Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792214

ABSTRACT

BACKGROUND: Staphylococcus aureus is a common pathogenic microorganism in humans and animals. Type II NADH oxidoreductase (NDH-2) is the only NADH:quinone oxidoreductase present in this organism and represents a promising target for the development of anti-staphylococcal drugs. Recently, myricetin, a natural flavonoid from vegetables and fruits, was found to be a potential inhibitor of NDH-2 of S. aureus. The objective of this study was to evaluate the inhibitory properties of myricetin against NDH-2 and its impact on the growth and expression of virulence factors in S. aureus. RESULTS: A screening method was established to identify effective inhibitors of NDH-2, based on heterologously expressed S. aureus NDH-2. Myricetin was found to be an effective inhibitor of NDH-2 with a half maximal inhibitory concentration (IC50) of 2 µM. In silico predictions and enzyme inhibition kinetics further characterized myricetin as a competitive inhibitor of NDH-2 with respect to the substrate menadione (MK). The minimum inhibitory concentrations (MICs) of myricetin against S. aureus strains ranged from 64 to 128 µg/mL. Time-kill assays showed that myricetin was a bactericidal agent against S. aureus. In line with being a competitive inhibitor of the NDH-2 substrate MK, the anti-staphylococcal activity of myricetin was antagonized by MK-4. In addition, myricetin was found to inhibit the gene expression of enterotoxin SeA and reduce the hemolytic activity induced by S. aureus culture on rabbit erythrocytes in a dose-dependent manner. CONCLUSIONS: Myricetin was newly discovered to be a competitive inhibitor of S. aureus NDH-2 in relation to the substrate MK. This discovery offers a fresh perspective on the anti-staphylococcal activity of myricetin.


Subject(s)
Flavonoids , Microbial Sensitivity Tests , Staphylococcus aureus , Flavonoids/pharmacology , Flavonoids/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , NADH Dehydrogenase/antagonists & inhibitors , NADH Dehydrogenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Humans , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism
2.
ACS Infect Dis ; 10(5): 1431-1457, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38682683

ABSTRACT

Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood-brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.


Subject(s)
Antifungal Agents , Artificial Intelligence , COVID-19 , Mucormycosis , Virulence Factors , Mucormycosis/drug therapy , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
3.
Anal Sci ; 40(5): 891-905, 2024 May.
Article in English | MEDLINE | ID: mdl-38472735

ABSTRACT

Combating Pseudomonas aeruginosa infection is challenging. It secretes pyocyanin (PCN) pigment that contributes to its virulence. Neutralizing PCN via reaction with thiol-containing compounds may represent a potential therapeutic option. This study investigates the neutralization reaction between PCN and N-acetyl cysteine (NAC) for bacterial inhibition and explores its mechanism of action. The neutralization adduct (PCN-NAC) was synthesized by reacting the purified PCN and NAC. The adduct was analyzed and its structure was elucidated. LC-MS/MS method was developed for the determination of PCN-NAC in P. aeruginosa cultures post-treatment with NAC (0-5 mg/mL). The corresponding anti-bacterial potential was estimated and compared to nanoparticles (NPs) alone and under stress conditions. In silico studies were performed to support explaining the mechanism of action. Results revealed that PCN-NAC was exclusively detected in NAC-treated cultures in a concentration-dependent manner. PCN-NAC concentration (230-915 µg/mL) was directly proportional to the reduction in the bacterial viable count (28.3% ± 7.1-87.5% ± 5.9) and outperformed all tested NPs, where chitosan NPs induced 56.9% ± 7.9 inhibition, followed by zinc NPs (49.4% ± 0.9) and gold NPs (17.8% ± 7.5) even post-exposure to different stress conditions. A concomitant reduction in PCN concentration was detected. In silico studies revealed possible interactions between key bacterial proteins and PCN-NAC rather than the NAC itself. These results pose NAC as a potential choice for the management of P. aeruginosa infection, where it neutralizes PCN via the formation of PCN-NAC adduct.


Subject(s)
Acetylcysteine , Pseudomonas aeruginosa , Pyocyanine , Virulence Factors , Acetylcysteine/chemistry , Acetylcysteine/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Liquid Chromatography-Mass Spectrometry , Pseudomonas aeruginosa/drug effects , Pyocyanine/metabolism , Pyocyanine/antagonists & inhibitors , Pyocyanine/analysis , Pyocyanine/chemistry , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism
4.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687052

ABSTRACT

Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.


Subject(s)
Antifungal Agents , Biofilms , Cryptococcus neoformans , Fungal Proteins , Lysophospholipase , Macrophages, Alveolar , Propolis , Humans , Biofilms/drug effects , Cell Line, Tumor , Cryptococcosis/prevention & control , Cryptococcosis/therapy , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/pathogenicity , Ethanol/chemistry , Fungal Proteins/antagonists & inhibitors , Liposomes , Lung Diseases, Fungal/prevention & control , Lung Diseases, Fungal/therapy , Lysophospholipase/antagonists & inhibitors , Macrophages, Alveolar/microbiology , Propolis/chemistry , Propolis/pharmacology , Virulence/drug effects , Virulence Factors/antagonists & inhibitors , Antifungal Agents/chemistry , Antifungal Agents/pharmacology
5.
Appl Biochem Biotechnol ; 194(1): 37-53, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34762267

ABSTRACT

In the Asian region, Helicobacter pylori infects about 80% populations, which is most leading cause of peptic ulcers, and it is an asymptomatic infection. Studies reported that the particular bacteria carry specific virulence factors that leads to severe complications. These virulence factors can be used as a drug targets to inhibit their growth and pathogenicity. Chronic infection with H. pylori virulence factors are CagA, VacA and HtrA positive strains the risk factor of gastric cancer. In this study, we aimed to study the antagonistic interaction pattern between the potential eight algal peptides against the virulence factors of H. pylori through in silico analysis intended to treat peptic ulcer and prevent the further complications such as cancer. The proteins of virulent factors are docked using C-Docker algorithm and calculated the bind energy of the complexes. The results showed that the peptide derived from a green alga, Tetradesmus sp. are active against the three virulent factors such as cag-A, vac-A, and Htr-A with multiple hydrogen, vdW, electrostatic interactions, and mild π-hydrophobic bindings with the libdock energy score for CagA, VacA and HtrA are 175.625, 158.603 and 89.397 kcal/mol. These primes and the peptide lead to develop a better and potential inhibitors against H. pylori infection.


Subject(s)
Algal Proteins/chemistry , Bacterial Proteins , Chlorophyta/chemistry , Helicobacter pylori , Peptides/chemistry , Virulence Factors , Algal Proteins/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Computer Simulation , Helicobacter pylori/chemistry , Helicobacter pylori/pathogenicity , Peptides/pharmacology , Virulence Factors/antagonists & inhibitors , Virulence Factors/chemistry
6.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884499

ABSTRACT

Pseudomonas aeruginosa, an important opportunistic pathogen, is capable of producing various virulence factors and forming biofilm that are regulated by quorum sensing (QS). It is known that targeting virulence factor production and biofilm formation instead of exerting selective pressure on growth such as conventional antibiotics can reduce multidrug resistance in bacteria. Therefore, many quorum-sensing inhibitors (QSIs) have been developed to prevent or treat this bacterial infection. In this study, wogonin, as an active ingredient from Agrimonia pilosa, was found to be able to inhibit QS system of P. aeruginosa PAO1. Wogonin downregulated the expression of QS-related genes and reduced the production of many virulence factors, such as elastase, pyocyanin, and proteolytic enzyme. In addition, wogonin decreased the extracellular polysaccharide synthesis and inhibited twitching, swimming, and swarming motilities and biofilm formation. The attenuation of pathogenicity in P. aeruginosa PAO1 by wogonin application was further validated in vivo by cabbage infection and fruit fly and nematode survival experiments. Further molecular docking analysis, pathogenicity examination of various QS-related mutants, and PQS signal molecule detection revealed that wogonin could interfere with PQS signal molecular synthesis by affecting pqsA and pqsR. Taken together, the results indicated that wogonin might be used as an anti-QS candidate drug to attenuate the infection caused by P. aeruginosa.


Subject(s)
Caenorhabditis elegans/drug effects , Drosophila melanogaster/drug effects , Flavanones/pharmacology , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing , Virulence Factors/antagonists & inhibitors , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Biofilms/growth & development , Brassica/drug effects , Brassica/microbiology , Caenorhabditis elegans/microbiology , Drosophila melanogaster/microbiology , Gene Expression Regulation, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Virulence Factors/genetics , Virulence Factors/metabolism
7.
Molecules ; 26(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833903

ABSTRACT

Multi-drug resistance (MDR) bacterial pathogens pose a threat to global health and warrant the discovery of new therapeutic molecules, particularly those that can neutralize their virulence and stop the evolution of new resistant mechanisms. The superbug nosocomial pathogen, Pseudomonas aeruginosa, uses a multiple virulence factor regulator (MvfR) to regulate the expression of multiple virulence proteins during acute and persistent infections. The present study targeted MvfR with the intention of designing novel anti-virulent compounds, which will function in two ways: first, they will block the virulence and pathogenesis P. aeruginosa by disrupting the quorum-sensing network of the bacteria, and second, they will stop the evolution of new resistant mechanisms. A structure-based virtual screening (SBVS) method was used to screen druglike compounds from the Asinex antibacterial library (~5968 molecules) and the comprehensive marine natural products database (CMNPD) (~32 thousand compounds), against the ligand-binding domain (LBD) of MvfR, to identify molecules that show high binding potential for the relevant pocket. In this way, two compounds were identified: Top-1 (4-((carbamoyloxy)methyl)-10,10-dihydroxy-2,6-diiminiodecahydropyrrolo[1,2-c]purin-9-yl sulfate) and Top-2 (10,10-dihydroxy-2,6-diiminio-4-(((sulfonatocarbamoyl)oxy)methyl)decahydropyrrolo[1,2-c]purin-9-yl sulfate), in contrast to the co-crystallized M64 control. Both of the screened leads were found to show deep pocket binding and interactions with several key residues through a network of hydrophobic and hydrophilic interactions. The docking results were validated by a long run of 200 ns of molecular dynamics simulation and MM-PB/GBSA binding free energies. All of these analyses confirmed the presence of strong complex formation and rigorous intermolecular interactions. An additional analysis of normal mode entropy and a WaterSwap assay were also performed to complement the aforementioned studies. Lastly, the compounds were found to show an acceptable range of pharmacokinetic properties, making both compounds potential candidates for further experimental studies to decipher their real biological potency.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/pathogenicity , Virulence Factors/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Binding Sites , Databases, Pharmaceutical , Drug Design , Drug Evaluation, Preclinical , Drug Resistance, Multiple, Bacterial , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Small Molecule Libraries , User-Computer Interface , Virulence Factors/chemistry , Virulence Factors/physiology
8.
Toxins (Basel) ; 13(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34678970

ABSTRACT

Staphylococcus aureus is a clinically important pathogen that causes a wide range of human infections, from minor skin infections to severe tissue infection and sepsis. S. aureus has a high level of antibiotic resistance and is a common cause of infections in hospitals and the community. The rising prevalence of community-acquired methicillin-resistant S. aureus (CA-MRSA), combined with the important severity of S. aureus infections in general, has resulted in the frequent use of anti-staphylococcal antibiotics, leading to increasing resistance rates. Antibiotic-resistant S. aureus continues to be a major health concern, necessitating the development of novel therapeutic strategies. S. aureus uses a wide range of virulence factors, such as toxins, to develop an infection in the host. Recently, anti-virulence treatments that directly or indirectly neutralize S. aureus toxins have showed promise. In this review, we provide an update on toxin pathogenic characteristics, as well as anti-toxin therapeutical strategies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Toxins, Biological/metabolism , Virulence/drug effects , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism
9.
Sci Rep ; 11(1): 16482, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389776

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for high morbidity and mortality rates. Citral has been studied in the pharmaceutical industry and has shown antimicrobial activity. This study aimed to analyze the antimicrobial activity of citral in inhibiting biofilm formation and modulating virulence genes, with the ultimate goal of finding a strategy for treating infections caused by MRSA strains. Citral showed antimicrobial activity against MRSA isolates with minimum inhibitory concentration (MIC) values between 5 mg/mL (0.5%) and 40 mg/mL (4%), and minimum bactericidal concentration (MBC) values between 10 mg/mL (1%) and 40 mg/mL (4%). The sub-inhibitory dose was 2.5 mg/mL (0.25%). Citral, in an antibiogram, modulated synergistically, antagonistically, or indifferent to the different antibiotics tested. Prior to evaluating the antibiofilm effects of citral, we classified the bacteria according to their biofilm production capacity. Citral showed greater efficacy in the initial stage, and there was a significant reduction in biofilm formation compared to the mature biofilm. qPCR was used to assess the modulation of virulence factor genes, and icaA underexpression was observed in isolates 20 and 48. For icaD, seg, and sei, an increase was observed in the expression of ATCC 33,591. No significant differences were found for eta and etb. Citral could be used as a supplement to conventional antibiotics for MRSA infections.


Subject(s)
Acyclic Monoterpenes/pharmacology , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Microscopy, Confocal , Virulence Factors/antagonists & inhibitors
10.
mBio ; 12(4): e0134821, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34372705

ABSTRACT

Human health is threatened by bacterial infections that are increasingly resistant to multiple drugs. A recently emerged strategy consists of disarming pathogenic bacteria by targeting and blocking their virulence factors. The type VI secretion system (T6SS) is a widespread secretion nanomachine encoded and employed by pathogenic strains to establish their virulence process during host invasion. Given the conservation of T6SS in several human bacterial pathogens, the discovery of an effective broad-spectrum T6SS virulence blocker represents an attractive target for development of antivirulence therapies. Here, we identified and validated a protein-protein interaction interface, TssK-TssG, as a key factor in the assembly of the T6SS baseplate (BP) complex in the pathogen enteroaggregative Escherichia coli (EAEC). In silico and biochemical studies revealed that the determinants of the interface are broadly conserved among pathogenic species, suggesting a role for this interface as a target for T6SS inhibition. Based on the high-resolution structure of the TssKFGE wedge complex, we rationally designed a biomimetic cyclic peptide (BCP) that blocks the assembly of the EAEC BP complex and inhibits the function of T6SS in bacterial cultures. Our BCP is the first compound completely designed from prior structural knowledge with anti-T6SS activity that can be used as a model to target human pathogens. IMPORTANCE New therapeutic options are urgently needed to fight drug-resistant and life-threatening infections. In contrast to antibiotics that inhibit the growth pathways of bacteria, the antivirulence strategy is a promising approach to disarm pathogens by interfering with bacterial virulence factors without exerting evolutionary pressure. The type VI secretion system (T6SS) is used by many pathogens, including members of the antibiotic-resistant ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), to establish their virulence during the invasion of the human host. Although the T6SS is undoubtedly involved in pathogenesis, strategies targeting this virulence factor are crucially lacking. Here, we used a combination of genetics, microbiology, biochemical, biophysics, and bioinformatics approaches to rationally design a biomimetic peptide that interferes with T6SS assembly and functioning. This study represents a novel proof of concept for an antivirulence strategy which aims to interfere with the assembly of the T6SS.


Subject(s)
Biomimetics/methods , Escherichia coli/metabolism , Peptides/chemical synthesis , Peptides/metabolism , Type VI Secretion Systems/antagonists & inhibitors , Type VI Secretion Systems/genetics , Escherichia coli/chemistry , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Peptides/genetics , Peptides/pharmacology , Type VI Secretion Systems/metabolism , Virulence Factors/antagonists & inhibitors
11.
Bioengineered ; 12(1): 2420-2431, 2021 12.
Article in English | MEDLINE | ID: mdl-34167447

ABSTRACT

Oral candidiasis is one of the most common types of fungal infection caused by Candida albicans (C. albicans). The present study aims to investigate the antifungal effects of phloretin (a dihydrochalcone flavonoid) against the C. albicans pathogenicity. In this work, we treated C. albicans SC5314 with 37.28, 74.55, or 149.10 µg/mL (equivalent to 0.5×, 1× or 2× MIC) phloretin in vitro. Besides, we established a mice model of oral candidiasis by a sublingual infection of C. albicans suspension (1 × 107 colony-forming unit/mL), and mice were treated with phloretin (3.73 or 7.46 mg/mL, which were equivalent to 50× or 100× MIC) twice a day starting on day one post-infection. The results showed that the MIC of phloretin against C. albicans was 74.55 µg/mL. Phloretin exerted antifungal activity by inhibiting the biofilm formation and suppressing the yeast-to-hyphae transition upon the downregulation of hypha-associated genes including enhanced adherence to polystyrene 1, the extent of cell elongation gene 1, hyphal wall protein 1 gene, and agglutinin-like sequence gene 3. Next, phloretin repressed the secretion of proteases and phospholipases via reducing the expression of protease-encoding genes secreted aspartyl proteases (SAP)1 and SAP2, as well as phospholipase B1. Subsequently, the in vivo antifungal activity of phloretin was testified by the reverse of the enhanced lesion severity, inflammatory infiltration, and the increased colony-forming unit counts caused by C. albicans of tongue tissues in oral candidiasis mice. In conclusion, phloretin suppressed the pathogenicity and virulence factors against C. albicans both in vivo and in vitro.


Subject(s)
Candida albicans/pathogenicity , Phloretin/pharmacology , Virulence Factors/antagonists & inhibitors , Animals , Antifungal Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology , Disease Models, Animal , Female , Hyphae/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mouth/microbiology , Mouth/pathology , Peptide Hydrolases/metabolism , Phloretin/chemistry , Phloretin/therapeutic use , Phospholipases/metabolism , Virulence Factors/metabolism
12.
Sci Rep ; 11(1): 7667, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828158

ABSTRACT

SapM is a secreted virulence factor from Mycobacterium tuberculosis critical for pathogen survival and persistence inside the host. Its full potential as a target for tuberculosis treatment has not yet been exploited because of the lack of potent inhibitors available. By screening over 1500 small molecules, we have identified new potent and selective inhibitors of SapM with an uncompetitive mechanism of inhibition. The best inhibitors share a trihydroxy-benzene moiety essential for activity. Importantly, the inhibitors significantly reduce mycobacterial burden in infected human macrophages at 1 µM, and they are selective with respect to other mycobacterial and human phosphatases. The best inhibitor also reduces intracellular burden of Francisella tularensis, which secretes the virulence factor AcpA, a homologue of SapM, with the same mechanism of catalysis and inhibition. Our findings demonstrate that inhibition of SapM with small molecule inhibitors is efficient in reducing intracellular mycobacterial survival in host macrophages and confirm SapM as a potential therapeutic target. These initial compounds have favourable physico-chemical properties and provide a basis for exploration towards the development of new tuberculosis treatments. The efficacy of a SapM inhibitor in reducing Francisella tularensis intracellular burden suggests the potential for developing broad-spectrum antivirulence agents to treat microbial infections.


Subject(s)
Mycobacterium tuberculosis/drug effects , Virulence Factors/antagonists & inhibitors , Alkaline Phosphatase/antagonists & inhibitors , Francisella tularensis/enzymology , Humans , Molecular Targeted Therapy , Mycobacterium tuberculosis/pathogenicity , Small Molecule Libraries , Structure-Activity Relationship , Tuberculosis/drug therapy
14.
mSphere ; 6(2)2021 03 03.
Article in English | MEDLINE | ID: mdl-33658276

ABSTRACT

The bacterial type IV pilus (T4P) is a prominent virulence factor in many significant human pathogens, some of which have become increasingly antibiotic resistant. Antivirulence chemotherapeutics are considered a promising alternative to antibiotics because they target the disease process instead of bacterial viability. However, a roadblock to the discovery of anti-T4P compounds is the lack of a high-throughput screen (HTS) that can be implemented relatively easily and economically. Here, we describe the first HTS for the identification of inhibitors specifically against the T4P assembly ATPase PilB in vitroChloracidobacterium thermophilum PilB (CtPilB) had been demonstrated to have robust ATPase activity and the ability to bind its expected ligands in vitro. We utilized CtPilB and MANT-ATP, a fluorescent ATP analog, to develop a binding assay and adapted it for an HTS. As a proof of principle, we performed a pilot screen with a small compound library of kinase inhibitors and identified quercetin as a PilB inhibitor in vitro Using Myxococcus xanthus as a model bacterium, we found quercetin to reduce its T4P-dependent motility and T4P assembly in vivo. These results validated our HTS as effective in identifying PilB inhibitors. This assay may prove valuable in seeking leads for the development of antivirulence chemotherapeutics against PilB, an essential and universal component of all bacterial T4P systems.IMPORTANCE Many bacterial pathogens use their type IV pili (T4P) to facilitate and maintain infection of a human host. Small chemical compounds that inhibit the production or assembly of T4P hold promise in the treatment and prevention of infections, especially in the era of increasing threats from antibiotic-resistant bacteria. However, few chemicals are known to have inhibitory or anti-T4P activity. Their identification has not been easy due to the lack of a method for the screening of compound collections or libraries on a large scale. Here, we report the development of an assay that can be scaled up to screen compound libraries for inhibitors of a critical T4P assembly protein. We further demonstrate that it is feasible to use whole cells to examine potential inhibitors for their activity against T4P assembly in a bacterium.


Subject(s)
Acidobacteria/drug effects , Bacterial Proteins/antagonists & inhibitors , Fimbriae, Bacterial/drug effects , High-Throughput Screening Assays , Oxidoreductases/antagonists & inhibitors , Virulence Factors/antagonists & inhibitors , Acidobacteria/enzymology , Acidobacteria/genetics , Bacterial Proteins/metabolism , Fimbriae, Bacterial/physiology , Models, Molecular , Oxidoreductases/metabolism , Quercetin/pharmacology , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Virulence Factors/metabolism
15.
Res Microbiol ; 172(3): 103817, 2021.
Article in English | MEDLINE | ID: mdl-33741516

ABSTRACT

Pseudomonas aeruginosa is a multi-drug resistant (MDR) pathogen. It is classified by WHO as one of the most life-threatening pathogens causing nosocomial infections. Some of its clinical isolates and their subpopulations show high persistence to many antibiotics that are recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Thus, there is a need for non-traditional classes of antibiotics to fight the increasing threat of MDR P. aeruginosa. Ionic liquids (IL) are one such promising class of novel antibiotics. We selected four strains of P. aeruginosa and studied the growth inhibition and other effects of 12 different ILs. We used the well-characterized P. aeruginosa PAO1 (ATCC 15692) as model strain and compared it to three other isolates from chronic lung infection (LES B58), skin burn infection (UCBPP-PA14) and keratitis infection (39016), respectively. The ILs consisted of either 4,4-didecylmorpholinium [Dec2Mor]+ or 4-decyl-4-ethylmorpholinium [DecEtMor]+ cations combined with different anions. We found that the ILs with 4,4-didecylmorpholinium [Dec2Mor]+ cations most effectively inhibited bacterial growth as well as reduced strain fitness and virulence factor production. Our results indicate that these ILs could be used to treat P. aeruginosa infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Morpholines/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Biofilms/growth & development , Drug Resistance, Multiple, Bacterial , Humans , Ionic Liquids/classification , Microbial Sensitivity Tests , Morpholines/chemistry , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/pathogenicity , Virulence Factors/antagonists & inhibitors
16.
J Ethnopharmacol ; 269: 113699, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33340600

ABSTRACT

ETHNOPHARMCOLOGICAL RELEVANCE: Microbial biofilm formation, a quorum sensing (QS) regulated process, is one of the major causes of nosocomial and chronic infections, foodborne diseases, and associated deaths. Various approaches have been used to eradicate the menace of biofilm. Ethnomedicinal plants as potent antibiofilm agents are gaining a lot of interest in an era where the drug resistance is increasing and the availability of potent antibiotics is no longer promised. In this context, the methanol extract of Cuphea carthagenensis (CCMD), an ethno-medicinal and culinary herb, was evaluated as an antibiofilm and anti-QS agent against Pseudomonas aeruginosa. AIM OF THE STUDY: The aim of the study is to evaluate the antibiofilm and anti-QS activity of an ethnomedicinal plant against a strong biofilm forming microorganism, P. aeruginosa. METHODS: Antibiofilm activity of CCMD was demonstrated at different concentrations by Tissue Culture Plate, Test Tube method and other microscopic techniques. The effect of CCMD on QS and QS-related virulence factors viz. Pyocyanin, exopolymeric substance matrix (EPS), total protease, elastase, pyoverdin and swimming motility in P. aeruginosa were also evaluated. Antioxidant activity (DPPH & FRAP), total phenolic and flavonoid content were also checked. In order to determine the composition of the extract HPLC analysis was also performed. RESULTS: In vitro study demonstrated a significant inhibition of biofilm formation (81.88 ± 2.57%) as well as production of QS-dependent virulence factors in P. aeruginosa. The extract also inhibited violacein production (83.31 ± 2.77%) in Chromobacterium violaceum which correlates with the reduction in QS-mediated virulence factors. The extract showed 64.79% ± 0.83% DPPH scavenging activity and reduction of ferricyanide complex (Fe3+) to the ferrous form (Fe2+) in DPPH and FRAP assay, respectively. Furthermore, the extract showed thermal stability and does not have any growth inhibitory effect on P. aeruginosa. The HPLC analysis demonstrated the presence of ellagic acid, ascorbic acid and hippuric acid in the extract. CONCLUSION: This work is the first to demonstrate that C. carthagenensis can attenuate biofilm formation and QS-mediated virulence factors of P. aeruginosa. Further investigation is required to use this ethnomedicinal plant (CCMD) as an important source of antibiofilm agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cuphea/chemistry , Medicine, Traditional/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/physiology , Virulence Factors/antagonists & inhibitors , Antioxidants/pharmacology , Ascorbic Acid , Biofilms/drug effects , Chromatography, High Pressure Liquid , Chromobacterium/drug effects , Ellagic Acid , Flavonoids/analysis , Hippurates , Indoles/antagonists & inhibitors , Phenols/analysis , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Virulence Factors/metabolism
17.
Curr Drug Targets ; 22(7): 734-759, 2021.
Article in English | MEDLINE | ID: mdl-33100201

ABSTRACT

Acinetobacter baumannii is a gram-negative, aerobic, non-motile, and pleomorphic bacillus. A. baumannii is also a highly-infectious pathogen causing high mortality and morbidity rates in intensive care units. The discovery of novel agents against A. baumannii infections is urgently needed due to the emergence of drug-resistant A. baumannii strains and the limited number of efficacious antibiotics available for treatment. In addition to the production of several virulence factors, A. baumannii forms biofilms on the host cell surface as well. Formation of biofilms occurs through initial surface attachment, microcolony formation, biofilm maturation, and detachment stages, and is one of the major drug resistance mechanisms employed by A. baumannii. Several studies have previously reported the efficacy of naturally-derived and synthetic compounds as anti- biofilm and anti-virulence agents against A. baumannii. Here, inhibition of biofilm formation and virulence factors of A. baumannii using naturally-derived and synthetic compounds are reviewed.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Biological Products , Synthetic Drugs , Virulence Factors/antagonists & inhibitors , Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biological Products/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Synthetic Drugs/pharmacology
18.
Brief Bioinform ; 22(3)2021 05 20.
Article in English | MEDLINE | ID: mdl-32444871

ABSTRACT

The aerobic, Gram-negative motile bacillus, Burkholderia pseudomallei is a facultative intracellular bacterium causing melioidosis, a critical disease of public health importance, which is widely endemic in the tropics and subtropical regions of the world. Melioidosis is associated with high case fatality rates in animals and humans; even with treatment, its mortality is 20-50%. It also infects plants and is designated as a biothreat agent. B. pseudomallei is pathogenic due to its ability to invade, resist factors in serum and survive intracellularly. Despite its importance, to date only a few effector proteins have been functionally characterized, and there is not much information regarding the host-pathogen protein-protein interactions (PPI) of this system, which are important to studying infection mechanisms and thereby develop prevention measures. We explored two computational approaches, the homology-based interolog and the domain-based method, to predict genome-scale host-pathogen interactions (HPIs) between two different strains of B. pseudomallei (prototypical, and highly virulent) and human. In total, 76 335 common HPIs (between the two strains) were predicted involving 8264 human and 1753 B. pseudomallei proteins. Among the unique PPIs, 14 131 non-redundant HPIs were found to be unique between the prototypical strain and human, compared to 3043 non-redundant HPIs between the highly virulent strain and human. The protein hubs analysis showed that most B. pseudomallei proteins formed a hub with human dnaK complex proteins associated with tuberculosis, a disease similar in symptoms to melioidosis. In addition, drug-binding and carbohydrate-binding mechanisms were found overrepresented within the host-pathogen network, and metabolic pathways were frequently activated according to the pathway enrichment. Subcellular localization analysis showed that most of the pathogen proteins are targeting human proteins inside cytoplasm and nucleus. We also discovered the host targets of the drug-related pathogen proteins and proteins that form T3SS and T6SS in B. pseudomallei. Additionally, a comparison between the unique PPI patterns present in the prototypical and highly virulent strains was performed. The current study is the first report on developing a genome-scale host-pathogen protein interaction networks between the human and B. pseudomallei, a critical biothreat agent. We have identified novel virulence factors and their interacting partners in the human proteome. These PPIs can be further validated by high-throughput experiments and may give new insights on how B. pseudomallei interacts with its host, which will help medical researchers in developing better prevention measures.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia pseudomallei/metabolism , Computer Simulation , Melioidosis/metabolism , Virulence Factors/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/pathogenicity , Computational Biology/methods , Gene Expression Profiling/methods , Gene Ontology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Melioidosis/drug therapy , Melioidosis/genetics , Melioidosis/microbiology , Molecular Targeted Therapy/methods , Pharmaceutical Preparations/administration & dosage , Protein Binding/drug effects , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , Virulence/genetics , Virulence Factors/antagonists & inhibitors , Virulence Factors/genetics
19.
Curr Drug Discov Technol ; 18(3): 391-404, 2021.
Article in English | MEDLINE | ID: mdl-32316896

ABSTRACT

BACKGROUND: Antibiotic-resistant members of the family Enterobacteriaceae are among the serious threats to human health globally. This study reports the anti-pathogenic activity of Punica granatum peel extract (PGPE) against a multi-drug resistant, beta-lactamase producing member of this family i.e. Serratia marcescens. OBJECTIVE: This study aimed at assessing the anti-pathogenic activity of PGPE against the gramnegative bacterial pathogen S. marcescens and identifying the molecular targets of this extract in the test bacterium. METHODS: Effect of PGPE on S. marcescens growth and quorum sensing (QS)-regulated pigment production was assessed through broth dilution assay. In vivo anti-infective and prophylactic activity of PGPE was assessed employing the nematode worm Caenorhabditis elegans as a model host. Differential gene expression in PGPE-exposed S. marcescens was studied through a whole transcriptome approach. RESULTS: PGPE was able to modulate QS-regulated pigment production in S. marcescens without exerting any heavy growth-inhibitory effect at concentrations as low as ≥2.5 µg/mL. It could attenuate the virulence of the test bacterium towards the worm host by 22-42% (p≤0.01) at even lower concentrations (≥0.5 µg/mL). PGPE also exerted a post-extract effect on S. marcescens. This extract was found to offer prophylactic benefit too, to the host worm, as PGPE-pre-fed worms scored better (34-51%; p≤0.001) survival in face of subsequent bacterial attack. Differential gene expression analysis revealed that PGPE affected the expression of a total of 66 genes in S. marcescens by ≥1.5 fold. CONCLUSION: The anti-virulence effect of PGPE against S. marcescens is multifaceted, affecting stress-response machinery, efflux activity, iron homeostasis, and cellular energetics of this bacterium notably. Among the major molecular targets identified in this study are LPS export transporter permease (LptF), t-RNA pseudouridine synthase (TruB), etc.


Subject(s)
Plant Extracts/pharmacology , Pomegranate/chemistry , Serratia Infections/drug therapy , Serratia marcescens/drug effects , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Caenorhabditis elegans , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Ethanol/chemistry , Gene Expression Regulation, Bacterial/drug effects , Humans , Microbial Sensitivity Tests , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Quorum Sensing/drug effects , Serratia Infections/microbiology , Serratia marcescens/genetics , Serratia marcescens/metabolism , Serratia marcescens/pathogenicity , Solvents , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism , Water/chemistry
20.
J Antibiot (Tokyo) ; 74(1): 24-41, 2021 01.
Article in English | MEDLINE | ID: mdl-32647212

ABSTRACT

Antibiotic resistance is a global threat that should be urgently resolved. Finding a new antibiotic is one way, whereas the repression of the dissemination of virulent pathogenic bacteria is another. From this point of view, this paper summarizes first the mechanisms of conjugation and transformation, two important processes of horizontal gene transfer, and then discusses the approaches for disarming virulent pathogenic bacteria, that is, virulence factor inhibitors. In contrast to antibiotics, anti-virulence drugs do not impose a high selective pressure on a bacterial population, and repress the dissemination of antibiotic resistance and virulence genes. Disarmed virulence factors make virulent pathogens avirulent bacteria or pathobionts, so that we human will be able to coexist with these disarmed bacteria peacefully.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/pathogenicity , Bacterial Infections/drug therapy , Virulence Factors/antagonists & inhibitors , Animals , Anti-Bacterial Agents/classification , Anti-Bacterial Agents/history , Bacterial Infections/microbiology , Drug Resistance, Bacterial , History, 20th Century , History, 21st Century , Humans , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...