Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Microencapsul ; 38(5): 263-275, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33719838

ABSTRACT

AIM: The present work involves encapsulation of herbal drug nanocurcumin into the virosomes and compared with a liposome in terms of their in vitro anti-proliferative, anti-inflammatory, and anti-migratory efficacy. METHODS: The anti-proliferative, anti-inflammatory, and anti-migratory efficacy of virosome and liposome were compared in HepG2 and CaCo2 cells by using MTT, Nitric oxide scavenging, and Wound healing assay, respectively. RESULTS: Size of the optimised NC-Virosome and NC-Liposome was 70.06 ± 1.63 and 265.80 ± 1.64 nm, respectively. The prepared NC-Virosome can be stored at -4 °C up to six months. The drug encapsulation efficiency of NC-Virosome and NC-Liposome was found to be 84.66 ± 1.67 and 62.15 ± 1.75% (w/w). The evaluated minimum inhibitory concentration (IC50 value) for NC-Virosome was 102.7 µg/ml and 108.1 µg/ml, while NC-Liposome showed 129.2 µg/ml and 160.1 µg/ml for HepG2 and CaCo2 cells, respectively. Morphological examination depicts detachment of the cells from substratum after exposure to NC-Virosome for 48 h. CONCLUSION: The prepared NC-Virosome provides remarkable in vitro efficacy in both the cell lines with site-specific drug-targeting potential as compared to the liposome, results proved its potential as a drug delivery vehicle for future therapy with reduced toxicity.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Liposomes/chemistry , Virosomes/chemistry , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents, Phytogenic/administration & dosage , Caco-2 Cells , Cell Movement/drug effects , Curcumin/administration & dosage , Curcumin/therapeutic use , Drug Delivery Systems , Excipients , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Neoplasms/drug therapy , Nitric Oxide/chemistry , Tetrazolium Salts , Thiazoles , Wound Healing/drug effects
2.
Sci Rep ; 11(1): 368, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33432002

ABSTRACT

The present study represents a formulation of nanocurcumin based hybrid virosomes (NC-virosome) to deliver drugs at targeted sites. Curcumin is a bioactive component derived from Curcuma longa and well-known for its medicinal property, but it exhibits poor solubility and rapid metabolism, which led to low bioavailability and hence limits its applications. Nanocurcumin was prepared to increase the aqueous solubility and to overcome all the limitations associated with curcumin. Influenza virosomes were prepared by solubilization of the viral membrane with 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC). During membrane reconstitution, the hydrophilic nanocurcumin was added to the solvent system, followed by overnight dialysis to obtain NC-virosomes. The same was characterized using a transmission electron microscope (TEM) and scanning electron microscope (SEM), MTT assay was used to evaluate it's in vitro-cytotoxicity using MDA-MB231 and Mesenchyme stem cells (MSCs). The results showed NC-virosomes has spherical morphology with size ranging between 60 and 90 nm. It showed 82.6% drug encapsulation efficiency. The viability of MDA-MB231 cells was significantly inhibited by NC-virosome in a concentration-dependent manner at a specific time. The IC50 for nanocurcumin and NC-virosome was 79.49 and 54.23 µg/ml, respectively. The site-specific drug-targeting, high efficacy and non- toxicity of NC-virosomes proves its future potential as drug delivery vehicles.


Subject(s)
Curcumin/administration & dosage , Drug Carriers/chemical synthesis , Virosomes/chemical synthesis , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Cells, Cultured , Curcuma/chemistry , Curcumin/adverse effects , Curcumin/chemistry , Curcumin/pharmacokinetics , Drug Carriers/adverse effects , Drug Carriers/chemistry , Drug Compounding/methods , Drug Delivery Systems/adverse effects , Drug Liberation , Drug Synergism , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Materials Testing , Nanoparticles/administration & dosage , Nanoparticles/adverse effects , Nanoparticles/chemistry , Nanoparticles/metabolism , Virosomes/adverse effects , Virosomes/chemistry , Virus Inactivation
3.
Biochem Biophys Res Commun ; 534: 980-987, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33131770

ABSTRACT

Virosomes as membranous vesicles with viral fusion protein in their membrane are versatile vehicles for cargo delivery. The vesicular stomatitis virus glycoprotein (VSV-G) is a common fusogenic protein used in virosome preparation. This glycoprotein has been used in liposomal systems so far, but in this study, we have tried to use the niosomal form instead of liposome for. Niosomes are vesicular systems composed of non-ionic surfactants. Niosomes were constructed by the thin-film hydration method. VSV-G gene in pMD2.G plasmid was expressed in the HEK293T cell line and then was reconstituted in the niosome bilayer. The formation of niosomal virosomes was confirmed with different methods such as SDS-PAGE gel, western blotting, and transmission electron microscopy (TEM). The efficiency of niosomal virosome was investigated with the pmCherry reporter gene. SDS-PAGE and western blotting proved the expression and successful insertion of protein into the bilayer. The TEM images showed the spike projection of VSV-G on the surface of niosomes. The transfection results showed high efficiency of niosomal virosomes as a novel carrier. This report has verified that niosome could be used as an efficient bilayer instead of liposome to construct virosomes.


Subject(s)
Gene Transfer Techniques , Genes, Reporter , Glycoproteins/genetics , Vesiculovirus/genetics , Viral Proteins/genetics , Virosomes/genetics , Gene Expression , Glycoproteins/chemistry , HEK293 Cells , Humans , Liposomes/chemistry , Plasmids/administration & dosage , Plasmids/genetics , Transfection , Vesicular Stomatitis/virology , Vesiculovirus/chemistry , Viral Proteins/chemistry , Virosomes/chemistry
4.
Biomacromolecules ; 19(9): 3738-3746, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30092631

ABSTRACT

Viral protein cages, with their regular and programmable architectures, are excellent platforms for the development of functional nanomaterials. The ability to transform a virus into a material with intended structure and function relies on the existence of a well-understood model system, a noninfectious virus-like particle (VLP) counterpart. Here, we study the factors important to the ability of P22 VLP to retain or release various protein cargo molecules depending on the nature of the cargo, the capsid morphology, and the environmental conditions. Because the interaction between the internalized scaffold protein (SP) and the capsid coat protein (CP) is noncovalent, we have studied the efficiency with which a range of SP variants can dissociate from the interior of different P22 VLP morphologies and exit by traversing the porous capsid. Understanding the types of cargos that are either retained or released from the P22 VLP will aid in the rational design of functional nanomaterials.


Subject(s)
Capsid/chemistry , Virosomes/chemistry , Capsid Proteins/chemistry , Drug Liberation , Viral Core Proteins/chemistry
5.
Biotechnol J ; 13(4): e1700645, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29278302

ABSTRACT

Induction of CD8+ cytotoxic T cells (CTLs) to conserved internal influenza antigens, such as nucleoprotein (NP), is a promising strategy for the development of cross-protective influenza vaccines. However, influenza NP protein alone cannot induce CTL immunity due to its low capacity to activate antigen-presenting cells (APCs) and get access to the MHC class I antigen processing pathway. To facilitate the generation of NP-specific CTL immunity the authors develop a novel influenza vaccine consisting of virosomes with the Toll-like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) and the metal-ion-chelating lipid DOGS-NTA-Ni incorporated in the membrane. In vitro, virosomes with incorporated MPLA induce stronger activation of APCs than unadjuvanted virosomes. Virosomes modified with DOGS-NTA-Ni show high conjugation efficacy for his-tagged proteins and facilitate efficient uptake of conjugated proteins by APCs. Immunization of mice with MPLA-adjuvanted virosomes with attached NP results in priming of NP-specific CTLs while MPLA-adjuvanted virosomes with admixed NP are inefficient in priming CTLs. Both vaccines induce equally high titers of NP-specific antibodies. When challenged with heterosubtypic influenza virus, mice immunized with virosomes with attached or admixed NP are protected from severe weight loss. Yet, unexpectedly, they show more weight loss and more severe disease symptoms than mice immunized with MPLA-virosomes without NP. Taken together, these results indicate that virosomes with conjugated antigen and adjuvant incorporated in the membrane are effective in priming of CTLs and eliciting antigen-specific antibody responses in vivo. However, for protection from influenza infection NP-specific immunity appears not to be advantageous.


Subject(s)
Adjuvants, Immunologic/chemistry , Lipid A/analogs & derivatives , RNA-Binding Proteins/immunology , Viral Core Proteins/immunology , Virosomes/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Influenza Vaccines/immunology , Lipid A/chemistry , Mice , Nickel/chemistry , Nucleocapsid Proteins , RAW 264.7 Cells , T-Lymphocytes, Cytotoxic/metabolism , Virosomes/chemistry
6.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28515293

ABSTRACT

Virus-like vesicles (VLVs) are membrane-enclosed vesicles that resemble native enveloped viruses in organization but lack the viral capsid and genome. During the productive infection of tumor-associated gammaherpesviruses, both virions and VLVs are produced and are released into the extracellular space. However, studies of gammaherpesvirus-associated VLVs have been largely restricted by the technical difficulty of separating VLVs from mature virions. Here we report a strategy of selectively isolating VLVs by using a Kaposi's sarcoma-associated herpesvirus (KSHV) mutant that is defective in small capsid protein and is unable to produce mature virions. Using mass spectrometry analysis, we found that VLVs contained viral glycoproteins required for cellular entry, as well as tegument proteins involved in regulating lytic replication, but lacked capsid proteins. Functional analysis showed that VLVs induced the expression of the viral lytic activator RTA, initiating KSHV lytic gene expression. Furthermore, employing RNA sequencing, we performed a genomewide analysis of cellular responses triggered by VLVs and found that PRDM1, a master regulator in cell differentiation, was significantly upregulated. In the context of KSHV replication, we demonstrated that VLV-induced upregulation of PRDM1 was necessary and sufficient to reactivate KSHV by activating its RTA promoter. In sum, our study systematically examined the composition of VLVs and demonstrated their biological roles in manipulating host cell responses and facilitating KSHV lytic replication.IMPORTANCE Cells lytically infected with tumor-associated herpesviruses produce a high proportion of virus-like vesicles (VLVs). The composition and function of VLVs have not been well defined, largely due to the inability to efficiently isolate VLVs that are free of virions. Using a cell system capable of establishing latent KSHV infection and robust reactivation, we successfully isolated VLVs from a KSHV mutant defective in the small capsid protein. We quantitatively analyzed proteins and microRNAs in VLVs and characterized the roles of VLVs in manipulating host cells and facilitating viral infection. More importantly, we demonstrated that by upregulating PRDM1 expression, VLVs triggered differentiation signaling in targeted cells and facilitated viral lytic infection via activation of the RTA promoter. Our study not only demonstrates a new strategy for isolating VLVs but also shows the important roles of KSHV-associated VLVs in intercellular communication and the viral life cycle.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Host-Pathogen Interactions , Repressor Proteins/biosynthesis , Signal Transduction , Virosomes/chemistry , Virus Replication , Cell Differentiation , Cell Line , Herpesvirus 8, Human/chemistry , Humans , Immediate-Early Proteins/metabolism , Positive Regulatory Domain I-Binding Factor 1 , Trans-Activators/metabolism , Up-Regulation
7.
J Liposome Res ; 27(2): 83-89, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26981843

ABSTRACT

Insect-derived cell lines are used extensively to produce recombinant proteins because they are capable of performing a range of post-translational modifications. Due to their significance in biotechnological applications, various methods have been developed to transfect them. In this study, we introduce a virosome constructed from vesicular stomatitis virus (VSV) as a new delivery system for sf9 cells. We labeled these VSV virosomes by fluorescent probe Rhodamine B chloride (R18). By fluorescence microscope observation and conducting a fusion assay, we confirmed the uptake of VSV virosomes via endocytosis by sf9 cells and their fusion with the endosomal membrane. Moreover, we incubated cationic VSV virosomes with a GFP-expressing bacmid and transfected sf9 cells, after 24 h some cells expressed GFP indicating the ability of VSV virosomes to deliver heterologous DNA to these cells. This is the first report of a virosome-based delivery system introduced for an insect cell line.


Subject(s)
Gene Transfer Techniques , Vesicular stomatitis Indiana virus/chemistry , Animals , Cations/chemistry , Cells, Cultured , Sf9 Cells , Spodoptera , Virosomes/chemistry
8.
J Virol Methods ; 236: 77-86, 2016 10.
Article in English | MEDLINE | ID: mdl-27435337

ABSTRACT

The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus.


Subject(s)
Porcine respiratory and reproductive syndrome virus/genetics , Recombinant Proteins/analysis , Viral Proteins/analysis , Virosomes/chemistry , Virosomes/isolation & purification , Animals , Baculoviridae/genetics , Blotting, Western , Gene Expression , Genetic Vectors , Microscopy, Electron, Transmission , Recombinant Proteins/genetics , Sf9 Cells , Spodoptera , Viral Proteins/genetics , Virosomes/ultrastructure
9.
Nanoscale ; 8(15): 7933-41, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27006101

ABSTRACT

Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing.


Subject(s)
Virosomes/chemistry , Bioengineering , Colloids , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H1N1 Subtype/chemistry , Membrane Fusion , Membrane Lipids/chemistry , Membranes, Artificial , Microscopy, Atomic Force , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Quartz Crystal Microbalance Techniques , Virosomes/ultrastructure
10.
J Virol ; 90(3): 1169-77, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26537684

ABSTRACT

UNLABELLED: Chikungunya virus is a positive-stranded RNA alphavirus. Structures of chikungunya virus-like particles in complex with strongly neutralizing antibody Fab fragments (8B10 and 5F10) were determined using cryo-electron microscopy and X-ray crystallography. By fitting the crystallographically determined structures of these Fab fragments into the cryo-electron density maps, we show that Fab fragments of antibody 8B10 extend radially from the viral surface and block receptor binding on the E2 glycoprotein. In contrast, Fab fragments of antibody 5F10 bind the tip of the E2 B domain and lie tangentially on the viral surface. Fab 5F10 fixes the B domain rigidly to the surface of the virus, blocking exposure of the fusion loop on glycoprotein E1 and therefore preventing the virus from becoming fusogenic. Although Fab 5F10 can neutralize the wild-type virus, it can also bind to a mutant virus without inhibiting fusion or attachment. Although the mutant virus is no longer able to propagate by extracellular budding, it can, however, enter the next cell by traveling through junctional complexes without being intercepted by a neutralizing antibody to the wild-type virus, thus clarifying how cell-to-cell transmission can occur. IMPORTANCE: Alphaviral infections are transmitted mainly by mosquitoes. Chikungunya virus (CHIKV), which belongs to the Alphavirus genus, has a wide distribution in the Old World that has expanded in recent years into the Americas. There are currently no vaccines or drugs against alphaviral infections. Therefore, a better understanding of CHIKV and its associated neutralizing antibodies will aid in the development of effective treatments.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Chikungunya virus/immunology , Chikungunya virus/ultrastructure , Virosomes/immunology , Virosomes/ultrastructure , Chikungunya virus/chemistry , Chikungunya virus/physiology , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Protein Binding , Virosomes/chemistry , Virus Attachment
11.
J Virol ; 90(5): 2306-15, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26656716

ABSTRACT

UNLABELLED: Human parainfluenza virus type 3 (HPIV3) belongs to the Paramyxoviridae family. Its three internal viral proteins, the nucleoprotein (N), the phosphoprotein (P), and the polymerase (L), form the ribonucleoprotein (RNP) complex, which encapsidates the viral genome and associates with the matrix protein (M) for virion assembly. We previously showed that the M protein expressed alone is sufficient to assemble and release virus-like particles (VLPs) and a mutant with the L305A point mutation in the M protein (ML305A) has a VLP formation ability similar to that of wild-type M protein. In addition, recombinant HPIV3 (rHPIV3) containing the ML305A mutation (rHPIV3-ML305A) could be successfully recovered. In the present study, we found that the titer of rHPIV3-ML305A was at least 10-fold lower than the titer of rHPIV3. Using VLP incorporation and coimmunoprecipitation assays, we found that VLPs expressing the M protein (M-VLPs) can efficiently incorporate N and P via an N-M or P-M interaction and ML305A-VLPs had an ability to incorporate P via a P-M interaction similar to that of M-VLPs but were unable to incorporate N and no longer interacted with N. Furthermore, we found that the incorporation of P into ML305A-VLPs but not M-VLPs was inhibited in the presence of N. In addition, we provide evidence that the C-terminal region of P is involved in its interaction with both N and M and N binding to the C-terminal region of P inhibits the incorporation of P into ML305A-VLPs. Our findings provide new molecular details to support the idea that the N-M interaction and not the P-M interaction is critical for packaging N and P into infectious viral particles. IMPORTANCE: Human parainfluenza virus type 3 (HPIV3) is a nonsegmented, negative-sense, single-stranded RNA virus that belongs to the Paramyxoviridae family and can cause lower respiratory tract infections in infants and young children as well as elderly or immunocompromised individuals. However, no effective vaccine has been developed or licensed. We used virus-like particle (VLP) incorporation and coimmunoprecipitation assays to determine how the M protein assembles internal viral proteins. We demonstrate that both nucleoprotein (N) and phosphoprotein (P) can incorporate into M-VLPs and N inhibits the M-P interaction via the binding of N to the C terminus of P. We also provide additional evidence that the N-M interaction but not the P-M interaction is critical for the regulation of HPIV3 assembly. Our studies provide a more complete characterization of HPIV3 virion assembly and substantiation that N interaction with M regulates internal viral organization.


Subject(s)
Nucleoproteins/metabolism , Parainfluenza Virus 3, Human/physiology , Viral Matrix Proteins/metabolism , Virus Assembly , Blotting, Western , Cell Line , Humans , Immunoprecipitation , Protein Binding , Protein Multimerization , Virosomes/chemistry , Virosomes/metabolism
12.
J Virol ; 90(5): 2664-75, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26699644

ABSTRACT

UNLABELLED: The capsid protein (VP1) of all caliciviruses forms an icosahedral particle with two principal domains, shell (S) and protruding (P) domains, which are connected via a flexible hinge region. The S domain forms a scaffold surrounding the nucleic acid, while the P domains form a homodimer that interacts with receptors. The P domain is further subdivided into two subdomains, termed P1 and P2. The P2 subdomain is likely an insertion in the P1 subdomain; consequently, the P domain is divided into the P1-1, P2, and P1-2 subdomains. In order to investigate capsid antigenicity, N-terminal (N-term)/S/P1-1 and P2/P1-2 were switched between two sapovirus genotypes GI.1 and GI.5. The chimeric VP1 constructs were expressed in insect cells and were shown to self-assemble into virus-like particles (VLPs) morphologically similar to the parental VLPs. Interestingly, the chimeric VLPs had higher levels of cross-reactivities to heterogeneous antisera than the parental VLPs. In order to better understand the antigenicity from a structural perspective, we determined an intermediate-resolution (8.5-Å) cryo-electron microscopy (cryo-EM) structure of a chimeric VLP and developed a VP1 homology model. The cryo-EM structure revealed that the P domain dimers were raised slightly (∼5 Å) above the S domain. The VP1 homology model allowed us predict the S domain (67-229) and P1-1 (229-280), P2 (281-447), and P1-2 (448-567) subdomains. Our results suggested that the raised P dimers might expose immunoreactive S/P1-1 subdomain epitopes. Consequently, the higher levels of cross-reactivities with the chimeric VLPs resulted from a combination of GI.1 and GI.5 epitopes. IMPORTANCE: We developed sapovirus chimeric VP1 constructs and produced the chimeric VLPs in insect cells. We found that both chimeric VLPs had a higher level of cross-reactivity against heterogeneous VLP antisera than the parental VLPs. The cryo-EM structure of one chimeric VLP (Yokote/Mc114) was solved to 8.5-Å resolution. A homology model of the VP1 indicated for the first time the putative S and P (P1-1, P2, and P1-2) domains. The overall structure of Yokote/Mc114 contained features common among other caliciviruses. We showed that the P2 subdomain was mainly involved in the homodimeric interface, whereas a large gap between the P1 subdomains had fewer interactions.


Subject(s)
Cryoelectron Microscopy , Sapovirus/chemistry , Sapovirus/ultrastructure , Virosomes/chemistry , Virosomes/ultrastructure , Amino Acid Sequence , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , Antigens, Viral/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/immunology , Capsid Proteins/metabolism , Capsid Proteins/ultrastructure , Cross Reactions , Molecular Sequence Data , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Recombination, Genetic , Sapovirus/genetics , Sapovirus/immunology , Virosomes/genetics , Virosomes/immunology
13.
Int J Nanomedicine ; 10: 4159-72, 2015.
Article in English | MEDLINE | ID: mdl-26203243

ABSTRACT

Bionanocapsules (BNCs) are hollow nanoparticles consisting of hepatitis B virus (HBV) envelope L proteins and have been shown to deliver drugs and genes specifically to human hepatic tissues by utilizing HBV-derived infection machinery. The complex of BNCs with liposomes (LPs), the BNC-LP complexes (a LP surrounded by BNCs in a rugged spherical form), could also become active targeting nanocarriers by the BNC function. In this study, under acidic conditions and high temperature, BNCs were found to fully fuse with LPs (smooth-surfaced spherical form), deploying L proteins with a membrane topology similar to that of BNCs (ie, virosomes displaying L proteins). Doxorubicin (DOX) was efficiently encapsulated via the remote loading method at 14.2%±1.0% of total lipid weight (mean ± SD, n=3), with a capsule size of 118.2±4.7 nm and a ζ-potential of -51.1±1.0 mV (mean ± SD, n=5). When mammalian cells were exposed to the virosomes, the virosomes showed strong cytotoxicity in human hepatic cells (target cells of BNCs), but not in human colon cancer cells (nontarget cells of BNCs), whereas LPs containing DOX and DOXOVES (structurally stabilized PEGylated LPs containing DOX) did not show strong cytotoxicity in either cell type. Furthermore, the virosomes preferentially delivered DOX to the nuclei of human hepatic cells. Xenograft mice harboring either target or nontarget cell-derived tumors were injected twice intravenously with the virosomes containing DOX at a low dose (2.3 mg/kg as DOX, 5 days interval). The growth of target cell-derived tumors was retarded effectively and specifically. Next, the combination of high dose (10.0 mg/kg as DOX, once) with tumor-specific radiotherapy (3 Gy, once after 2 hours) exhibited the most effective antitumor growth activity in mice harboring target cell-derived tumors. These results demonstrated that the HBV-based virosomes containing DOX could be an effective antitumor nanomedicine specific to human hepatic tissues, especially in combination with radiotherapy.


Subject(s)
Antineoplastic Agents , Doxorubicin , Liver/metabolism , Viral Envelope Proteins/chemistry , Virosomes , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Humans , Liver Neoplasms/metabolism , Mice , Radiotherapy/methods , Virosomes/chemistry , Virosomes/pharmacokinetics , Virosomes/pharmacology , Xenograft Model Antitumor Assays
14.
Virus Res ; 210: 8-17, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26160190

ABSTRACT

Dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus, has been identified in dromedary camels in Dubai, United Arab Emirates. The antigenicity, pathogenicity and epidemiology of this virus have been unclear. Here we first used a recombinant baculovirus expression system to express the 13 and 111 N-terminus amino-acid-truncated DcHEV ORF2 protein in insect Tn5 cells, and we obtained two types of virus-like particles (VLPs) with densities of 1.300 g/cm(3) and 1.285 g/cm(3), respectively. The small VLPs (Dc4sVLPs) were estimated to be 24 nm in diameter, and were assembled by a protein with the molecular mass 53 kDa. The large VLPs (Dc3nVLPs and Dc4nVLPs) were 35 nm in diameter, and were assembled by a 64-kDa protein. An antigenic analysis demonstrated that DcHEV was cross-reactive with G1, G3-G6, ferret and rat HEVs, and DcHEV showed a stronger cross-reactivity to G1 G3-G6 HEV than it did to rat and ferret HEV. In addition, the antibody against DcHEV-LPs neutralized G1 and G3 HEV in a cell culture system, suggesting that the serotypes of these HEVs are identical. We also found that the amino acid residue Met-358 affects the small DcHEV-LPs assembly.


Subject(s)
Hepatitis E virus/metabolism , Protein Multimerization , Viral Proteins/metabolism , Virosomes/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/analysis , Baculoviridae , Camelus , Cell Line , Cross Reactions , Female , Ferrets , Genetic Vectors , Hepatitis E virus/classification , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Insecta , Microscopy, Electron, Transmission , Molecular Sequence Data , Molecular Weight , Rats, Wistar , Sequence Analysis, DNA , United Arab Emirates , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology , Virosomes/chemistry , Virosomes/genetics , Virosomes/ultrastructure
15.
Vaccine ; 33(31): 3739-45, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26079614

ABSTRACT

The hepatitis B surface antigen (HBsAg) is a recombinant protein-based vaccine being able to form virus-like particles (VLPs). HBsAg is mainly produced using yeast-based expression systems, however, recent results strongly suggest that VLPs are not formed within the yeast cells during the cultivation but are formed in a gradual manner during the following down-stream procedures. VLPs are also not detectable during the first down-stream steps including mechanical and EDTA/detergent-assisted cell destruction. Moreover, VLPs are not detectable in the cell lysate treated with polyethylene glycol and colloidal silica. The first VLP resembling structures appear after elution of HBsAg from colloidal silica to which it binds through hydrophobic interaction. These first VLP resembling structures are non-symmetrical as well as heterodisperse and exhibit a high tendency toward cluster formation presumably because of surface exposed hydrophobic patches. More symmetrical and monodisperse VLPs appear after the following ion-exchange and size-exclusion chromatography most likely as the result of buffer changes during these purification steps (toward more neutral pH and less salt). Final treatment of the VLPs with the denaturant KSCN at moderate concentrations with following KSCN removal by dialysis does not cause unfolding and VLP disassembly but results in a re- and fine-structuring of the VLP surface topology.


Subject(s)
Hepatitis B Surface Antigens/metabolism , Hepatitis B Vaccines/chemistry , Protein Multimerization , Vaccines, Virus-Like Particle/chemistry , Virosomes/metabolism , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/isolation & purification , Hepatitis B Vaccines/isolation & purification , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Technology, Pharmaceutical , Vaccines, Virus-Like Particle/isolation & purification , Virosomes/chemistry
16.
Acta Pharm ; 65(2): 105-16, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26011928

ABSTRACT

A virosome is an innovative hybrid drug delivery system with advantages of both viral and non-viral vectors. Studies have shown that a virosome can carry various biologically active molecules, such as nucleic acids, peptides, proteins and small organic molecules. Targeted drug delivery using virosome-based systems can be achieved through surface modifications of virosomes. A number of virosome-based prophylactic and therapeutic products with high safety profiles are currently available in the market. Cancer treatment is a big battlefield for virosome-based drug delivery systems. This review provides an overview of the general concept, preparation procedures, working mechanisms, preclinical studies and clinical applications of virosomes in cancer treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Virosomes/chemistry , Animals , Chemistry, Pharmaceutical/methods , Drug Evaluation, Preclinical/methods , Humans , Neoplasms/drug therapy
17.
J Virol ; 88(15): 8386-96, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24829339

ABSTRACT

UNLABELLED: Interaction between E and prM proteins in flavivirus-infected cells is a major factor for virus-like particle (VLP) production. The prM helical (prM-H) domain is topologically close to and may interact with domain II of the E protein (EDII). In this study, we investigated prM-H domain amino acid residues facing Japanese encephalitis virus EDII using site-directed mutagenesis to determine their roles in prM-E interaction and VLP production. Our results indicate that negatively charged prM-E125 residue at the prM-H domain affected VLP production via one or more interactions with positively charged E-K93 and E-H246 residues at EDII. Exchanges of oppositely charged residue side chains at prM-E125/E-K93 and prM-E125/E-H246 are recoverable for VLP production. The prM-E125 and E-H246 residues are conserved and that the positive charge of the E-K93 residue is preserved in different flavivirus groups. These findings suggest that the electrostatic attractions of prM-E125, E-K93, and E-H246 residues are important to flavivirus VLP production and that inhibiting these interactions is a potential strategy for blocking flavivirus infections. IMPORTANCE: Molecular interaction between E and prM proteins of Japanese encephalitis virus is a major driving force for virus-like particle (VLP) production. The current high-resolution structures available for prM-E complexes do not include the membrane proximal stem region of prM. The prM stem region contains an N-terminal loop and a helix domain (prM-H). Since the prM-H domain is topologically close to domain II of the E protein (EDII), this study was to determine molecular interactions between the prM-H domain and EDII. We found that the molecular interactions between prM-E125 residue and positively charged E-K93 and E-H246 residues at EDII are critical for VLP production. More importantly, the prM-E125 and E-H246 residues are conserved and the positive charge of the E-K93 residue is preserved in different flavivirus groups. Our findings help refine the structure and molecular interactions on the flavivirus surface and reveal a potential strategy for blocking flavivirus infections by inhibiting these electrostatic interactions.


Subject(s)
Amino Acids/metabolism , Encephalitis Virus, Japanese/physiology , Membrane Glycoproteins/metabolism , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Viral Envelope Proteins/metabolism , Virus Assembly , Animals , Cell Line , DNA Mutational Analysis , Encephalitis Virus, Japanese/chemistry , Humans , Membrane Glycoproteins/genetics , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Viral Envelope Proteins/genetics , Virosomes/chemistry
18.
J Virol Methods ; 189(2): 328-40, 2013 May.
Article in English | MEDLINE | ID: mdl-23499261

ABSTRACT

Heterologous expression of tobacco mosaic virus coat protein and in vivo assembly of rod-shaped TMV-like particles encapsidating viral or host RNA were compared between Escherichia coli and Schizosaccharomyces pombe. TMV-like particles were produced in both hosts, irrespective of whether the TMV origin of assembly was present. The additional plasmid providing an OAS-containing RNA was able to alter the length distribution of the TMV-like particles. Plant and yeast-expressed CP behaved similarly upon isoelectric focusing, whereas CP expressed in bacteria migrated differently. After purification by buoyant density centrifugation, the encapsidated nucleic acids were determined to be of host origin as well as of viral origin. OAS-containing mRNA was packaged preferentially in yeast to some extent (8%). In consequence, the majority of TMV-like particles showed the same length distribution similar to those in the absence of OAS-containing mRNA, likely due to host RNA being primarily encapsidated. Notwithstanding this limitation for tailoring particle sizes, the heterologous expression system provides a new avenue to deliver versatile nucleoprotein scaffolds for a diversity of nanotechnological applications, without the need for an infectious virus. The results are discussed with reference to the competition of translation and packaging as well as to the selective decay of TMV RNA.


Subject(s)
Capsid Proteins/metabolism , Escherichia coli/metabolism , Nanotechnology/methods , Schizosaccharomyces/metabolism , Tobamovirus/genetics , Virosomes/isolation & purification , Virosomes/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Escherichia coli/genetics , Isoelectric Focusing , Macromolecular Substances/chemistry , Macromolecular Substances/isolation & purification , Macromolecular Substances/metabolism , Schizosaccharomyces/genetics , Virosomes/chemistry , Virosomes/genetics , Virus Assembly
19.
J Virol ; 85(10): 4691-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21367906

ABSTRACT

Bombyx mori densovirus 1 (BmDNV-1), a major pathogen of silkworms, causes significant losses to the silk industry. The structure of the recombinant BmDNV-1 virus-like particle has been determined at 3.1-Å resolution using X-ray crystallography. It is the first near-atomic-resolution structure of a virus-like particle within the genus Iteravirus. The particles consist of 60 copies of the 55-kDa VP3 coat protein. The capsid protein has a ß-barrel "jelly roll" fold similar to that found in many diverse icosahedral viruses, including archaeal, bacterial, plant, and animal viruses, as well as other parvoviruses. Most of the surface loops have little structural resemblance to other known parvovirus capsid proteins. In contrast to vertebrate parvoviruses, the N-terminal ß-strand of BmDNV-1 VP3 is positioned relative to the neighboring 2-fold related subunit in a "domain-swapped" conformation, similar to findings for other invertebrate parvoviruses, suggesting domain swapping is an evolutionarily conserved structural feature of the Densovirinae.


Subject(s)
Bombyx/virology , Densovirinae/chemistry , Animals , Crystallography, X-Ray , Macromolecular Substances/chemistry , Models, Molecular , Protein Structure, Quaternary , Virosomes/chemistry
20.
Hum Vaccin ; 6(5): 407-19, 2010 May.
Article in English | MEDLINE | ID: mdl-20953154

ABSTRACT

Cervarix™ is a prophylactic human papillomavirus (HPV)-16/18 vaccine developed for the prevention of cervical cancer. The vaccine antigens are HPV-16 and HPV-18 L1 virus-like particles (VLPs) made from baculovirus expression vector system (BEVS)-produced HPV-16 and HPV-18 L1 proteins, respectively. In this study, we demonstrate that truncation of the nuclear targeting and DNA binding signals at the C-terminus of the HPV-16 and HPV-18 L1 proteins prevented intranuclear formation of the VLPs in the host cells and led to cytoplasmic localization of the L1 proteins as shown by in situ immunogold detection and electron microscopy. Following purification, these L1 proteins were able to form VLPs. The characteristics of these HPV-16 and HPV-18 L1 VLPs were studied using various physicochemical and immunological techniques. Amino acid analysis, SDS-PAGE and western blotting demonstrated the high purity of the L1 proteins and batch-to-batch consistency. The structure of the VLPs was shown to be similar to that reported for the native virions, as evaluated by microscopic observations, protein tomography and disc centrifugation experiments. The presence of important conformation-dependent neutralizing epitopes, such as U4, V5 and J4, was confirmed by ELISA and surface plasmon resonance. Structural robustness and consistency among batches was also observed by differential scanning calorimetry and electron microscopy. Moreover, adsorption to aluminum was shown not to impair VLP structure. In conclusion, the BEVS-produced HPV-16 and HPV-18 L1 VLPs display key structural and immunological features, which contribute to the efficacy of Cervarix™ vaccination.


Subject(s)
Papillomavirus Vaccines/chemistry , Virosomes/chemistry , Virosomes/ultrastructure , Amino Acids/analysis , Blotting, Western , Capsid Proteins/chemistry , Capsid Proteins/ultrastructure , Circular Dichroism , Cytoplasm/chemistry , Cytoplasm/ultrastructure , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Microscopy, Immunoelectron , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/ultrastructure , Protein Conformation , Vaccines, Virosome/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...