Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
1.
Viruses ; 16(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38675866

ABSTRACT

Gu-Sui-Bu, the dried rhizome of Davallia mariesii, is a traditional Chinese herbal remedy with a significant history of treating osteoporosis and inflammatory conditions. However, its potential as an anti-influenza agent and its underlying mechanisms of action remain unexplored. To obtain a more potent extract from D. mariesii and gain insights into its mechanism of action against influenza A virus (IAV), we utilized a partitioning process involving organic solvents and water, resulting in the isolation of butanolic subfractions of the D. mariesii extract (DMBE). DMBE exhibited a broad anti-viral spectrum, effectively inhibiting IAV, with an EC50 of 24.32 ± 6.19 µg/mL and a selectivity index of 6.05. We subsequently conducted a series of in vitro assays to evaluate the antiviral effects of DMBE and to uncover its mechanisms of action. DMBE was found to inhibit IAV during the early stages of infection by hindering the attachment of the virus onto and its penetration into host cells. Importantly, DMBE was observed to hinder IAV-mediated cell-cell fusion. It also inhibited neuraminidase activity, plaque size, and the expression levels of phospho-AKT. In summary, this study provides evidence for the effectiveness of D. mariesii as a complementary and alternative herbal remedy against IAV. Specifically, our data highlight DMBE's capabilities in inhibiting viral entry and the release of virions.


Subject(s)
Antiviral Agents , Influenza A virus , Plant Extracts , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Influenza A virus/physiology , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Madin Darby Canine Kidney Cells , Dogs , Virus Internalization/drug effects , Sapindaceae/chemistry , Virus Replication/drug effects , Virus Attachment/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neuraminidase/metabolism , A549 Cells , Cell Line
2.
Microb Pathog ; 190: 106628, 2024 May.
Article in English | MEDLINE | ID: mdl-38508422

ABSTRACT

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Subject(s)
Neuraminidase , Rotavirus Infections , Rotavirus , Virus Replication , Animals , Neuraminidase/metabolism , Neuraminidase/genetics , Rotavirus/drug effects , Rotavirus/physiology , Swine , Virus Replication/drug effects , Cell Line , Epithelial Cells/virology , Epithelial Cells/microbiology , Virus Attachment/drug effects , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/pharmacology , Antiviral Agents/pharmacology , Haplorhini , Swine Diseases/virology , Swine Diseases/microbiology
3.
J Virol ; 97(3): e0146322, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36779754

ABSTRACT

Entry of influenza A viruses (IAVs) into host cells is initiated by binding to sialic acids (Sias), their primary host cell receptor, followed by endocytosis and membrane fusion to release the viral genome into the cytoplasm of the host cell. Host tropism is affected by these entry processes, with a primary factor being receptor specificity. Sias exist in several different chemical forms, including the hydroxylated N-glycolylneuraminic acid (Neu5Gc), which is found in many hosts; however, it has not been clear how modified Sias affect viral binding and entry. Neu5Gc is commonly found in many natural influenza hosts, including pigs and horses, but not in humans or ferrets. Here, we engineered HEK293 cells to express the hydoxylase gene (CMAH) that converts Neu5Ac to Neu5Gc, or knocked out the Sia-CMP transport gene (SLC35A1), resulting in cells that express 95% Neu5Gc or minimal level of Sias, respectively. H3N2 (X-31) showed significantly reduced infectivity in Neu5Gc-rich cells compared to wild-type HEK293 (>95% Neu5Ac). To determine the effects on binding and fusion, we generated supported lipid bilayers (SLBs) derived from the plasma membranes of these cells and carried out single particle microscopy. H3N2 (X-31) exhibited decreased binding to Neu5Gc-containing SLBs, but no significant difference in H3N2 (X-31)'s fusion kinetics to either SLB type, suggesting that reduced receptor binding does not affect subsequent membrane fusion. This finding suggests that for this virus to adapt to host cells rich in Neu5Gc, only receptor affinity changes are required without further adaptation of virus fusion machinery. IMPORTANCE Influenza A virus (IAV) infections continue to threaten human health, causing over 300,000 deaths yearly. IAV infection is initiated by the binding of influenza glycoprotein hemagglutinin (HA) to host cell sialic acids (Sias) and the subsequent viral-host membrane fusion. Generally, human IAVs preferentially bind to the Sia N-acetylneuraminic acid (Neu5Ac). Yet, other mammalian hosts, including pigs, express diverse nonhuman Sias, including N-glycolylneuraminic acid (Neu5Gc). The role of Neu5Gc in human IAV infections in those hosts is not well-understood, and the variant form may play a role in incidents of cross-species transmission and emergence of new epidemic variants. Therefore, it is important to investigate how human IAVs interact with Neu5Ac and Neu5Gc. Here, we use membrane platforms that mimic the host cell surface to examine receptor binding and membrane fusion events of human IAV H3N2. Our findings improve the understanding of viral entry mechanisms that can affect host tropism and virus evolution.


Subject(s)
Host Microbial Interactions , Influenza A Virus, H3N2 Subtype , Sialic Acids , Virus Internalization , Animals , Humans , HEK293 Cells , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Membrane Fusion , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism , Sialic Acids/chemistry , Sialic Acids/pharmacology , Single Molecule Imaging , Virus Attachment/drug effects , Virus Internalization/drug effects , Host Microbial Interactions/genetics , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology
4.
Thromb Haemost ; 122(6): 984-997, 2022 06.
Article in English | MEDLINE | ID: mdl-35322395

ABSTRACT

Two years since the outbreak of the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic, there remain few clinically effective drugs to complement vaccines. One is the anticoagulant, heparin, which in 2004 was found able to inhibit invasion of SARS-CoV (CoV-1) and which has been employed during the current pandemic to prevent thromboembolic complications and moderate potentially damaging inflammation. Heparin has also been shown experimentally to inhibit SARS-CoV-2 attachment and infection in susceptible cells. At high therapeutic doses however, heparin increases the risk of bleeding and prolonged use can cause heparin-induced thrombocytopenia, a serious side effect. One alternative, with structural similarities to heparin, is the plant-derived, semi-synthetic polysaccharide, pentosan polysulfate (PPS). PPS is an established drug for the oral treatment of interstitial cystitis, is well-tolerated, and exhibits weaker anticoagulant effects than heparin. In an established Vero cell model, PPS and its fractions of varying molecular weights inhibited invasion by SARS-CoV-2. Intact PPS and its size-defined fractions were characterized by molecular weight distribution and chemical structure using nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry, then employed to explore the structural basis of interactions with SARS-CoV-2 spike protein receptor-binding domain (S1 RBD) and the inhibition of Vero cell invasion. PPS was as effective as unfractionated heparin, but more effective in inhibiting cell infection than low-molecular-weight heparin (on a weight/volume basis). Isothermal titration calorimetry and viral plaque-forming assays demonstrated size-dependent binding to S1 RBD and inhibition of Vero cell invasion, suggesting the potential application of PPS as a novel inhibitor of SARS-CoV-2 infection.


Subject(s)
Pentosan Sulfuric Polyester , SARS-CoV-2 , Virus Attachment , Animals , Anticoagulants/pharmacology , Chlorocebus aethiops , Heparin/therapeutic use , Pentosan Sulfuric Polyester/pharmacology , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus , Vero Cells , Virus Attachment/drug effects
5.
Viruses ; 14(2)2022 02 17.
Article in English | MEDLINE | ID: mdl-35216006

ABSTRACT

Coronaviruses (CoVs) are common among humans and many animals, causing respiratory or gastrointestinal diseases. Currently, only a few antiviral drugs against CoVs are available. Especially for SARS-CoV-2, new compounds for treatment of COVID-19 are urgently needed. In this study, we characterize the antiviral effects of two high-sulfated glycosaminoglycan (GAG) derivatives against SARS-CoV-2 and bovine coronaviruses (BCoV), which are both members of the Betacoronavirus genus. The investigated compounds are based on hyaluronan (HA) and chondroitin sulfate (CS) and exhibit a strong inhibitory effect against both CoVs. Yield assays were performed using BCoV-infected PT cells in the presence and absence of the compounds. While the high-sulfated HA (sHA3) led to an inhibition of viral growth early after infection, high-sulfated CS (sCS3) had a slightly smaller effect. Time of addition assays, where sHA3 and sCS3 were added to PT cells before, during or after infection, demonstrated an inhibitory effect during all phases of infection, whereas sHA3 showed a stronger effect even after virus absorbance. Furthermore, attachment analyses with prechilled PT cells revealed that virus attachment is not blocked. In addition, sHA3 and sCS3 inactivated BCoV by stable binding. Analysis by quantitative real-time RT PCR underlines the high potency of the inhibitors against BCoV, as well as B.1-lineage, Alpha and Beta SARS-CoV-2 viruses. Taken together, these results demonstrated that the two high-sulfated GAG derivatives exhibit low cytotoxicity and represent promising candidates for an anti-CoV therapy.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/veterinary , Coronavirus, Bovine/drug effects , Glycosaminoglycans/pharmacology , SARS-CoV-2/drug effects , Animals , Cattle , Cell Line , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Coronavirus Infections/drug therapy , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Sulfates/chemistry , Sulfates/pharmacology , Virus Attachment/drug effects , COVID-19 Drug Treatment
6.
PLoS Pathog ; 18(2): e1010343, 2022 02.
Article in English | MEDLINE | ID: mdl-35176124

ABSTRACT

The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Diltiazem/pharmacology , Lung/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Diltiazem/therapeutic use , Disease Models, Animal , Female , HEK293 Cells , HeLa Cells , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Attachment/drug effects , Virus Internalization/drug effects
7.
Molecules ; 27(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35209042

ABSTRACT

Porcine pseudorabies (PR) is an important infectious disease caused by pseudorabies virus (PRV), which poses a major threat to food safety and security. Vaccine immunization has become the main means to prevent and control the disease. However, since 2011, a new PRV variant has caused huge economic losses to the Chinese pig industry. Panax notoginseng polysaccharides have immunomodulatory activity and other functions, but the antiviral effect has not been reported. We studied the anti-PRV activity of Panax notoginseng polysaccharides in vitro. A less cytopathic effect was observed by increasing the concentration of Panax notoginseng polysaccharides. Western blot, TCID50, plaque assay, and IFA revealed that Panax notoginseng polysaccharides could significantly inhibit the infectivity of PRV XJ5 on PK15 cells. In addition, we also found that Panax notoginseng polysaccharides blocked the adsorption and replication of PRV to PK15 cells in a dose-dependent manner. These results show that Panax notoginseng polysaccharides play an antiviral effect mainly by inhibiting virus adsorption and replication in vitro. Therefore, Panax notoginseng polysaccharides may be a potential anti-PRV agent.


Subject(s)
Herpesvirus 1, Suid/physiology , Immunologic Factors/pharmacology , Panax notoginseng/chemistry , Polysaccharides/pharmacology , Pseudorabies/metabolism , Swine Diseases/metabolism , Virus Attachment/drug effects , Virus Replication/drug effects , Animals , Cell Line , Immunologic Factors/chemistry , Polysaccharides/chemistry , Pseudorabies/drug therapy , Pseudorabies/pathology , Swine , Swine Diseases/pathology , Swine Diseases/virology
8.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35163532

ABSTRACT

Since the beginning of the HIV epidemic, lasting more than 30 years, the main goal of scientists was to develop effective methods for the prevention and treatment of HIV infection. Modern medicines have reduced the death rate from AIDS by 80%. However, they still have side effects and are very expensive, dictating the need to search for new drugs. Earlier, it was shown that phospholipases A2 (PLA2s) from bee and snake venoms block HIV replication, the effect being independent on catalytic PLA2 activity. However, the antiviral activity of human PLA2s against Lentiviruses depended on catalytic function and was mediated through the destruction of the viral membrane. To clarify the role of phospholipolytic activity in antiviral effects, we analyzed the anti-HIV activity of several snake PLA2s and found that the mechanisms of their antiviral activity were similar to that of mammalian PLA2. Our results indicate that snake PLA2s are capable of inhibiting syncytium formation between chronically HIV-infected cells and healthy CD4-positive cells and block HIV binding to cells. However, only dimeric PLA2s had pronounced virucidal and anti-HIV activity, which depended on their catalytic activity. The ability of snake PLA2s to inactivate the virus may provide an additional barrier to HIV infection. Thus, snake PLA2s might be considered as candidates for lead molecules in anti-HIV drug development.


Subject(s)
Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/cytology , Giant Cells/cytology , HIV-1/physiology , Phospholipases A2/pharmacology , Snake Venoms/enzymology , Snakes/metabolism , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Cell Line , Cells, Cultured , Giant Cells/drug effects , Giant Cells/virology , HIV-1/drug effects , Humans , Inhibitory Concentration 50 , Reptilian Proteins/pharmacology , Snakes/classification , Virus Activation/drug effects , Virus Attachment/drug effects
9.
Biomed Res Int ; 2022: 1558860, 2022.
Article in English | MEDLINE | ID: mdl-35039793

ABSTRACT

Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 µg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 µg/mL. Moreover, Metadichol® had an EC90 of 0.00037 µM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 µM) and chloroquine (EC50 = 1.14 µM), respectively.


Subject(s)
Fatty Alcohols/pharmacology , Nanoparticle Drug Delivery System/pharmacology , SARS-CoV-2/drug effects , Viruses/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Esters/pharmacology , Guanidines/pharmacology , Humans , Lipid Metabolism/physiology , Lipids/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/drug effects , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Serine Proteinase Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Attachment/drug effects , Virus Internalization/drug effects , COVID-19 Drug Treatment
10.
SLAS Discov ; 27(1): 8-19, 2022 01.
Article in English | MEDLINE | ID: mdl-35058179

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cysteine Proteinase Inhibitors/pharmacology , Dipeptides/pharmacology , Virus Attachment/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cathepsin L/antagonists & inhibitors , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning , HEK293 Cells , Humans , Molecular Docking Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
11.
Biomed Pharmacother ; 146: 112581, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34965505

ABSTRACT

Epimedium koreanum Nakai (EKN) is a popular plant in Korean and Chinese medicine for treating a variety of ailments. The aqueous extract of EKN has a significant inhibitory impact on influenza A virus (IAV) infection by directly blocking viral attachment and having a virucidal effect, according to this study. Using fluorescent microscopy and fluorescence-activated cell sorting (FACS) with a green fluorescent protein (GFP)-tagged Influenza A/PR/8/34 virus, we examined the effect of EKN on viral infection. By viral infection, EKN strongly suppresses GFP expression, and at a dosage of 100 µg/mL, EKN decreased GFP expression by up to 90% of the untreated infected control. Immunofluorescence and Western blot analyses against influenza viral proteins revealed that EKN decreased influenza viral protein expression in a dose-dependent manner. EKN inhibited the H1N1 influenza virus's hemagglutinin (HA) and neuraminidase (NA), preventing viral attachment to cells. Furthermore, EKN had a virucidal impact and inhibited the cytopathic effects of H1N1, H3N2 and influenza B virus infection. Finally, our findings show that EKN has the potential to be developed as a natural viral inhibitor against influenza virus infection.


Subject(s)
Alphainfluenzavirus/drug effects , Antiviral Agents/pharmacology , Epimedium , Plant Extracts/pharmacology , Animals , Hemagglutinins/drug effects , Humans , Mice , Neuraminidase/drug effects , Viral Proteins/drug effects , Virus Attachment/drug effects
12.
J Mol Biol ; 434(2): 167395, 2022 01 30.
Article in English | MEDLINE | ID: mdl-34896364

ABSTRACT

GSK3732394 is a multi-specific biologic inhibitor of HIV entry currently under clinical evaluation. A key component of this molecule is an adnectin (6940_B01) that binds to CD4 and inhibits downstream actions of gp160. Studies were performed to determine the binding site of the adnectin on CD4 and to understand the mechanism of inhibition. Using hydrogen-deuterium exchange with mass spectrometry (HDX), CD4 peptides showed differential rates of deuteration (either enhanced or slowed) in the presence of the adnectin that mapped predominantly to the interface of domains 2 and 3 (D2-D3). In addition, an X-ray crystal structure of an ibalizumab Fab/CD4(D1-D4)/adnectin complex revealed an extensive interface between the adnectin and residues on CD4 domains D2-D4 that stabilize a novel T-shaped CD4 conformation. A cryo-EM map of the gp140/CD4/GSK3732394 complex clearly shows the bent conformation for CD4 while bound to gp140. Mutagenic analyses on CD4 confirmed that amino acid F202 forms a key interaction with the adnectin. In addition, amino acid L151 was shown to be a critical indirect determinant of the specificity for binding to the human CD4 protein over related primate CD4 molecules, as it appears to modulate CD4's flexibility to adopt the adnectin-bound conformation. The significant conformational change of CD4 upon adnectin binding brings the D1 domain of CD4 in proximity to the host cell membrane surface, thereby re-orienting the gp120 binding site in a direction that is inaccessible to incoming virus due to a steric clash between gp160 trimers on the virus surface and the target cell membrane.


Subject(s)
Anti-HIV Agents/pharmacology , CD4 Antigens/chemistry , CD4 Antigens/metabolism , HIV-1/metabolism , Virus Attachment/drug effects , Animals , Antibodies, Monoclonal , Binding Sites , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Virus Internalization/drug effects
13.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: mdl-34960796

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, causes neonatal pig acute gastrointestinal infection with a characterization of severe diarrhea, vomiting, high morbidity, and high mortality, resulting in tremendous damages to the swine industry. Neither specific antiviral drugs nor effective vaccines are available, posing a high priority to screen antiviral drugs. The aim of this study is to investigate anti-PEDV effects of carbazole alkaloid derivatives. Eighteen carbazole derivatives (No.1 to No.18) were synthesized, and No.5, No.7, and No.18 were identified to markedly reduce the replication of enhanced green fluorescent protein (EGFP) inserted-PEDV, and the mRNA level of PEDV N. Flow cytometry assay, coupled with CCK8 assay, confirmed No.7 and No.18 carbazole derivatives displayed high inhibition effects with low cell toxicity. Furthermore, time course analysis indicated No.7 and No.18 carbazole derivatives exerted inhibition at the early stage of the viral life cycle. Collectively, the analysis underlines the benefit of carbazole derivatives as potential inhibitors of PEDV, and provides candidates for the development of novel therapeutic agents.


Subject(s)
Antiviral Agents/pharmacology , Carbazoles/pharmacology , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/chemistry , Carbazoles/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Molecular Structure , Vero Cells , Virus Attachment/drug effects , Virus Replication/drug effects
14.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34948390

ABSTRACT

Since the start of the COVID-19 outbreak, pharmaceutical companies and research groups have focused on the development of vaccines and antiviral drugs against SARS-CoV-2. Here, we apply a drug repurposing strategy to identify drug candidates that are able to block the entrance of the virus into human cells. By combining virtual screening with in vitro pseudovirus assays and antiviral assays in Human Lung Tissue (HLT) cells, we identify entrectinib as a potential antiviral drug.


Subject(s)
Benzamides/pharmacology , COVID-19 Drug Treatment , Indazoles/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Benzamides/metabolism , COVID-19/metabolism , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning/methods , Humans , Indazoles/metabolism , Lung/pathology , Lung/virology , Molecular Docking Simulation , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Vero Cells , Virus Attachment/drug effects
15.
Eur Rev Med Pharmacol Sci ; 25(23): 7565-7584, 2021 12.
Article in English | MEDLINE | ID: mdl-34919258

ABSTRACT

OBJECTIVE: With the recent direction in drug repurposing, many approved drugs have been evaluated to assess their effect on the coronavirus or SARS-CoV-2 infection (COVID-19). Driving this path, chloroquine (CQ) has been used in the treatment of malaria and hydroxychloroquine (HCQ) in immunomodulatory and anti-thrombotic action, playing a leading role in initial management of the viral infection. MATERIALS AND METHODS: Literature search was done using Google Scholar, PubMed and Scopus database using keywords "chloroquine" "SARS-CoV-2" "COVID-19" "mechanism of action" and articles of interest were selected providing evidence of the possible role of CQ in viral infection. RESULTS: In a bid to understand how and if CQ and HCQ would exert their anti-viral property, mechanistic exegesis was done to review various proposed mechanisms of action. This revealed the inhibition of viral attachment and entry, inhibition of enveloped glycoprotein, inhibition of the development and proliferation of new viral particles as the way they perform their action. There is an interplay between iron metabolism and homeostasis with COVID-19 infection and viral reproduction. CONCLUSIONS: This study aims to show the functional role of CQ and HCQ, as well as to provide possible mechanistic insight on the role of iron on viral infection, iron starvation and its downstream cellular pathways involving hepcidin and proinflammatory cytokines. The overall aim of providing possible mode of action of CQ and HCQ in the management of COVID-19 infection is exhibited via its anti-viral, anti-inflammatory and anti-thrombotic activities.


Subject(s)
COVID-19 Drug Treatment , Chloroquine/pharmacology , Hydroxychloroquine/pharmacology , Iron/metabolism , COVID-19/metabolism , Chloroquine/therapeutic use , Drug Repositioning , Homeostasis , Humans , Hydroxychloroquine/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Attachment/drug effects
16.
Viruses ; 13(11)2021 11 19.
Article in English | MEDLINE | ID: mdl-34835112

ABSTRACT

Anti-viral small molecules are currently lacking for treating coronavirus infection. The long development timescales for such drugs are a major problem, but could be shortened by repurposing existing drugs. We therefore screened a small library of FDA-approved compounds for potential severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antivirals using a pseudovirus system that allows a sensitive read-out of infectivity. A group of structurally-related compounds, showing moderate inhibitory activity with IC50 values in the 2-5 µM range, were identified. Further studies demonstrated that these "kite-shaped" molecules were surprisingly specific for SARS-CoV-1 and SARS-CoV-2 and that they acted early in the entry steps of the viral infectious cycle, but did not affect virus attachment to the cells. Moreover, the compounds were able to prevent infection in both kidney- and lung-derived human cell lines. The structural homology of the hits allowed the production of a well-defined pharmacophore that was found to be highly accurate in predicting the anti-viral activity of the compounds in the screen. We discuss the prospects of repurposing these existing drugs for treating current and future coronavirus outbreaks.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , Leukemia Virus, Murine/drug effects , SARS-CoV-2 , Virus Internalization/drug effects , Animals , Cell Line , Chlorocebus aethiops , Drug Discovery/methods , Drug Repositioning , Drug Synergism , Humans , Leukemia Virus, Murine/metabolism , Mice , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Attachment/drug effects
17.
J Virol ; 95(24): e0093821, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34613794

ABSTRACT

Sodium taurocholate cotransporting polypeptide (NTCP) is a receptor that is essential for hepatitis B virus (HBV) entry into the host cell. A number of HBV entry inhibitors targeting NTCP have been reported to date; these inhibitors have facilitated a mechanistic analysis of the viral entry process. However, the mechanism of HBV internalization into host cells after interaction of virus with NTCP remains largely unknown. Recently, we reported that troglitazone, a thiazolidinedione derivative, specifically inhibits both HBV internalization and NTCP oligomerization, resulting in inhibition of HBV infection. Here, using troglitazone as a chemical probe to investigate entry process, the contribution of NTCP oligomerization to HBV internalization was evaluated. Using surface plasmon resonance and transporter kinetics, we found that troglitazone directly interacts with NTCP and noncompetitively interferes with NTCP-mediated bile acid uptake, suggesting that troglitazone allosterically binds to NTCP, rather than to the bile acid-binding pocket. Additionally, alanine scanning mutagenesis showed that a mutation at phenylalanine 274 of NTCP (F274A) caused a loss of HBV susceptibility and disrupted both the oligomerization of NTCP and HBV internalization without affecting viral attachment to the cell surface. An inhibitor of the interaction between NTCP and epidermal growth factor receptor (EGFR), another host cofactor essential for HBV internalization, impeded NTCP oligomerization. Meanwhile, coimmunoprecipitation analysis revealed that neither troglitazone nor the F274A mutation in NTCP affects the NTCP-EGFR interaction. These findings suggest that NTCP oligomerization is initiated downstream of the NTCP-EGFR interaction and then triggers HBV internalization. This study provides significant insight into the HBV entry mechanisms. IMPORTANCE Hepatitis B virus (HBV) infection is mediated by a specific interaction with sodium taurocholate cotransporting polypeptide (NTCP), a viral entry receptor. Although the virus-receptor interactions are believed to trigger viral internalization into host cells, the exact molecular mechanisms of HBV internalization are not understood. In this study, we revealed the mode of action whereby troglitazone, a specific inhibitor of HBV internalization, impedes NTCP oligomerization and identified NTCP phenylalanine 274 as a residue essential for this oligomerization. We further analyzed the association between NTCP oligomerization and HBV internalization, a process that is mediated by epidermal growth factor receptor (EGFR), another essential host cofactor for HBV internalization. Our study provides critical information on the mechanism of HBV entry and suggests that oligomerization of the viral receptor serves as an attractive target for drug discovery.


Subject(s)
Hepatitis B virus/physiology , Organic Anion Transporters, Sodium-Dependent/metabolism , Protein Multimerization , Receptors, Virus/metabolism , Symporters/metabolism , Virus Internalization/drug effects , Biological Transport , ErbB Receptors/genetics , ErbB Receptors/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Troglitazone/pharmacology , Virus Attachment/drug effects
18.
PLoS Pathog ; 17(10): e1009542, 2021 10.
Article in English | MEDLINE | ID: mdl-34648602

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the disease COVID-19 can lead to serious symptoms, such as severe pneumonia, in the elderly and those with underlying medical conditions. While vaccines are now available, they do not work for everyone and therapeutic drugs are still needed, particularly for treating life-threatening conditions. Here, we showed nasal delivery of a new, unmodified camelid single-domain antibody (VHH), termed K-874A, effectively inhibited SARS-CoV-2 titers in infected lungs of Syrian hamsters without causing weight loss and cytokine induction. In vitro studies demonstrated that K-874A neutralized SARS-CoV-2 in both VeroE6/TMPRSS2 and human lung-derived alveolar organoid cells. Unlike other drug candidates, K-874A blocks viral membrane fusion rather than viral attachment. Cryo-electron microscopy revealed K-874A bound between the receptor binding domain and N-terminal domain of the virus S protein. Further, infected cells treated with K-874A produced fewer virus progeny that were less infective. We propose that direct administration of K-874A to the lung could be a new treatment for preventing the reinfection of amplified virus in COVID-19 patients.


Subject(s)
Antibodies, Viral/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 , Single-Domain Antibodies/administration & dosage , Virus Attachment/drug effects , Administration, Intranasal , Animals , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
19.
Antiviral Res ; 195: 105188, 2021 11.
Article in English | MEDLINE | ID: mdl-34648875

ABSTRACT

Zika virus (ZIKV) has been the cause of some epidemics since 2007. The correlations of microcephaly and Guillain-Barré syndrome with ZIKV have been noticed. Unfortunately, researchers have yet to develop an effective vaccine or drug approved for ZIKV infection. Anidulafungin is a member of echinocandins that is used to treat candida infections. This study assessed the antiviral capability of anidulafungin against ZIKV. Anidulafungin was shown to significantly decrease viral RNA levels, protein expression levels, viral yields, and the rate of infection. In time of addition assays, anidulafungin exhibited inhibitory activities in the early stages of ZIKV infection. In binding and entry assays, administering anidulafungin did not lead to a corresponding decrease in quantity of viral RNA, but a significant decrease in ZIKV infectivity was observed in virucidal assays. This indicated that anidulafungin interferes directly with virions. T-1105 is a viral polymerase inhibitor, which functions in the late stage of ZIKV infection. When anidulafungin was administered in combination with T-1105, an obvious synergistic effect was observed, resulting in a combination index (CI) value of 0.85 ± 0.13. Finally, we evaluated the effects of echinocandins in terms of half-maximal inhibitory concentration (IC50), calculation of cytotoxicity concentration 50% (CC50), selectivity index (SI), and Patchdock score. Among the tests, anidulafungin bears the lowest IC50 and highest Patchdock score. Although anidulafungin is classified as a pregnancy category C agent; however, combination therapy of anidulafungin with a viral RNA replication inhibitor could expand treatment options for ZIKV infection.


Subject(s)
Anidulafungin/pharmacology , Antiviral Agents/chemical synthesis , Pyrazines/pharmacology , RNA, Viral/drug effects , Zika Virus/drug effects , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Drug Synergism , Humans , Inhibitory Concentration 50 , Vero Cells , Virion/drug effects , Virus Attachment/drug effects , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
20.
Int J Biol Sci ; 17(14): 3786-3794, 2021.
Article in English | MEDLINE | ID: mdl-34671199

ABSTRACT

COVID-19, caused by a novel coronavirus, SARS-CoV-2, poses a serious global threat. It was first reported in 2019 in China and has now dramatically spread across the world. It is crucial to develop therapeutics to mitigate severe disease and viral spread. The receptor-binding domains (RBDs) in the spike protein of SARS-CoV and MERS-CoV have shown anti-viral activity in previous reports suggesting that this domain has high potential for development as therapeutics. To evaluate the potential antiviral activity of recombinant SARS-CoV-2 RBD proteins, we determined the RBD residues of SARS-CoV-2 using a homology search with RBD of SARS-CoV. For efficient expression and purification, the signal peptide of spike protein was identified and used to generate constructs expressing recombinant RBD proteins. Highly purified RBD protein fused with the Fc domain of human IgG showed potent anti-viral efficacy, which was better than that of a protein fused with a histidine tag. Intranasally pre-administrated RBD protein also inhibited the attachment of SARS-COV-2 to mouse lungs. These findings indicate that RBD protein could be used for the prevention and treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/therapeutic use , Virus Attachment/drug effects , Administration, Intranasal , Amino Acid Sequence , Animals , Binding Sites , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Mice, Inbred C57BL , Microbial Sensitivity Tests , Protein Domains , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...