Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35458546

ABSTRACT

HIV-1 Vpu targets the host cell proteins CD4 and BST-2/Tetherin for degradation, ultimately resulting in enhanced virus spread and host immune evasion. The discovery and characterization of small molecules that antagonize Vpu would further elucidate the contribution of Vpu to pathogenesis and lay the foundation for the study of a new class of novel HIV-1 therapeutics. To identify novel compounds that block Vpu activity, we have developed a cell-based 'gain of function' assay that produces a positive signal in response to Vpu inhibition. To develop this assay, we took advantage of the viral glycoprotein, GaLV Env. In the presence of Vpu, GaLV Env is not incorporated into viral particles, resulting in non-infectious virions. Vpu inhibition restores infectious particle production. Using this assay, a high throughput screen of >650,000 compounds was performed to identify inhibitors that block the biological activity of Vpu. From this screen, we identified several positive hits but focused on two compounds from one structural family, SRI-41897 and SRI-42371. We developed independent counter-screens for off target interactions of the compounds and found no off target interactions. Additionally, these compounds block Vpu-mediated modulation of CD4, BST-2/Tetherin and antibody dependent cell-mediated toxicity (ADCC). Unfortunately, both SRI-41897 and SRI-42371 were shown to be specific to the N-terminal region of NL4-3 Vpu and did not function against other, more clinically relevant, strains of Vpu; however, this assay may be slightly modified to include more significant Vpu strains in the future.


Subject(s)
Anti-HIV Agents , HIV-1 , Human Immunodeficiency Virus Proteins , Viral Regulatory and Accessory Proteins , Viroporin Proteins , Anti-HIV Agents/chemistry , Bone Marrow Stromal Antigen 2/metabolism , GPI-Linked Proteins/metabolism , HIV-1/metabolism , Human Immunodeficiency Virus Proteins/antagonists & inhibitors , Human Immunodeficiency Virus Proteins/metabolism , Leukemia Virus, Gibbon Ape/metabolism , Small Molecule Libraries , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins/antagonists & inhibitors
2.
Sci Rep ; 11(1): 19481, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593970

ABSTRACT

The pandemic infectious disease (Covid-19) caused by the coronavirus (SARS-CoV2) is spreading rapidly around the world. Covid-19 does an irreparable harm to the health and life of people. It also has a negative financial impact on the economies of most countries of the world. In this regard, the issue of creating drugs aimed at combating this disease is especially acute. In this work, molecular docking was used to study the docking of 23 compounds with QRF3a SARS-CoV2. The performed in silico modeling made it possible to identify leading compounds capable of exerting a potential inhibitory and virucidal effect. The leading compounds include chlorin (a drug used in PDT), iron(III)protoporphyrin (endogenous porphyrin), and tetraanthraquinone porphyrazine (an exogenous substance). Having taken into consideration the localization of ligands in the QRF3a SARS-CoV2, we have made an assumption about their influence on the pathogenesis of Covid-19. The interaction of chlorin, iron(III)protoporphyrin and protoporphyrin with the viral protein ORF3a were studied by fluorescence and UV-Vis spectroscopy. The obtained experimental results confirm the data of molecular docking. The results showed that a viral protein binds to endogenous porphyrins and chlorins, moreover, chlorin is a competitive ligand for endogenous porphyrins. Chlorin should be considered as a promising drug for repurposing.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/metabolism , Heterocyclic Compounds/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/metabolism , Viroporin Proteins/chemistry , Viroporin Proteins/metabolism , Binding Sites , Drug Repositioning , Heterocyclic Compounds/metabolism , Ligands , Molecular Docking Simulation , Porphyrins/chemistry , Porphyrins/metabolism , Protoporphyrins/chemistry , Protoporphyrins/metabolism , SARS-CoV-2/drug effects , Viroporin Proteins/antagonists & inhibitors , COVID-19 Drug Treatment
3.
Emerg Microbes Infect ; 10(1): 1832-1848, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34427541

ABSTRACT

Seasonal influenza A virus (IAV) infections are among the most important global health problems. FDA-approved antiviral therapies against IAV include neuraminidase inhibitors, M2 inhibitors, and polymerase inhibitor baloxavir. Resistance against adamantanes (amantadine and rimantadine) is widespread as virtually all IAV strains currently circulating in the human population are resistant to adamantanes through the acquisition of the S31N mutation. The neuraminidase inhibitor-resistant strains also contain the M2-S31N mutant, suggesting M2-S31N is a high-profile antiviral drug target. Here we report the development of a novel deuterium-containing M2-S31N inhibitor UAWJ280. UAWJ280 had broad-spectrum antiviral activity against both oseltamivir sensitive and -resistant influenza A strains and had a synergistic antiviral effect in combination with oseltamivir in cell culture. In vivo pharmacokinetic (PK) studies demonstrated that UAWJ280 had favourable PK properties. The in vivo mouse model study showed that UAWJ280 was effective alone or in combination with oseltamivir in improving clinical signs and survival after lethal challenge with an oseltamivir sensitive IAV H1N1 strain. Furthermore, UAWJ280 was also able to ameliorate clinical signs and increase survival when mice were challenged with an oseltamivir-resistant IAV H1N1 strain. In conclusion, we show for the first time that the M2-S31N channel blocker UAWJ280 has in vivo antiviral efficacy in mice that are infected with either oseltamivir sensitive or -resistant IAVs, and it has a synergistic antiviral effect with oseltamivir.


Subject(s)
Antibodies, Viral/blood , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Deuterium/chemistry , Drug Resistance, Viral , Influenza A virus/drug effects , Oseltamivir/pharmacology , Viral Matrix Proteins/antagonists & inhibitors , Viroporin Proteins/antagonists & inhibitors , Animals , Deuterium/pharmacokinetics , Deuterium/pharmacology , Dogs , Humans , Influenza A virus/classification , Madin Darby Canine Kidney Cells , Male , Mice, Inbred BALB C , Mutation , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Structure-Activity Relationship
4.
Nat Struct Mol Biol ; 28(7): 573-582, 2021 07.
Article in English | MEDLINE | ID: mdl-34158638

ABSTRACT

SARS-CoV-2 ORF3a is a putative viral ion channel implicated in autophagy inhibition, inflammasome activation and apoptosis. 3a protein and anti-3a antibodies are found in infected patient tissues and plasma. Deletion of 3a in SARS-CoV-1 reduces viral titer and morbidity in mice, suggesting it could be an effective target for vaccines or therapeutics. Here, we present structures of SARS-CoV-2 3a determined by cryo-EM to 2.1-Å resolution. 3a adopts a new fold with a polar cavity that opens to the cytosol and membrane through separate water- and lipid-filled openings. Hydrophilic grooves along outer helices could form ion-conduction paths. Using electrophysiology and fluorescent ion imaging of 3a-reconstituted liposomes, we observe Ca2+-permeable, nonselective cation channel activity, identify mutations that alter ion permeability and discover polycationic inhibitors of 3a activity. 3a-like proteins are found across coronavirus lineages that infect bats and humans, suggesting that 3a-targeted approaches could treat COVID-19 and other coronavirus diseases.


Subject(s)
Cryoelectron Microscopy , Nanostructures , SARS-CoV-2 , Viroporin Proteins/chemistry , Viroporin Proteins/ultrastructure , Animals , Calcium/metabolism , Chiroptera/virology , Coronaviridae , Electrophysiology , Fluorescence , Humans , Ion Transport , Liposomes , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Open Reading Frames , Optical Imaging , Reproducibility of Results , SARS-CoV-2/chemistry , SARS-CoV-2/ultrastructure , Sequence Homology , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Viroporin Proteins/antagonists & inhibitors
5.
Viruses ; 13(3)2021 03 23.
Article in English | MEDLINE | ID: mdl-33807095

ABSTRACT

The etiological agent of the COVID-19 pandemic is SARS-CoV-2. As a member of the Coronaviridae, the enveloped pathogen has several membrane proteins, of which two, E and 3a, were suggested to function as ion channels. In an effort to increase our treatment options, alongside providing new research tools, we have sought to inhibit the 3a channel by targeted drug repurposing. To that end, using three bacteria-based assays, we screened a library of 2839 approved-for-human-use drugs and identified the following potential channel-blockers: Capreomycin, Pentamidine, Spectinomycin, Kasugamycin, Plerixafor, Flumatinib, Litronesib, Darapladib, Floxuridine and Fludarabine. The stage is now set for examining the activity of these compounds in detailed electrophysiological studies and their impact on the whole virus with appropriate biosafety measures.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Drug Repositioning , SARS-CoV-2/drug effects , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/metabolism , Viroporin Proteins/antagonists & inhibitors , Viroporin Proteins/metabolism , Drug Evaluation, Preclinical , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Envelope Proteins/genetics , Viroporin Proteins/genetics , COVID-19 Drug Treatment
6.
Protein Sci ; 30(6): 1114-1130, 2021 06.
Article in English | MEDLINE | ID: mdl-33813796

ABSTRACT

The COVID-19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS-CoV-2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS-CoV-2 E protein and by comparing it with the SARS-CoV E protein. The E protein amino acid sequence, structure, self-assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS-CoV-2 and SARS-CoV E proteins are similar in many respects, specific studies on the SARS-CoV-2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/physiology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Coronavirus Envelope Proteins/chemistry , Humans , Models, Molecular , Protein Conformation , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Sequence Alignment , Viroporin Proteins/antagonists & inhibitors , Viroporin Proteins/chemistry , Viroporin Proteins/metabolism
7.
J Infect Dis ; 223(11): 1914-1922, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33038249

ABSTRACT

BIT225 is a first-in-class inhibitor of human immunodeficiency virus (HIV) type 1 Vpu. A phase II trial enrolled 36 HIV-1-infected, treatment-naive participants in Thailand to receive standard-of-care antiretroviral therapy (ART), tenofovir disoproxil fumarate/emtricitabine/efavirenz (Atripla), with 100 or 200 mg of BIT225 or placebo (daily) for 12 weeks. Combined treatment with BIT225 and ART was found to be generally safe and well tolerated, with antiviral efficacy comparable to that of ART alone. The secondary end point-soluble CD163, a marker of monocyte/macrophage inflammation-was noted to be significantly decreased in the BIT225 arm. Plasma-derived activated CD4+ and CD8+ T cells, natural killer cells, and interleukin 21 were increased in those treated with BIT225. These findings are consistent with inhibition of the known effects of HIV Vpu and may reflect clinically important modulation of inflammatory and immune function. Further clinical study is planned to both confirm and extend these important findings in treatment-naive, and treatment-experienced individuals. Clinical Trials Registration. Australian New Zealand Clinical Trials Registry (Universal Trial Number U1111-1191-2194).


Subject(s)
Anti-HIV Agents , Efavirenz, Emtricitabine, Tenofovir Disoproxil Fumarate Drug Combination , Guanidines/therapeutic use , HIV Infections , Pyrazoles/therapeutic use , Anti-HIV Agents/therapeutic use , Australia , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Drug Therapy, Combination , Efavirenz, Emtricitabine, Tenofovir Disoproxil Fumarate Drug Combination/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1 , Human Immunodeficiency Virus Proteins/antagonists & inhibitors , Humans , Inflammation/drug therapy , Thailand , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Viroporin Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...