Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
1.
J Med Virol ; 96(5): e29655, 2024 May.
Article in English | MEDLINE | ID: mdl-38727091

ABSTRACT

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Subject(s)
Coronavirus 229E, Human , Plasma Gases , Virus Inactivation , Humans , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/physiology , Virus Inactivation/drug effects , Plasma Gases/pharmacology , Cell Line , Porosity , Disinfection/methods , Stainless Steel
2.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38692139

ABSTRACT

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Subject(s)
Guanidine , Influenza A virus , RNA, Viral , SARS-CoV-2 , Specimen Handling , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Influenza A virus/drug effects , Influenza A virus/genetics , Guanidine/pharmacology , Guanidine/chemistry , RNA, Viral/genetics , Humans , Specimen Handling/methods , Genome, Viral , COVID-19/virology , COVID-19/diagnosis , Chlorocebus aethiops , Vero Cells , Virus Inactivation/drug effects , Animals , RNA Stability/drug effects , Containment of Biohazards , Guanidines/pharmacology , Guanidines/chemistry , Salts/pharmacology , Salts/chemistry
3.
Water Res ; 257: 121685, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728774

ABSTRACT

Water disinfection is undoubtedly regarded as a critical step in ensuring the water safety for human consumption, and ozone is widely used as a highly effective disinfectant for the control of pathogenic microorganisms in water. Although the diminished ozone efficiencies in complex water matrices have been widely reported, the specific extent to which individual components of matrix act on the virus inactivation by ozone remains unclear, and effective methodologies to predict the comprehensive effects of various factors are needed. In this study, the decoupled impact of the intricate water matrix on the ozone inactivation of viruses was systematically investigated and assessed from a simulative perspective. The concept of "equivalent ozone depletion rate constant" (k') was introduced to quantify the influence of different species, and a kinetic model was developed based on the k' values for simulating the ozone inactivation processes in complex matrix. The mechanisms through which diverse species influenced the ozone inactivation effectiveness were identified: 1) competition effects (k' = 105∼107 M-1s-1), including organic matters and reductive ions (SO32-, NO2-, and I-), which were the most influential species inhibiting the virus inactivation; 2) shielding effects (k' = 103∼104 M-1s-1), including Ca2+, Mg2+, and kaolin; 3) insignificant effects (k' = 0∼1 M-1s-1), including Cl-, SO42-, NO3-, NH4+, and Br-; 4) promotion effects (k' = ∼-103 M-1s-1), including CO32- and HCO3-. Prediction of ozone disinfection efficiency and evaluation of species contribution under complex aquatic matrices were successfully realized utilizing the model. The systematic understanding and methodologies developed in this research provide a reliable framework for predicting ozone inactivation efficiency under complex matrix, and a potential tool for accurate disinfectant dosage determination and interfering factors control in actual wastewater treatment processes.


Subject(s)
Disinfection , Ozone , Virus Inactivation , Wastewater , Ozone/pharmacology , Wastewater/virology , Virus Inactivation/drug effects , Disinfection/methods , Water Purification , Disinfectants/pharmacology , Models, Theoretical , Kinetics
4.
Water Res ; 256: 121536, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38631238

ABSTRACT

In drinking water applications, an ozone exposure (Ct) based framework has been historically used to validate ozone disinfection. However, significant viral inactivation can be achieved with little to no measurable ozone exposure. Additionally, ozone exposure depends on multiple water quality variables as well as the calculation/ozone measurement method used. In this study, we evaluated alternative ozone monitoring frameworks as well as the impact of water quality variables on ozone decay kinetics and virus/coliform inactivation. Here we show that both change in UV254 absorbance and applied O3:TOC were well correlated with viral inactivation and these frameworks were resilient to changes in water quality. Both increasing temperature (12-30 °C) and pH (5.5-8.4) was shown to significantly increase the ozone decay rate and decreased the resulting ozone exposure by as much as ∼90% in the case of pH. However, due to the increased reaction rate of ozone with viruses at elevated temperature and pH, there was only a minor impact (∼20% in the case of pH) in overall disinfection performance for a given O3:TOC. These frameworks were also considered for variable source water with TOC (5-11 mg/L) and TSS (1.2-5.8 mg/L). Change in UV254 absorbance or applied ozone dose (mg/L) were the strongest indicators of disinfection performance for source waters of variable TOC, however site-specific testing may be needed to apply this framework. Challenge testing with influent nitrite indicated that ozone disinfection performance is significantly impacted (>50% reduction in inactivation) in the presence of nitrite thus enforcing the importance of accounting for this value in the applied ozone dose. Multi-point ozone dissolution was investigated as an alternative ozone application method that may present a benefit with respect to overall disinfection performance especially if nitrite was present. Developing and validating these alternative monitoring frameworks and ozone application methods is imperative in water reuse applications where unnecessary elevated ozone exposure may lead to harmful byproduct formation.


Subject(s)
Disinfection , Ozone , Virus Inactivation , Water Purification , Ozone/pharmacology , Virus Inactivation/drug effects , Water Purification/methods , Disinfection/methods , Drinking Water/virology
5.
J Hosp Infect ; 147: 83-86, 2024 May.
Article in English | MEDLINE | ID: mdl-38490488

ABSTRACT

BACKGROUND: Respiratory viruses have been reported to infect the salivary glands and the throat, which are potential reservoirs for virus replication and transmission. Therefore, strategies to reduce the amount of infective virus particles in the oral mucous membranes could lower the risk of transmission. METHODS: The viral inactivation capacity of a plant-oil-based oral rinse (Salviathymol®) was evaluated in comparison with chlorhexidine (Chlorhexamed® FORTE) using a quantitative suspension test according to EN 14476. FINDINGS: Salviathymol efficiently inactivated severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), respiratory syncytial virus (RSV) and two influenza strains to undetectable levels. CONCLUSION: Salviathymol has potential as preventive measure to lower transmission of respiratory viruses.


Subject(s)
Mouthwashes , SARS-CoV-2 , Humans , Mouthwashes/pharmacology , SARS-CoV-2/drug effects , Plant Oils/pharmacology , Antiviral Agents/pharmacology , Virus Inactivation/drug effects , Respiratory Syncytial Viruses/drug effects , COVID-19/prevention & control
6.
Viruses ; 14(1)2022 01 08.
Article in English | MEDLINE | ID: mdl-35062314

ABSTRACT

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Photosensitizing Agents/pharmacology , Virus Inactivation/drug effects , Animals , Antiviral Agents/radiation effects , Cell Line , Cell Survival/drug effects , Cricetinae , Emodin/pharmacology , Emodin/radiation effects , Humans , Light , Photosensitizing Agents/radiation effects , Plant Extracts/pharmacology , Plant Extracts/radiation effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Virion/drug effects
7.
ACS Appl Mater Interfaces ; 14(4): 4892-4898, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35040619

ABSTRACT

This paper presents results of a study of a new cationic oligomer that contains end groups and a chromophore affording inactivation of SARS-CoV-2 by visible light irradiation in solution or as a solid coating on paper wipes and glass fiber filtration substrates. A key finding of this study is that the cationic oligomer with a central thiophene ring and imidazolium charged groups gives outstanding performance in both the killing of E. coli bacterial cells and inactivation of the virus at very short times. Our introduction of cationic N-methyl imidazolium groups enhances the light activation process for both E. coli and SARS-CoV-2 but dampens the killing of the bacteria and eliminates the inactivation of the virus in the dark. For the studies with this oligomer in solution at a concentration of 1 µg/mL and E. coli, we obtain 3 log killing of the bacteria with 10 min of irradiation with LuzChem cool white lights (mimicking indoor illumination). With the oligomer in solution at a concentration of 10 µg/mL, we observe 4 log inactivation (99.99%) in 5 min of irradiation and total inactivation after 10 min. The oligomer is quite active against E. coli on oligomer-coated paper wipes and glass fiber filter supports. The SARS-CoV-2 is also inactivated by oligomer-coated glass fiber filter papers. This study indicates that these oligomer-coated materials may be very useful as wipes and filtration materials.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/therapy , SARS-CoV-2/radiation effects , COVID-19/genetics , COVID-19/virology , Cations/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Humans , Light , Phototherapy , SARS-CoV-2/pathogenicity , Ultraviolet Rays , Virus Inactivation/drug effects , Virus Inactivation/radiation effects
8.
N Biotechnol ; 66: 36-45, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34626837

ABSTRACT

The COVID-19 pandemic has generated a major need for non-destructive and environmentally friendly disinfection methods. This work presents the development and testing of a disinfection process based on gaseous ozone for SARS-CoV-2-contaminated porous and non-porous surfaces. A newly developed disinfection chamber was used, equipped with a CeraPlas™ cold plasma generator that produces ozone during plasma ignition. A reduction of more than log 6 of infectious virus could be demonstrated for virus-contaminated cotton and FFP3 face masks as well as glass slides after exposure to 800 ppm ozone for 10-60 min, depending on the material. In contrast to other disinfectants, ozone can be produced quickly and cost-effectively, and its environmentally friendly breakdown product oxygen does not leave harmful residues. Disinfection with ozone could help to overcome delivery difficulties of personal protective equipment by enabling safe reuse with further applications, thereby reducing waste generation, and may allow regular disinfection of personal items with non-porous surfaces.


Subject(s)
Disinfection/methods , Ozone , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , Equipment Contamination , Masks/virology , Ozone/pharmacology , Porosity
9.
Transl Res ; 240: 64-86, 2022 02.
Article in English | MEDLINE | ID: mdl-34757194

ABSTRACT

Oncolytic virotherapy is a new and safe therapeutic strategy for cancer treatment. In our previous study, a new type of oncolytic herpes simplex virus type 2 (oHSV2) was constructed. Following the completion of a preclinical study, oHSV2 has now entered into clinical trials for the treatment of melanoma and other solid tumors (NCT03866525). Oncolytic viruses (OVs) are generally able to directly destroy tumor cells and stimulate the immune system to fight tumors. Natural killer (NK) cells are important components of the innate immune system and critical players against tumor cells. But the detailed interactions between oncolytic viruses and NK cells and these interaction effects on the antitumor immune response remain to be elucidated. In particular, the functions of activating surface receptors and checkpoint inhibitors on oHSV2-treated NK cells and tumor cells are still unknown. In this study, we found that UV-oHSV2 potently activates human peripheral blood mononuclear cells, leading to increased antitumor activity in vitro and in vivo. Further investigation indicated that UV-oHSV2-stimulated NK cells release IFN-γ via Toll-like receptor 2 (TLR2)/NF-κB signaling pathway and exert antitumor activity via TLR2. We found for the first time that the expression of a pair of checkpoint molecules, NKG2A (on NK cells) and HLA-E (on tumor cells), is upregulated by UV-oHSV2 stimulation. Anti-NKG2A and anti-HLA-E treatment could further enhance the antitumor effects of UV-oHSV2-stimulated NK92 cells in vitro and in vivo. As our oHSV2 clinical trial is ongoing, we expect that the combination therapy of oncolytic virus oHSV2 and anti-NKG2A/anti-HLA-E antibodies may have synergistic antitumor effects in our future clinical trials.


Subject(s)
Herpesvirus 2, Human/radiation effects , Immune Checkpoint Inhibitors/pharmacology , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/therapy , Oncolytic Viruses/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cytotoxicity, Immunologic/drug effects , Female , Herpesvirus 2, Human/drug effects , Histocompatibility Antigens Class I/metabolism , Humans , Interferon-gamma/metabolism , Killer Cells, Natural/drug effects , Mice, Inbred BALB C , Mice, Nude , NF-kappa B/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Oncolytic Viruses/drug effects , Signal Transduction/drug effects , Toll-Like Receptor 2/metabolism , Virus Inactivation/drug effects , HLA-E Antigens
10.
Sci Rep ; 11(1): 24318, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934121

ABSTRACT

The COVID-19 pandemic presents a unique challenge to the healthcare community due to the high infectivity rate and need for effective personal protective equipment. Zinc oxide nanoparticles have shown promising antimicrobial properties and are recognized as a safe additive in many food and cosmetic products. This work presents a novel nanocomposite synthesis approach, which allows zinc oxide nanoparticles to be grown within textile and face mask materials, including melt-blown polypropylene and nylon-cotton. The resulting nanocomposite achieves greater than 3 log10 reduction (≥ 99.9%) in coronavirus titer within a contact time of 10 min, by disintegrating the viral envelope. The new nanocomposite textile retains activity even after 100 laundry cycles and has been dermatologist tested as non-irritant and hypoallergenic. Various face mask designs were tested to improve filtration efficiency and breathability while offering antiviral protection, with Claros' design reporting higher filtration efficiency than surgical masks (> 50%) for particles ranged 200 nm to 5 µm in size.


Subject(s)
Masks/virology , Nanocomposites/toxicity , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , COVID-19/prevention & control , COVID-19/virology , Filtration/methods , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nylons/chemistry , Polypropylenes/chemistry , SARS-CoV-2/isolation & purification , Textiles/analysis , Zinc Oxide/chemistry
11.
Microbiol Spectr ; 9(3): e0109121, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34935417

ABSTRACT

Chemical methods of virus inactivation are used routinely to prevent viral transmission in both a personal hygiene capacity but also in at-risk environments like hospitals. Several virucidal products exist, including hand soaps, gels, and surface disinfectants. Resin acids, which can be derived from tall oil, produced from trees, have been shown to exhibit antibacterial activity. However, whether these products or their derivatives have virucidal activity is unknown. Here, we assessed the capacity of rosin soap to inactivate a panel of pathogenic mammalian viruses in vitro. We show that rosin soap can inactivate human enveloped viruses: influenza A virus (IAV), respiratory syncytial virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For IAV, rosin soap could provide a 100,000-fold reduction in infectivity. However, rosin soap failed to affect the nonenveloped encephalomyocarditis virus (EMCV). The inhibitory effect of rosin soap against IAV infectivity was dependent on its concentration but not on the incubation time or temperature. In all, we demonstrate a novel chemical inactivation method against enveloped viruses, which could be of use for preventing virus infections in certain settings. IMPORTANCE Viruses remain a significant cause of human disease and death, most notably illustrated through the current coronavirus disease 2019 (COVID-19) pandemic. Control of virus infection continues to pose a significant global health challenge to the human population. Viruses can spread through multiple routes, including via environmental and surface contamination, where viruses can remain infectious for days. Methods for inactivating viruses on such surfaces may help mitigate infection. Here, we present evidence identifying a novel virucidal product, rosin soap, which is produced from tall oil from coniferous trees. Rosin soap was able to rapidly and potently inactivate influenza virus and other enveloped viruses.


Subject(s)
Antiviral Agents/pharmacology , Resins, Plant/pharmacology , Soaps/pharmacology , Antiviral Agents/analysis , Influenza A virus/drug effects , Influenza A virus/growth & development , Plant Oils/analysis , Plant Oils/pharmacology , Resins, Plant/analysis , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Soaps/analysis , Virus Inactivation/drug effects
12.
Sci Rep ; 11(1): 23379, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34862448

ABSTRACT

A pathogen inactivation step during collection or processing of clinical samples has the potential to reduce infectious risks associated with diagnostic procedures. It is essential that these inactivation methods are demonstrated to be effective, particularly for non-traditional inactivation reagents or for commercial products where the chemical composition is undisclosed. This study assessed inactivation effectiveness of twenty-four next-generation (guanidine-free) nucleic acid extraction lysis buffers and twelve rapid antigen test buffers against SARS-CoV-2, the causative agent of COVID-19. These data have significant safety implications for SARS-CoV-2 diagnostic testing and support the design and evidence-based risk assessment of these procedures.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Serological Testing/methods , SARS-CoV-2/drug effects , Acetamides , Buffers , COVID-19/diagnosis , COVID-19/virology , Fluoroacetates , Guanidine/adverse effects , Humans , Virus Inactivation/drug effects
13.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884526

ABSTRACT

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material's viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


Subject(s)
Antiviral Agents/pharmacology , Chromium/pharmacology , Cobalt/pharmacology , Molybdenum/pharmacology , Printing, Three-Dimensional , Alloys , COVID-19 , Humans , Porosity , SARS-CoV-2/drug effects , Surface Properties , Virus Inactivation/drug effects
14.
Viruses ; 13(11)2021 11 02.
Article in English | MEDLINE | ID: mdl-34835013

ABSTRACT

Human papillomaviruses (HPV) are non-enveloped DNA viruses infecting cutaneous and mucosal squamous epithelia. Sexually transmitted HPV-types that are carcinogenic to humans such as HPV16 can induce cervical and other anogenital cancers. Virus transmission through fomites such as inadequately disinfected gynecological equipment is a further potential transmission route. Since HPV cannot be easily grown in cell culture, polyomavirus SV40 has been used as a surrogate virus when testing the virucidal activity of chemical disinfectants. So far, studies that have compared the virucidal activity of different disinfectants against HPV and SV40 are lacking. Here, we evaluated the susceptibility of HPV16 pseudovirus and SV40 to seven active biocidal substances using quantitative suspension tests. Ethanol, glutaraldehyde (GTA), dodecyldipropylentriamin (DPTA), and ortho-phthalaldehydes (OPA) were able to reduce the infectivity of HPV16 pseudovirus >99.99% after 5 min. In contrast, isopropanol, peracetic acid (PAA), and quaternary ammonium compounds with alkylamines (QAC) only led to a slight or no reduction in infectivity. Concerning SV40, only GTA (60 min contact time), PAA, and OPA had virus-inactivating effects. In conclusion, the virucidal activity of three out of seven disinfectants tested was different for HPV16 pseudovirus and SV40. In this study, SV40 was shown to be a reliable surrogate virus for HPV when testing isopropanol-, GTA-, QAC-, and OPA-based disinfectants.


Subject(s)
Alphapapillomavirus/drug effects , Disinfectants/pharmacology , Polyomavirus/drug effects , Virus Inactivation/drug effects , Disinfection/methods , Ethanol , HEK293 Cells , Human papillomavirus 16/drug effects , Humans , Papillomaviridae/drug effects , Public Health , Simian virus 40/drug effects
15.
ScientificWorldJournal ; 2021: 9342748, 2021.
Article in English | MEDLINE | ID: mdl-34712107

ABSTRACT

BACKGROUND: Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. METHOD: A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. RESULTS: The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5-2%), formaldehyde (0.7-1%), and povidone-iodine (0.1-0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. CONCLUSION: The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , SARS-CoV-2 , Virus Inactivation/drug effects , 2-Propanol/pharmacology , Animals , COVID-19/virology , Coronavirus, Canine/drug effects , Disinfection/methods , Ethanol/pharmacology , Formaldehyde/pharmacology , Gamma Rays , Glutaral/pharmacology , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Murine hepatitis virus/drug effects , Povidone-Iodine/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Sodium Hypochlorite/pharmacology , Transmissible gastroenteritis virus/drug effects , Ultraviolet Rays
16.
Nanotechnology ; 33(3)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34633302

ABSTRACT

Rapid and sustained disinfection of surfaces is necessary to check the spread of pathogenic microbes. The current study proposes a method of synthesis and use of copper nanoparticles (CuNPs) for contact disinfection of pathogenic microorganisms. Polyphenol stabilized CuNPs were synthesized by successive reductive disassembly and reassembly of copper phenolic complexes. Morphological and compositional characterization by transmission electron microscope (TEM), selected area diffraction and electron energy loss spectroscopy revealed monodispersed spherical (ϕ5-8 nm) CuNPs with coexisting Cu, Cu(I) and Cu (II) phases. Various commercial grade porous and non-porous substrates, such as, glass, stainless steel, cloth, plastic and silk were coated with the nanoparticles. Complete disinfection of 107copies of surrogate enveloped and non-enveloped viruses: bacteriophage MS2, SUSP2, phi6; and gram negative as well as gram positive bacteria:Escherichia coliandStaphylococcus aureuswas achieved on most substrates within minutes. Structural cell damage was further analytically confirmed by TEM. The formulation was well retained on woven cloth surfaces even after repeated washing, thereby revealing its promising potential for use in biosafe clothing. In the face of the current pandemic, the nanomaterials developed are also of commercial utility as an eco-friendly, mass producible alternative to bleach and alcohol based public space sanitizers used today.


Subject(s)
Copper/chemistry , Disinfectants/pharmacology , Disinfection/methods , Metal Nanoparticles/chemistry , Polyphenols/chemistry , Bacteria/classification , Bacteria/drug effects , Coated Materials, Biocompatible/pharmacology , Disinfectants/chemical synthesis , Disinfectants/chemistry , Microbial Sensitivity Tests , Virus Inactivation/drug effects , Viruses/classification , Viruses/drug effects
17.
ACS Appl Mater Interfaces ; 13(41): 48469-48477, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34623127

ABSTRACT

The COVID-19 pandemic highlighted the importance of developing surfaces and coatings with antiviral activity. Here, we present, for the first time, peptide-based assemblies that can kill viruses. The minimal inhibitory concentration (MIC) of the assemblies is in the range tens of micrograms per milliliter. This value is 2 orders of magnitude smaller than the MIC of metal nanoparticles. When applied on a surface, by drop casting, the peptide spherical assemblies adhere to the surface and form an antiviral coating against both RNA- and DNA-based viruses including coronavirus. Our results show that the coating reduced the number of T4 bacteriophages (DNA-based virus) by 3 log, compared with an untreated surface and 6 log, when compared with a stock solution. Importantly, we showed that this coating completely inactivated canine coronavirus (RNA-based virus). This peptide-based coating can be useful wherever sterile surfaces are needed to reduce the risk of viral transmission.


Subject(s)
Antiviral Agents/chemistry , Peptides/chemistry , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bacteriophages/drug effects , COVID-19/virology , Coronavirus/drug effects , Coronavirus/isolation & purification , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Dihydroxyphenylalanine/chemistry , Dog Diseases/drug therapy , Dog Diseases/virology , Dogs , Humans , Metal Nanoparticles/chemistry , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/isolation & purification , Virus Inactivation/drug effects , COVID-19 Drug Treatment
18.
Biocontrol Sci ; 26(3): 177-180, 2021.
Article in English | MEDLINE | ID: mdl-34556620

ABSTRACT

Ethanol is an effective disinfectant against the novel coronavirus SARS-CoV-2. However, its effective concentration has not been shown, and we therefore analyzed the effects of different concentrations of ethanol on SARS-CoV-2. When SARS-CoV-2 was treated with varying ethanol concentrations and examined for changes in infectivity, the ethanol concentration at which 99% of the infectious titers were reduced was 24.1% (w/w) [29.3% (v/v)]. For reference, ethanol susceptibility was also examined with other envelope viruses, including influenza virus, vesicular stomatitis virus in the family Rhabdoviridae, and Newcastle disease virus in the family Paramyxoviridae, and the 99% inhibitory concentrations were found to be 28.8%(w/w) [34.8% (v/v)], 24.0% (w/w) [29.2% (v/v)], and 13.3% (w/w) [16.4% (v/v)], respectively. Some differences from SARS-CoV-2 were observed, but the differences were not significant. It was concluded that ethanol at a concentration of 30%(w/w) [36.2% (v/v)] almost completely inactivates SARS-CoV-2.


Subject(s)
Disinfectants/pharmacology , Ethanol/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Disinfectants/analysis , Ethanol/analysis , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Virus Inactivation/drug effects , Viruses/drug effects , Viruses/growth & development
19.
Virus Res ; 305: 198555, 2021 11.
Article in English | MEDLINE | ID: mdl-34487766

ABSTRACT

Inactivated viral preparations are important resources in vaccine and antisera industry. Of the many vaccines that are being developed against COVID-19, inactivated whole-virus vaccines are also considered effective. ß-propiolactone (BPL) is a widely used chemical inactivator of several viruses. Here, we analyze various concentrations of BPL to effectively inactivate SARS-CoV-2 and their effects on the biochemical properties of the virion particles. BPL at 1:2000 (v/v) concentrations effectively inactivated SARS-CoV-2. However, higher BPL concentrations resulted in the loss of both protein content as well as the antigenic integrity of the structural proteins. Higher concentrations also caused substantial aggregation of the virion particles possibly resulting in insufficient inactivation, and a loss in antigenic potential. We also identify that the viral RNA content in the culture supernatants can be a direct indicator of their antigenic content. Our findings may have important implications in the vaccine and antisera industry during COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Vaccines/chemistry , Propiolactone/pharmacology , SARS-CoV-2/drug effects , Virion/drug effects , Virus Inactivation/drug effects , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Flocculation/drug effects , Humans , Immune Sera/chemistry , RNA, Viral/chemistry , RNA, Viral/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Vaccines, Inactivated , Vero Cells , Virion/chemistry , Virion/immunology
20.
J Phys Chem Lett ; 12(39): 9557-9563, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34581569

ABSTRACT

Lipid-enveloped viruses, such as Ebola, influenza, or coronaviruses, are a major threat to human health. Ethanol is an efficient disinfectant that is widely used to inactivate these viruses and prevent their transmission. However, the interactions between ethanol and enveloped viruses leading to their inactivation are not yet fully understood. This study demonstrates the link between ethanol-induced viral inactivation and the nanostructural and chemical transformations of the model virus Phi6, an 85 nm diameter lipid-enveloped bacterial virus that is commonly used as surrogate for human pathogenic viruses. The virus morphology was investigated using small-angle X-ray scattering and dynamic light scattering and was related to its infectivity. The Phi6's surface chemistry was characterized by cryogenic X-ray photoelectron spectroscopy, and the modifications in protein structure were assessed by circular dichroism and fluorescence spectroscopy. Ethanol-triggered structural modifications were found in the lipid envelope, detaching from the protein capsid and forming coexisting nanostructures.


Subject(s)
Bacteriophage phi 6/chemistry , Ethanol/pharmacology , Virus Inactivation/drug effects , Bacteriophage phi 6/drug effects , Bacteriophage phi 6/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Circular Dichroism , Dynamic Light Scattering , Ethanol/chemistry , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...