Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.894
Filter
1.
Front Cell Infect Microbiol ; 14: 1388360, 2024.
Article in English | MEDLINE | ID: mdl-38841111

ABSTRACT

Background: Alphaviruses are a diverse group of pathogens that have garnered considerable attention due to their impact on human health. By investigating alphavirus receptors, researchers can elucidate viral entry mechanisms and gain important clues for the prevention and treatment of viral diseases. This study presents an in-depth analysis of the research progress made in the field of alphavirus receptors through bibliometric analysis. Methods: This study encompasses various aspects, including historical development, annual publication trends, author and cited-author analysis, institutional affiliations, global distribution of research contributions, reference analysis with strongest citation bursts, keyword analysis, and a detailed exploration of recent discoveries in alphavirus receptor research. Results: The results of this bibliometric analysis highlight key milestones in alphavirus receptor research, demonstrating the progression of knowledge in this field over time. Additionally, the analysis reveals current research hotspots and identifies emerging frontiers, which can guide future investigations and inspire novel therapeutic strategies. Conclusion: This study provides an overview of the state of the art in alphavirus receptor research, consolidating the existing knowledge and paving the way for further advancements. By shedding light on the significant developments and emerging areas of interest, this study serves as a valuable resource for researchers, clinicians, and policymakers engaged in combating alphavirus infections and improving public health.


Subject(s)
Alphavirus , Bibliometrics , Humans , Receptors, Virus/metabolism , Animals , Virus Internalization , Alphavirus Infections/virology , Biomedical Research/trends
2.
PLoS Pathog ; 20(6): e1012267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857290

ABSTRACT

HSV infects keratinocytes in the epidermis of skin via nectin-1. We established a human foreskin explant infection model to investigate HSV entry and spread. HSV1 entry could only be achieved by the topical application of virus via high density microarray projections (HD-MAPs) to the epidermis, which penetrated beyond one third of its thickness, simulating in vivo microtrauma. Rapid lateral spread of HSV1 to a mean of 13 keratinocytes wide occurred after 24 hours and free virus particles were observed between keratinocytes, consistent with an intercellular route of spread. Nectin-1 staining was markedly decreased in foci of infection in the epidermis and in the human keratinocyte HaCaT cell line. Nectin-1 was redistributed, at the protein level, in adjacent uninfected cells surrounding infection, inducible by CCL3, IL-8 (or CXCL8), and possibly CXCL10 and IL-6, thus facilitating spread. These findings provide the first insights into HSV1 entry and spread in human inner foreskin in situ.


Subject(s)
Chemokines , Foreskin , Herpes Simplex , Herpesvirus 1, Human , Keratinocytes , Nectins , Humans , Male , Keratinocytes/virology , Keratinocytes/metabolism , Foreskin/virology , Foreskin/cytology , Nectins/metabolism , Herpes Simplex/virology , Herpes Simplex/metabolism , Chemokines/metabolism , Herpesvirus 1, Human/physiology , Cell Adhesion Molecules/metabolism , Virus Internalization
3.
Cell Host Microbe ; 32(6): 945-946, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870904

ABSTRACT

In this issue of Cell Host & Microbe, Shang et al. identify murine neuropilin 1 as a host factor that binds reovirus particles, directing cell entry and contributing to viral dissemination and neurovirulence. This study highlights the reovirus model system to investigate host receptors and their significance in viral pathogenesis.


Subject(s)
Neurons , Neuropilin-1 , Reoviridae , Virus Internalization , Animals , Mice , Neurons/virology , Neuropilin-1/metabolism , Reoviridae/physiology , Reoviridae/genetics , Reoviridae/pathogenicity , Humans , Host-Pathogen Interactions , Reoviridae Infections/virology , Receptors, Virus/metabolism
4.
Proc Natl Acad Sci U S A ; 121(24): e2403389121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833471

ABSTRACT

Cell-cell fusion mediated by most paramyxovirus requires fusion protein (F) and attachment protein (H, HN, or G). The F protein is proteolytic cleaved to be fusogenically active. J paramyxovirus (JPV) has a unique feature in the family Paramyxoviridae: It encodes an integral membrane protein, syncytial protein (SP, formerly known as transmembrane protein, TM), which is essential in JPV-promoted cell-cell fusion (i.e., syncytial). In this study, we report that cleavage of SP is essential for its syncytial-promoting activity. We have identified the cleavage site of SP at amino acid residues 172 to 175, LKTG, and deletion of the "LKTG" residues abolished SP protein cleavage and its ability to promote cell-cell fusion. Replacing the cleavage site LKTG with a factor Xa protease cleavage site allows cleavage of the SP with factor Xa protease and restores its ability to promote cell-cell fusion. Furthermore, results from a hemifusion assay indicate that cleavage of SP plays an important role in the progression from the intermediate hemifusion state to a complete fusion. This work indicates that SP has many characteristics of a fusion protein. We propose that SP is likely a cell-cell fusion-promoting protein.


Subject(s)
Cell Fusion , Viral Fusion Proteins , Animals , Viral Fusion Proteins/metabolism , Chlorocebus aethiops , Proteolysis , Vero Cells , Virus Internalization , Factor Xa/metabolism , Humans , Cell Line
5.
Chem Biol Drug Des ; 103(6): e14566, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858134

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic has triggered a significant impact on global public health security, it is urgent to develop effective antiviral drugs. Previous studies have found that binding to ACE2 is a key step in the invasion of SARS-CoV-2 into host cells, so virus invasion can be inhibited by blocking ACE2, but there are few reports on this kind of specific inhibitor. Our previous study found that Harringtonine (HT) can inhibit the entry of SARS-CoV-2 spike pseudovirus into ACE2h cells, but its relatively high cytotoxicity limits its further development. Amino acid modification of the active components can increase their solubility and reduce their cytotoxicity. Therefore, in this study, seven new derivatives were synthesized by amino acid modification of its core structure Cephalotaxine. The target compounds were evaluated by cell viability assay and the SARS-CoV-2 spike pseudovirus entry assay. Compound CET-1 significantly inhibited the entry of pseudovirus into ACE2h cells and showed less cytotoxicity than HT. Molecular docking results showed that CET-1 could bind TYR83, an important residue of ACE2, just like HT. In conclusion, our study provided a novel compound with more potential activity and lower toxicity than HT on inhibiting the SARS-CoV-2 spike pseudovirus infection, which makes it possible to be a lead compound as an antiviral drug in the future.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , Homoharringtonine , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Homoharringtonine/pharmacology , Homoharringtonine/chemistry , Amino Acids/chemistry , Amino Acids/pharmacology , Cell Survival/drug effects , Virus Internalization/drug effects , COVID-19/virology
6.
J Med Virol ; 96(6): e29730, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860570

ABSTRACT

Hantaan virus (HTNV) infection can cause hemorrhagic fever with renal syndrome (HFRS) in humans, and currently, there are no long-standing protective vaccines or specific antivirals available. Guanylate-binding protein 1 (GBP1) is an interferon-stimulated gene that defends against various pathogen infections. However, the function of GBP1 in HTNV infection remains unknown. Here, we describe how GBP1 prevents HTNV infection by obstructing virus entry. We found that HTNV infection induced GBP1 expression and that overexpression of GBP1 inhibited HTNV infection, while knockout of GBP1 had the opposite effect. Interestingly, GBP1 did not affect interferon (IFN) signaling during HTNV infection. Instead, GBP1 prevented HTNV from entering cells through clathrin-mediated endocytosis (CME). We also discovered that GBP1 specifically interacted with actin but not dynamin 2 (DNM2) and made it difficult for DNM2 to be recruited by actin, which may account for the suppression of CME during HTNV infection. These findings establish an antiviral role for GBP1 in inhibiting HTNV infection and help us better understand how GBP1 regulates HTNV entry and could potentially aid in developing treatments for this virus.


Subject(s)
Endocytosis , GTP-Binding Proteins , Hantaan virus , Virus Internalization , Hantaan virus/physiology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Humans , Actins/metabolism , Host-Pathogen Interactions , Hemorrhagic Fever with Renal Syndrome/virology , Animals , Dynamin II/metabolism , Dynamin II/genetics , HEK293 Cells , Cell Line
7.
Nat Commun ; 15(1): 4906, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851803

ABSTRACT

Various low-density lipoprotein receptors (LPRs) have been identified as entry factors for alphaviruses, and structures of the corresponding virion-receptor complexes have been determined. Here, we analyze the similarities and differences in the receptor binding modes of multiple alphaviruses to understand their ability to infect a wide range of hosts. We further discuss the challenges associated with the development of broad-spectrum treatment strategies against a diverse range of alphaviruses.


Subject(s)
Alphavirus , Antiviral Agents , Receptors, LDL , Virus Internalization , Animals , Humans , Alphavirus/drug effects , Alphavirus/physiology , Alphavirus/genetics , Alphavirus Infections/drug therapy , Alphavirus Infections/virology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Protein Binding , Receptors, LDL/metabolism , Receptors, LDL/genetics , Receptors, Virus/metabolism , Receptors, Virus/chemistry , Virion/metabolism , Virus Internalization/drug effects
8.
J Nanobiotechnology ; 22(1): 304, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822339

ABSTRACT

Nanobodies, single-domain antibodies derived from variable domain of camelid or shark heavy-chain antibodies, have unique properties with small size, strong binding affinity, easy construction in versatile formats, high neutralizing activity, protective efficacy, and manufactural capacity on a large-scale. Nanobodies have been arisen as an effective research tool for development of nanobiotechnologies with a variety of applications. Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, have caused serious outbreaks or a global pandemic, and continue to post a threat to public health worldwide. The viral spike (S) protein and its cognate receptor-binding domain (RBD), which initiate viral entry and play a critical role in virus pathogenesis, are important therapeutic targets. This review describes pathogenic human CoVs, including viral structures and proteins, and S protein-mediated viral entry process. It also summarizes recent advances in development of nanobodies targeting these CoVs, focusing on those targeting the S protein and RBD. Finally, we discuss potential strategies to improve the efficacy of nanobodies against emerging SARS-CoV-2 variants and other CoVs with pandemic potential. It will provide important information for rational design and evaluation of therapeutic agents against emerging and reemerging pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use , Single-Domain Antibodies/chemistry , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , COVID-19/immunology , COVID-19/therapy , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Virus Internalization/drug effects , Pandemics , Betacoronavirus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use
9.
Nat Commun ; 15(1): 4542, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806525

ABSTRACT

The Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging pathogen of the Orthonairovirus genus that can cause severe and often lethal hemorrhagic diseases in humans. CCHFV has a broad tropism and can infect a variety of species and tissues. Here, by using gene silencing, blocking antibodies or soluble receptor fragments, we identify the low-density lipoprotein receptor (LDL-R) as a CCHFV entry factor. The LDL-R facilitates binding of CCHFV particles but does not allow entry of Hazara virus (HAZV), another member of the genus. In addition, we show that apolipoprotein E (apoE), an exchangeable protein that mediates LDL/LDL-R interaction, is incorporated on CCHFV particles, though not on HAZV particles, and enhances their specific infectivity by promoting an LDL-R dependent entry. Finally, we show that molecules that decrease LDL-R from the surface of target cells could inhibit CCHFV infection. Our study highlights that CCHFV takes advantage of a lipoprotein receptor and recruits its natural ligand to promote entry into cells.


Subject(s)
Apolipoproteins E , Hemorrhagic Fever Virus, Crimean-Congo , Receptors, LDL , Virus Internalization , Humans , Receptors, LDL/metabolism , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Animals , HEK293 Cells , Chlorocebus aethiops , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever, Crimean/metabolism , Virion/metabolism , Vero Cells
10.
J Med Virol ; 96(6): e29712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38808555

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused severe intestinal diseases in pigs. It originates from bat coronaviruses HKU2 and has a potential risk of cross-species transmission, raising concerns about its zoonotic potential. Viral entry-related host factors are critical determinants of susceptibility to cells, tissues, or species, and remain to be elucidated for SADS-CoV. Type II transmembrane serine proteases (TTSPs) family is involved in many coronavirus infections and has trypsin-like catalytic activity. Here we examine all 18 members of the TTSPs family through CRISPR-based activation of endogenous protein expression in cells, and find that, in addition to TMPRSS2 and TMPRSS4, TMPRSS13 significantly facilitates SADS-CoV infection. This is confirmed by ectopic expression of TMPRSS13, and specific to trypsin-dependent SADS-CoV. Infection with pseudovirus bearing SADS-CoV spike protein indicates that TMPRSS13 acts at the entry step and is sensitive to serine protease inhibitor Camostat. Moreover, both human and pig TMPRSS13 are able to enhance the cell-cell membrane fusion and cleavage of spike protein. Overall, we demonstrate that TMPRSS13 is another host serine protease promoting the membrane-fusion entry of SADS-CoV, which may expand its host tropism by using diverse TTSPs.


Subject(s)
Membrane Proteins , Serine Endopeptidases , Virus Internalization , Animals , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Swine , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Alphacoronavirus/genetics , Alphacoronavirus/physiology , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Gabexate/analogs & derivatives , Gabexate/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , HEK293 Cells , Cell Line , Chlorocebus aethiops , Swine Diseases/virology , Esters , Guanidines
11.
Proc Natl Acad Sci U S A ; 121(23): e2407437121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814864

ABSTRACT

The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.


Subject(s)
COVID-19 , Immunity, Innate , SARS-CoV-2 , Serine Endopeptidases , Virus Internalization , SARS-CoV-2/immunology , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , Humans , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Virus Replication , Animals , Endocytosis , HEK293 Cells , Chlorocebus aethiops , Cytology
12.
Biomed Pharmacother ; 175: 116726, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754263

ABSTRACT

New therapies to treat or prevent viral infections are essential, as recently observed during the COVID-19 pandemic. Here, we propose a therapeutic strategy based on monoclonal antibodies that block the specific interaction between the host receptor Siglec-1/CD169 and gangliosides embedded in the viral envelope. Antibodies are an excellent option for treating infectious diseases based on their high specificity, strong targeting affinity, and relatively low toxicity. Through a process of humanization, we optimized monoclonal antibodies to eliminate sequence liabilities and performed biophysical characterization. We demonstrated that they maintain their ability to block viral entry into myeloid cells. These molecular improvements during the discovery stage are key if we are to maximize efforts to develop new therapeutic strategies. Humanized monoclonal antibodies targeting CD169 provide new opportunities in the treatment of infections caused by ganglioside-containing enveloped viruses, which pose a constant threat to human health. In contrast with current neutralizing antibodies that bind antigens on the infectious particle, our antibodies can prevent several types of enveloped viruses interacting with host cells because they target the host CD169 protein, thus becoming a potential pan-antiviral therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , Antiviral Agents , Sialic Acid Binding Ig-like Lectin 1 , Sialic Acid Binding Ig-like Lectin 1/immunology , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Animals , COVID-19 Drug Treatment , Virus Internalization/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/drug effects
13.
Eur J Med Chem ; 272: 116465, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718623

ABSTRACT

Vector-borne diseases, constituting over 17 % of infectious diseases, are caused by parasites, viruses, and bacteria, and their prevalence is shaped by environmental and social factors. Dengue virus (DENV) and Zika virus (ZIKV), some of the most prevalent infectious agents of this type of diseases, are transmitted by mosquitoes belonging to the genus Aedes. The highest prevalence is observed in tropical regions, inhabited by around 3 billion people. DENV infects millions of people annually and constitutes an additional sanitary challenge due to the circulation of four serotypes, which has complicated vaccine development. ZIKV causes large outbreaks globally and its infection is known to lead to severe neurological diseases, including microcephaly in newborns. Besides, not only mosquito control programs have proved to be not totally effective, but also, no antiviral drugs have been developed so far. The envelope protein (E) is a major component of DENV and ZIKV virion surface. This protein plays a key role during the virus cell entry, constituting an attractive target for the development of antiviral drugs. Our previous studies have identified two pyrimidine analogs (3e and 3h) as inhibitors; however, their activity was found to be hindered by their low water solubility. In this study, we performed a low-throughput antiviral screening, revealing compound 16a as a potent DENV-2 and ZIKV inhibitor (EC50 = 1.4 µM and 2.4 µM, respectively). This work was aimed at designing molecules with improved selectivity and pharmacokinetic properties, thus advancing the antiviral efficacy of compounds for potential therapeutic use.


Subject(s)
Antiviral Agents , Dengue Virus , Drug Discovery , Pyrimidines , Zika Virus , Zika Virus/drug effects , Dengue Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Animals , Molecular Structure , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Virus Internalization/drug effects , Chlorocebus aethiops , Vero Cells
14.
Nat Microbiol ; 9(6): 1417-1426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783022

ABSTRACT

Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , RNA, Viral , Ebolavirus/genetics , Ebolavirus/physiology , Humans , Hemorrhagic Fever, Ebola/virology , RNA, Viral/metabolism , RNA, Viral/genetics , Virus Replication , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Assembly , Virus Internalization , Genome, Viral , Animals , Virion/metabolism , Virion/genetics , Host-Pathogen Interactions
15.
Arch Virol ; 169(6): 122, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753071

ABSTRACT

Coronavirus disease 2019 (COVID-19) is still causing hospitalization and death, and vaccination appears to become less effective with each emerging variant. Spike, non-spike, and other possible unrecognized mutations have reduced the efficacy of recommended therapeutic approaches, including monoclonal antibodies, plasma transfusion, and antivirals. SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) and probably dipeptidyl peptidase 4 (DPP-4) to initiate the process of endocytosis by employing host proteases such as transmembrane serine protease-2 (TMPRSS-2) and ADAM metallopeptidase domain 17 (ADAM17). Spironolactone reduces the amount of soluble ACE2 and antagonizes TMPRSS-2 and ADAM17. DPP-4 inhibitors play immunomodulatory roles and may block viral entry. The efficacy of treatment with a combination of spironolactone and DPP-4 inhibitors does not appear to be affected by viral mutations. Therefore, the combination of spironolactone and DPP-4 inhibitors might improve the clinical outcome for COVID-19 patients by decreasing the efficiency of SARS-CoV-2 entry into cells and providing better anti-inflammatory, antiproliferative, and antifibrotic effects than those achieved using current therapeutic approaches such as antivirals and monoclonal antibodies.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Dipeptidyl-Peptidase IV Inhibitors , SARS-CoV-2 , Spironolactone , Humans , Spironolactone/therapeutic use , Spironolactone/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , COVID-19/virology , Virus Internalization/drug effects , Drug Therapy, Combination , Dipeptidyl Peptidase 4/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Serine Endopeptidases
16.
Arch Virol ; 169(6): 121, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753119

ABSTRACT

Previous studies have demonstrated the relevance of several soluble molecules in the pathogenesis of dengue. In this regard, a possible role for angiotensin II (Ang II) in the pathophysiology of dengue has been suggested by the observation of a blockade of Ang II in patients with dengue, increased expression of molecules related to Ang II production in the plasma of dengue patients, increased expression of circulating cytokines and soluble molecules related to the action of Ang II, and an apparent relationship between DENV, Ang II effects, and miRNAs. In addition, in ex vivo experiments, the blockade of Ang II AT1 receptor and ACE-1 (angiotensin converting enzyme 1), both of which are involved in Ang II production and its function, inhibits infection of macrophages by DENV, suggesting a role of Ang II in viral entry or in intracellular viral replication of the virus. Here, we discuss the possible mechanisms of Ang II in the entry and replication of DENV. Ang II has the functions of increasing the expression of DENV entry receptors, creation of clathrin-coated vesicles, and increasing phagocytosis, all of which are involved in DENV entry. This hormone also modulates the expression of the Rab5 and Rab7 proteins, which are important in the endosomal processing of DENV during viral replication. This review summarizes the data related to the possible involvement of Ang II in the entry of DENV into cells and its replication.


Subject(s)
Angiotensin II , Dengue Virus , Virus Internalization , Virus Replication , Angiotensin II/metabolism , Humans , Dengue Virus/physiology , Dengue Virus/genetics , Animals , Dengue/virology , Dengue/metabolism
17.
Int J Biol Macromol ; 270(Pt 2): 132408, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754683

ABSTRACT

Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious virus that causes Porcine Epidemic Diarrhea (PED). This enteric disease results in high mortality rates in piglets, leading to significant financial losses in the pig industry. However, vaccines cannot provide sufficient protection against epidemic strains. Spike (S) protein exposed on the surface of virion mediates PEDV entry into cells. Our findings imply that matrine (MT), a naturally occurring alkaloid, inhibits PEDV infection targeting S protein of virions and biological process of cells. The GLY434 residue in the autodocking site of the S protein and MT conserved based on sequence comparison. This study provides a comprehensive analysis of viral attachment, entry, and virucidal effects to investigate how that MT inhibits virus replication. MT inhibits PEDV attachment and entry by targeting S protein. MT was added to cells before, during, or after infection, it exhibits anti-PEDV activities and viricidal effects. Network pharmacology focuses on addressing causal mechanisms rather than just treating symptoms. We identified the key genes and screened the cell apoptosis involved in the inhibition of MT on PEDV infection in network pharmacology. MT significantly promotes cell apoptosis in PEDV-infected cells to inhibit PEDV infection by activating the MAPK signaling pathway. Collectively, we provide the biological foundations for the development of single components of traditional Chinese medicine to inhibit PEDV infection and spread.


Subject(s)
Alkaloids , Antiviral Agents , Apoptosis , MAP Kinase Signaling System , Matrines , Porcine epidemic diarrhea virus , Quinolizines , Spike Glycoprotein, Coronavirus , Quinolizines/pharmacology , Quinolizines/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Animals , Porcine epidemic diarrhea virus/drug effects , Apoptosis/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , MAP Kinase Signaling System/drug effects , Chlorocebus aethiops , Vero Cells , Swine , Virus Replication/drug effects , Virus Internalization/drug effects
18.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727305

ABSTRACT

BACKGROUND: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS: Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS: TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS: These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.


Subject(s)
Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Signal Transduction , Thapsigargin , Tunicamycin , Unfolded Protein Response , Humans , Thapsigargin/pharmacology , Unfolded Protein Response/drug effects , Tunicamycin/pharmacology , Apoptosis/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Endoplasmic Reticulum Stress/drug effects , COVID-19/virology , COVID-19/metabolism , Virus Internalization/drug effects
19.
J Virol ; 98(6): e0043424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38690875

ABSTRACT

The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.


Subject(s)
Antiviral Agents , Enterovirus D, Human , Toll-Like Receptor 7 , Virus Replication , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Humans , Virus Replication/drug effects , Enterovirus D, Human/drug effects , Antiviral Agents/pharmacology , Indoles/pharmacology , Enterovirus Infections/virology , Immunity, Innate/drug effects , Cell Line , Virus Internalization/drug effects , Pteridines
20.
J Virol ; 98(6): e0053124, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38709106

ABSTRACT

Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE: The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Camelids, New World , Coronavirus Infections , Coronavirus OC43, Human , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Viral Load , Animals , Single-Domain Antibodies/immunology , Mice , Antibodies, Neutralizing/immunology , Coronavirus OC43, Human/immunology , Humans , Antibodies, Viral/immunology , Camelids, New World/immunology , Spike Glycoprotein, Coronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Female , Epitopes/immunology , Crystallography, X-Ray , Virus Internalization/drug effects , Disease Models, Animal , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...