resistance, Bacterial/genetics
4.
Microbiome ; 12(1): 82, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725064

ABSTRACT

BACKGROUND: The rumen microbiome enables ruminants to digest otherwise indigestible feedstuffs, thereby facilitating the production of high-quality protein, albeit with suboptimal efficiency and producing methane. Despite extensive research delineating associations between the rumen microbiome and ruminant production traits, the functional roles of the pervasive and diverse rumen virome remain to be determined. RESULTS: Leveraging a recent comprehensive rumen virome database, this study analyzes virus-microbe linkages, at both species and strain levels, across 551 rumen metagenomes, elucidating patterns of microbial and viral diversity, co-occurrence, and virus-microbe interactions. Additionally, this study assesses the potential role of rumen viruses in microbial diversification by analyzing prophages found in rumen metagenome-assembled genomes. Employing CRISPR-Cas spacer-based matching and virus-microbe co-occurrence network analysis, this study suggests that the viruses in the rumen may regulate microbes at strain and community levels through both antagonistic and mutualistic interactions. Moreover, this study establishes that the rumen virome demonstrates responsiveness to dietary shifts and associations with key animal production traits, including feed efficiency, lactation performance, weight gain, and methane emissions. CONCLUSIONS: These findings provide a substantive framework for further investigations to unravel the functional roles of the virome in the rumen in shaping the microbiome and influencing overall animal production performance. Video Abstract.


Subject(s)
Metagenome , Rumen , Viruses , Rumen/microbiology , Rumen/virology , Animals , Viruses/classification , Viruses/genetics , Gastrointestinal Microbiome , Virome , Ruminants/microbiology , Ruminants/virology , Methane/metabolism , Animal Feed , Bacteria/classification , Bacteria/genetics
5.
Sci Total Environ ; 932: 172829, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692332

ABSTRACT

Permafrost serves as a natural cold reservoir for viral communities. However, little is known about the viromes in deep permafrost soil, as most studies of permafrost were restricted to shallow areas. Here, permafrost soil samples of up to 100 m in depth were collected from two sites in the Tuotuo River permafrost area on the Tibetan Plateau. We investigated the viral composition in these permafrost soil samples and analyzed the relationship of viral composition and diversity along with depths. Our study revealed that greater permafrost thickness corresponds to higher diversity within the viral community. Bacteriophages were found to be the dominant viral communities, with "kill the winner" dynamics observed within the Siphoviridae and Myoviridae. The abundance and diversity of viral communities may follow a potential pattern along soil layers and depths, influenced by pH, trace elements, and permafrost thickness. Notably, strong correlations were discovered between the content of inorganic elements, including B, Mg, Cr, Bi, Ti, Na, Ni, and Cu, and the viral composition. Moreover, we discovered highly conserved sequences of giant viruses at depth of 10, 20, and 50 m in permafrost, which play a crucial role in evolutionary processes. These findings provide valuable insights into the viral community patterns from shallow to 100-m-depth in high-elevation permafrost, offering crucial data support for the formulation of strategies for permafrost thaw caused by climate change and anthropogenic activities.


Subject(s)
Permafrost , Tibet , Soil Microbiology , Virome , Altitude , Environmental Monitoring , Soil/chemistry , Viruses
6.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793556

ABSTRACT

Yunnan province in China shares its borders with three neighboring countries: Myanmar, Vietnam, and Laos. The region is characterized by a diverse climate and is known to be a suitable habitat for various arthropods, including midges which are notorious for transmitting diseases which pose significant health burdens affecting both human and animal health. A total of 431,100 midges were collected from 15 different locations in the border region of Yunnan province from 2015 to 2020. These midges were divided into 37 groups according to the collection year and sampling site. These 37 groups of midges were then homogenized to extract nucleic acid. Metatranscriptomics were used to analyze their viromes. Based on the obtained cytochrome C oxidase I gene (COI) sequences, three genera were identified, including one species of Forcipomyia, one species of Dasyhelea, and twenty-five species of Culicoides. We identified a total of 3199 viruses in five orders and 12 families, including 1305 single-stranded positive-stranded RNA viruses (+ssRNA) in two orders and seven families, 175 single-stranded negative-stranded RNA viruses (-ssRNA) in two orders and one family, and 1719 double-stranded RNA viruses in five families. Six arboviruses of economic importance were identified, namely Banna virus (BAV), Japanese encephalitis virus (JEV), Akabane virus (AKV), Bluetongue virus (BTV), Tibetan circovirus (TIBOV), and Epizootic hemorrhagic disease virus (EHDV), all of which are capable, to varying extents, of causing disease in humans and/or animals. The survey sites in this study basically covered the current distribution area of midges in Yunnan province, which helps to predict the geographic expansion of midge species. The complexity and diversity of the viral spectrum carried by midges identified in the study calls for more in-depth research, which can be utilized to monitor arthropod vectors and to predict the emergence and spread of zoonoses and animal epidemics, which is of great significance for the control of vector-borne diseases.


Subject(s)
Ceratopogonidae , Phylogeny , Animals , China , Ceratopogonidae/virology , Ceratopogonidae/genetics , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Transcriptome , Insect Vectors/virology , Virome/genetics , Humans
7.
Viruses ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38793605

ABSTRACT

Routinely used metagenomic next-generation sequencing (mNGS) techniques often fail to detect low-level viremia (<104 copies/mL) and appear biased towards viruses with linear genomes. These limitations hinder the capacity to comprehensively characterize viral infections, such as those attributed to the Anelloviridae family. These near ubiquitous non-pathogenic components of the human virome have circular single-stranded DNA genomes that vary in size from 2.0 to 3.9 kb and exhibit high genetic diversity. Hence, species identification using short reads can be challenging. Here, we introduce a rolling circle amplification (RCA)-based metagenomic sequencing protocol tailored for circular single-stranded DNA genomes, utilizing the long-read Oxford Nanopore platform. The approach was assessed by sequencing anelloviruses in plasma drawn from people who inject drugs (PWID) in two geographically distinct cohorts. We detail the methodological adjustments implemented to overcome difficulties inherent in sequencing circular genomes and describe a computational pipeline focused on anellovirus detection. We assessed our protocol across various sample dilutions and successfully differentiated anellovirus sequences in conditions simulating mixed infections. This method provides a robust framework for the comprehensive characterization of circular viruses within the human virome using the Oxford Nanopore.


Subject(s)
Anelloviridae , Genome, Viral , High-Throughput Nucleotide Sequencing , Metagenomics , Nanopore Sequencing , Anelloviridae/genetics , Anelloviridae/isolation & purification , Anelloviridae/classification , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Nanopore Sequencing/methods , Nanopores , DNA, Viral/genetics , Virome/genetics , Sequence Analysis, DNA/methods
8.
Virus Res ; 345: 199389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714217

ABSTRACT

Saffron (Crocus sativus L.), a historically significant crop valued for its nutraceutical properties, has been poorly explored from a phytosanitary perspective. This study conducted a thorough examination of viruses affecting saffron samples from Spanish cultivars, using high-throughput sequencing alongside a systematic survey of transcriptomic datasets from Crocus sativus at the Sequence Read Archive. Our analysis unveiled a broad diversity and abundance, identifying 17 viruses across the 52 analyzed libraries, some of which were highly prevalent. This includes known saffron-infecting viruses and previously unreported ones. In addition, we discovered 7 novel viruses from the Alphaflexiviridae, Betaflexiviridae, Potyviridae, Solemoviridae, and Geminiviridae families, with some present in libraries from various locations. These findings indicate that the saffron-associated virome is more complex than previously reported, emphasizing the potential of phytosanitary analysis to enhance saffron productivity.


Subject(s)
Crocus , Plant Diseases , Crocus/genetics , Plant Diseases/virology , Plant Viruses/genetics , Plant Viruses/classification , Plant Viruses/isolation & purification , High-Throughput Nucleotide Sequencing , Virome/genetics , Gene Expression Profiling , Transcriptome , Phylogeny , Genome, Viral , Potyviridae/genetics , Potyviridae/isolation & purification , Flexiviridae/genetics , Flexiviridae/classification , Flexiviridae/isolation & purification
9.
Sci Rep ; 14(1): 10540, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719945

ABSTRACT

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Subject(s)
Bacteriophages , Bivalvia , Gills , Metagenomics , Animals , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Gills/microbiology , Gills/virology , Gills/metabolism , Bivalvia/microbiology , Bivalvia/virology , Bivalvia/genetics , Gene Expression Profiling , Transcriptome , Virome/genetics , Bacteria/genetics , Bacteria/classification , Symbiosis/genetics , Metagenome
10.
Biomed Pharmacother ; 175: 116608, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703502

ABSTRACT

Recent advances in metagenomic testing opened a new window into the mammalian blood virome. Comprised of well-known viruses like human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, the virome also includes many other eukaryotic viruses and phages whose medical significance, lifecycle, epidemiology, and impact on human health are less well known and thus regarded as commensals. This review synthesizes available information for the so-called commensal virome members that circulate in the blood of humans considering their restriction to and interaction with the human host, their natural history, and their impact on human health and physiology.


Subject(s)
Virome , Humans , Virome/genetics , Animals , Viruses/genetics , Viruses/isolation & purification , Metagenomics/methods , Virus Diseases/virology , Virus Diseases/blood
11.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38709876

ABSTRACT

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Subject(s)
Bacteria , Kelp , Microbiota , Seawater , Kelp/microbiology , Seawater/microbiology , Seawater/virology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Metagenomics , Seaweed/microbiology , Seaweed/virology , Geologic Sediments/microbiology , Geologic Sediments/virology , Prokaryotic Cells/virology , Prokaryotic Cells/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Virome
12.
PLoS One ; 19(4): e0299891, 2024.
Article in English | MEDLINE | ID: mdl-38630782

ABSTRACT

Viruses can infect the brain in individuals with and without HIV-infection: however, the brain virome is poorly characterized. Metabolic alterations have been identified which predispose people to substance use disorder (SUD), but whether these could be triggered by viral infection of the brain is unknown. We used a target-enrichment, deep sequencing platform and bioinformatic pipeline named "ViroFind", for the unbiased characterization of DNA and RNA viruses in brain samples obtained from the National Neuro-AIDS Tissue Consortium. We analyzed fresh frozen post-mortem prefrontal cortex from 72 individuals without known viral infection of the brain, including 16 HIV+/SUD+, 20 HIV+/SUD-, 16 HIV-/SUD+, and 20 HIV-/SUD-. The average age was 52.3 y and 62.5% were males. We identified sequences from 26 viruses belonging to 11 viral taxa. These included viruses with and without known pathogenic potential or tropism to the nervous system, with sequence coverage ranging from 0.03 to 99.73% of the viral genomes. In SUD+ people, HIV-infection was associated with a higher total number of viruses, and HIV+/SUD+ compared to HIV-/SUD+ individuals had an increased frequency of Adenovirus (68.8 vs 0%; p<0.001) and Epstein-Barr virus (EBV) (43.8 vs 6.3%; p=0.037) as well as an increase in Torque Teno virus (TTV) burden. Conversely, in HIV+ people, SUD was associated with an increase in frequency of Hepatitis C virus, (25 in HIV+/SUD+ vs 0% in HIV+/SUD-; p=0.031). Finally, HIV+/SUD- compared to HIV-/SUD- individuals had an increased frequency of EBV (50 vs 0%; p<0.001) and an increase in TTV viral burden, but a decreased Adenovirus viral burden. These data demonstrate an unexpectedly high variety in the human brain virome, identifying targets for future research into the impact of these taxa on the central nervous system. ViroFind could become a valuable tool for monitoring viral dynamics in various compartments, monitoring outbreaks, and informing vaccine development.


Subject(s)
DNA Virus Infections , Epstein-Barr Virus Infections , HIV Infections , Substance-Related Disorders , Torque teno virus , Virus Diseases , Male , Humans , Middle Aged , Female , Virome , Epstein-Barr Virus Infections/complications , DNA, Viral/genetics , Herpesvirus 4, Human/genetics , HIV Infections/epidemiology , Virus Diseases/complications , Torque teno virus/genetics , Brain , Hepacivirus/genetics , Substance-Related Disorders/complications
13.
Microb Genom ; 10(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38683195

ABSTRACT

The advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage. The adoption of advanced technologies like long-read sequencing has the potential to be transformative in refining viromics and metagenomics. Here, we examined the effectiveness of long-read and hybrid sequencing by comparing Illumina short-read and Oxford Nanopore Technology (ONT) long-read sequencing technologies and different assembly strategies on recovering viral genomes from human faecal samples. Our findings showed that if a single sequencing technology is to be chosen for virome analysis, Illumina is preferable due to its superior ability to recover fully resolved viral genomes and minimise erroneous genomes. While ONT assemblies were effective in recovering viral diversity, the challenges related to input requirements and the necessity for amplification made it less ideal as a standalone solution. However, using a combined, hybrid approach enabled a more authentic representation of viral diversity to be obtained within samples.


Subject(s)
Feces , Gastrointestinal Microbiome , Genome, Viral , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Gastrointestinal Microbiome/genetics , Feces/virology , Feces/microbiology , Nanopores , Nanopore Sequencing/methods , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Virome/genetics , Sequence Analysis, DNA/methods
14.
Viruses ; 16(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38675877

ABSTRACT

The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.


Subject(s)
Bacteria , Metagenomics , Sewage , Viruses , Wastewater , Wastewater/virology , Wastewater/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Sewage/virology , Sewage/microbiology , Humans , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Virome/genetics , Water Purification , Animals
15.
Viruses ; 16(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38675918

ABSTRACT

Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing , Rhabdoviridae , Rhabdoviridae/genetics , Rhabdoviridae/isolation & purification , Rhabdoviridae/classification , Animals , Cell Line , Phylogeny , Virus Replication , RNA, Viral/genetics , Virome/genetics , Rhabdoviridae Infections/virology , Rhabdoviridae Infections/veterinary
16.
Viruses ; 16(4)2024 04 11.
Article in English | MEDLINE | ID: mdl-38675931

ABSTRACT

Viruses, as the most prolific entities on Earth, constitute significant ecological groups within freshwater lakes, exerting pivotal ecological roles. In this study, we selected Chaohu Lake, a representative eutrophic freshwater lake in China, as our research site to explore the community distribution, driving mechanisms, and potential ecological functions of diverse viral communities, the intricate virus-host interaction systems, and the overarching influence of viruses on global biogeochemical cycling.


Subject(s)
Lakes , Viruses , Lakes/virology , China , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Ecosystem , Virome , Phylogeny
17.
Viruses ; 16(4)2024 04 12.
Article in English | MEDLINE | ID: mdl-38675938

ABSTRACT

Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.


Subject(s)
Fungal Viruses , Phylogeny , Virome , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Genome, Viral , China , Trametes/genetics , Trametes/classification , Trametes/virology
18.
Viruses ; 16(4)2024 04 14.
Article in English | MEDLINE | ID: mdl-38675947

ABSTRACT

Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.


Subject(s)
Altitude , Gastrointestinal Microbiome , Metagenomics , Virome , Animals , Swine , Virome/genetics , Gastrointestinal Microbiome/genetics , Tibet , Viruses/genetics , Viruses/classification , Metagenome , Female , Genome, Viral
19.
J Invertebr Pathol ; 204: 108117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679365

ABSTRACT

Insects have a rich diversity of RNA viruses that can either cause acute infections or persist in host populations without visible symptoms. The melon fly, Zeugodacus cucurbitae (Tephritidae) causes substantial economic losses through infestation of diverse cucurbit and other crops. Of Indomalayan origin, it is now established in many tropical regions of the world. The virome diversity of Z. cucurbitae is largely unknown across large parts of its distribution, including the Indian subcontinent. We have analysed three transcriptomes each of one field-collected and one laboratory-reared Z. cucurbitae population from Bangalore (India) and discovered genomes of ten putative RNA viruses: two sigmaviruses, one chimbavirus, one cripavirus, one noda-like virus, one nora virus, one orbivirus, one partiti-like virus, one sobemovirus and one toti-like virus. Analysis of the only available host genome of a Hawaiian Z. cucurbitae population did not detect host genome integration of the detected viruses. While all ten viruses were found in the Bangalore field population only seven were detected in the laboratory population, indicating that these seven may cause persistent covert infections. Using virus-specific RNA-dependent RNA polymerase gene primers, we detected nine of the RNA viruses with an overall low variant diversity in some but not all individual flies from four out of five Indian regions. We then screened 39 transcriptomes of Z. cucurbitae laboratory populations from eastern Asia (Guangdong, Hainan, Taiwan) and the Pacific region (Hawaii), and detected seven of the ten virus genomes. We found additional genomes of a picorna-like virus and a negev-like virus. Hawaii as the only tested population from the fly's invasive range only had one virus. Our study provides evidence of new and high RNA virus diversity in Indian populations within the original range of Z. cucurbitae, as well as the presence of persistent covert infections in laboratory populations. It builds the basis for future research of tephritid-associated RNA viruses, including their host effects, epidemiology and application potential in biological control.


Subject(s)
RNA Viruses , Tephritidae , Animals , RNA Viruses/genetics , Tephritidae/virology , Tephritidae/genetics , India , Genome, Viral , Transcriptome , Virome/genetics
20.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687787

ABSTRACT

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Subject(s)
Deer , Flavivirus , Metagenomics , Ticks , Animals , Metagenomics/methods , Japan/epidemiology , Deer/virology , Flavivirus/genetics , Flavivirus/isolation & purification , Flavivirus/classification , Ticks/virology , Phylogeny , Virome/genetics , Virion/genetics , Sus scrofa/virology , High-Throughput Nucleotide Sequencing , Humans , Seroepidemiologic Studies , Genome, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...