Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.620
Filter
1.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Article in English | MEDLINE | ID: mdl-38725448

ABSTRACT

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Subject(s)
Antiviral Agents , Heme Oxygenase-1 , Herpesviridae Infections , NF-E2-Related Factor 2 , Oxidative Stress , Rutin , Signal Transduction , Rutin/pharmacology , Rutin/therapeutic use , Animals , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Mice , Herpesviridae Infections/drug therapy , Antiviral Agents/pharmacology , Virus Replication/drug effects , Disease Models, Animal , Antioxidants/pharmacology , Cell Line , Viral Load/drug effects , Horses , Female , Membrane Proteins
2.
Vet Q ; 44(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712855

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Lactams , Leucine/analogs & derivatives , Plant Extracts , Sulfonic Acids , Vigna , Coronavirus, Feline/drug effects , Antiviral Agents/pharmacology , Animals , Plant Extracts/pharmacology , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Vigna/chemistry , Virus Replication/drug effects , Cell Line
3.
Biomolecules ; 14(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38785952

ABSTRACT

Enterovirus 71 (EV71), a typical representative of unenveloped RNA viruses, is the main pathogenic factor responsible for hand, foot, and mouth disease (HFMD) in infants. This disease seriously threatens the health and lives of humans worldwide, especially in the Asia-Pacific region. Numerous animal antimicrobial peptides have been found with protective functions against viruses, bacteria, fungi, parasites, and other pathogens, but there are few studies on the use of scorpion-derived antimicrobial peptides against unenveloped viruses. Here, we investigated the antiviral activities of scorpion venom antimicrobial peptide BmKn2 and five derivatives, finding that BmKn2 and its derivative BmKn2-T5 exhibit a significant inhibitory effect on EV71. Although both peptides exhibit characteristics typical of amphiphilic α-helices in terms of their secondary structure, BmKn2-T5 displayed lower cellular cytotoxicity than BmKn2. BmKn2-T5 was further found to inhibit EV71 in a dose-dependent manner in vitro. Moreover, time-of-drug-addition experiments showed that BmKn2-T5 mainly restricts EV71, but not its virion or replication, at the early stages of the viral cycle. Interestingly, BmKn2-T5 was also found to suppress the replication of the enveloped viruses DENV, ZIKV, and HSV-1 in the early stages of the viral cycle, which suggests they may share a common early infection step with EV71. Together, the results of our study identified that the scorpion-derived antimicrobial peptide BmKn2-T5 showed valuable antiviral properties against EV71 in vitro, but also against other enveloped viruses, making it a potential new candidate therapeutic molecule.


Subject(s)
Antimicrobial Peptides , Antiviral Agents , Enterovirus A, Human , Scorpion Venoms , Virus Replication , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Enterovirus A, Human/drug effects , Humans , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Animals , Virus Replication/drug effects , Chlorocebus aethiops , Vero Cells
4.
J Med Virol ; 96(5): e29669, 2024 May.
Article in English | MEDLINE | ID: mdl-38773784

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.


Subject(s)
DNA, Circular , Furocoumarins , Hepatitis B Surface Antigens , Hepatitis B virus , Transcription, Genetic , Furocoumarins/pharmacology , Humans , Animals , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hep G2 Cells , Mice , DNA, Circular/genetics , DNA, Circular/metabolism , Transcription, Genetic/drug effects , Antiviral Agents/pharmacology , DNA, Viral , Molecular Docking Simulation , Virus Replication/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Disease Models, Animal , Promoter Regions, Genetic
5.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776389

ABSTRACT

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Subject(s)
Antiviral Agents , Prodrugs , SARS-CoV-2 , Animals , SARS-CoV-2/drug effects , Prodrugs/pharmacology , Prodrugs/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Mice , Administration, Oral , Chlorocebus aethiops , Vero Cells , COVID-19 Drug Treatment , COVID-19/virology , Virus Replication/drug effects , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleosides/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Disease Models, Animal
6.
Sci Rep ; 14(1): 10852, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38741006

ABSTRACT

Hematopoietic stem-cell (HSC) transplantation using a donor with a homozygous mutation in the HIV co-receptor CCR5 (CCR5Δ32/Δ32) holds great promise as a cure for HIV-1. Previously, there were three patients that had been reported to be completely cured from HIV infection by this approach. However, finding a naturally suitable Human Leukocyte Antigen (HLA)-matched homozygous CCR5Δ32 donor is very difficult. The prevalence of this allele is only 1% in the Caucasian population. Therefore, additional sources of CCR5Δ32/Δ32 HSCs are required. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one method to mediate CCR5 knockout in HSCs that has been successfully employed as a gene editing tool in clinical trials. Additional anti-HIV-1 strategies are still required for broad-spectrum inhibition of HIV-1 replication. Here in this study, we combined an additional anti-HIV-1 therapy, which is C46, a cell membrane-anchored HIV-1 fusion inhibitor with the CRISPR/Cas9 mediated knockout CCR5. The combined HIV-1 therapeutic genes were investigated for the potential prevention of both CCR5 (R5)- and CXCR4 (X4)-tropic HIV-1 infections in the MT4CCR5 cell line. The combinatorial CRISPR/Cas9 therapies were superior compared to single method therapy for achieving the HIV-1 cure strategy and shows potential for future applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , HIV Fusion Inhibitors , HIV Infections , HIV-1 , Receptors, CCR5 , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Gene Editing/methods , Humans , HIV-1/genetics , HIV-1/drug effects , HIV Infections/genetics , HIV Infections/virology , HIV Infections/therapy , HIV Fusion Inhibitors/pharmacology , Cell Line , Virus Replication/drug effects , Recombinant Fusion Proteins
7.
J Immunol Res ; 2024: 4722047, 2024.
Article in English | MEDLINE | ID: mdl-38745751

ABSTRACT

Hepatitis B virus (HBV) infection is a major global health issue and ranks among the top causes of liver cirrhosis and hepatocellular carcinoma. Although current antiviral medications, including nucleot(s)ide analogs and interferons, could inhibit the replication of HBV and alleviate the disease, HBV cannot be fully eradicated. The development of cellular and animal models for HBV infection plays an important role in exploring effective anti-HBV medicine. During the past decades, advancements in several cell culture systems, such as HepG2.2.15, HepAD38, HepaRG, hepatocyte-like cells, and primary human hepatocytes, have propelled the research in inhibiting HBV replication and expression and thus enriched our comprehension of the viral life cycle and enhancing antiviral drug evaluation efficacy. Mouse models, in particular, have emerged as the most extensively studied HBV animal models. Additionally, the present landscape of HBV therapeutics research now encompasses a comprehensive assessment of the virus's life cycle, targeting numerous facets and employing a variety of immunomodulatory approaches, including entry inhibitors, strategies aimed at cccDNA, RNA interference technologies, toll-like receptor agonists, and, notably, traditional Chinese medicine (TCM). This review describes the attributes and limitations of existing HBV model systems and surveys novel advancements in HBV treatment modalities, which will offer deeper insights toward discovering potentially efficacious pharmaceutical interventions.


Subject(s)
Antiviral Agents , Disease Models, Animal , Hepatitis B virus , Hepatitis B , Virus Replication , Humans , Animals , Hepatitis B virus/physiology , Hepatitis B virus/drug effects , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B/immunology , Virus Replication/drug effects , Mice , Hepatocytes/virology
8.
Antiviral Res ; 226: 105899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705201

ABSTRACT

We recently developed compound FC-7269 for targeting the Molluscum contagiosum virus processivity factor (mD4) and demonstrated its ability to inhibit viral processive DNA synthesis in vitro and cellular infection of an mD4-dependent virus (Antiviral Res 211, 2023,105520). However, despite a thorough medicinal chemistry campaign we were unable to generate a potent second analog as a requisite for drug development. We overcame this impasse, by conjugating a short hydrophobic trivaline peptide to FC-7269 to produce FC-TriVal-7269 which significantly increased antiviral potency and reduced cellular toxicity.


Subject(s)
Antiviral Agents , Molluscum contagiosum virus , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Molluscum contagiosum virus/drug effects , Humans , Virus Replication/drug effects , Molluscum Contagiosum/drug therapy , Oligopeptides/pharmacology , Oligopeptides/chemistry , Animals , Cell Line
9.
Signal Transduct Target Ther ; 9(1): 125, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734691

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.


Subject(s)
COVID-19 , ErbB Receptors , Mitochondria , SARS-CoV-2 , Virus Replication , SARS-CoV-2/drug effects , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/drug effects , Humans , Animals , Mice , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Virus Replication/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Vero Cells , Chlorocebus aethiops , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Membrane Potential, Mitochondrial/drug effects , Oxidative Phosphorylation/drug effects , Signal Transduction/drug effects
10.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 375-379, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38733195

ABSTRACT

Hepatitis B virus (HBV) DNA integration occurs during the reverse transcription process of HBV replication, which develops in the early stages of HBV infection and accompanies the entire disease course. The integration of HBV DNA is detrimental to the attainment of clinical cure goals and also raises the risk of developing liver cancer. Theoretically, nucleos(t)ide analogs can reduce the synthesis of new double-stranded linear DNA, but there is no clearance function for hepatocytes that have already integrated HBV. Therefore, patients with serum HBV DNA-negative conversions still have the risk of developing liver cancer. As an immunomodulatory drug, interferon can not only inhibit viral replication but also inhibit or even eliminate existing clonally amplified hepatocytes carrying integrated HBV DNA fragments. However, there are currently few studies on the effects of nucleos(t)ide analogues and interferon therapy on HBV DNA integration. Thus, large-scale clinical studies are urgently needed for further clarification.


Subject(s)
Antiviral Agents , DNA, Viral , Hepatitis B virus , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Virus Integration , Hepatitis B/drug therapy , Hepatitis B/virology , Virus Replication/drug effects , Interferons/therapeutic use
11.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 318-324, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38733186

ABSTRACT

Objective: To explore the antiviral activity of the small-molecule compound AM679 in hepatitis B virus (HBV) replication and infection cell models. Methods: The positive regulatory effect of AM679 on EFTUD2 expression was validated by qPCR and Western blotting. HepAD38 and HepG2-NTCP cells were treated with AM679 (0.5, 1, and 2 nmol/L). Negative control, positive control, and AM679 combined with the entecavir group were set up. HBV DNA intra-and extracellularly, as well as the expression levels of intracellular HBV total RNAs and 3.5kb-RNA changes, were detected with qPCR. Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) levels were measured in the cell supernatant by an enzyme-linked immunosorbent assay (ELISA). The t-test method was used for the statistical analysis of the mean difference between groups. Results: EFTUD2 mRNA and protein expression levels were significantly increased in HepAD38 and HepG2-NTCP cells following AM679 treatment, with a statistically significant difference (P < 0.001). Intra-and extracellular indicators such as HBV DNA, HBV RNAs, HBV 3.5kb-RNA, HBsAg, and HBeAg were decreased to varying degrees in both cell models, and the decrease in these indicators was more pronounced with the increase in AM679 concentration and prolonged treatment duration, while the combined use of AM679 and entecavir had a more significant antiviral effect. The HBV DNA inhibition rates in the supernatant of HepAD38 cells with the use of 2 nmol/L AM679 were 21% and 48% on days three and nine, respectively. The AM679 combined with the ETV treatment group had the most significant inhibitory effect (62%), with a P < 0.01. More active HBV replication was observed after silencing EFTUD2, while the antiviral activity of AM679 was significantly weakened. Conclusion: AM679 exerts anti-HBV activity in vitro by targeting the regulation of EFTUD2 expression.


Subject(s)
Antiviral Agents , Guanine/analogs & derivatives , Hepatitis B virus , Virus Replication , Hepatitis B virus/drug effects , Humans , Antiviral Agents/pharmacology , Virus Replication/drug effects , Hep G2 Cells , Hepatitis B Surface Antigens/metabolism , Hepatitis B e Antigens/metabolism , DNA, Viral
12.
Pak J Pharm Sci ; 37(1): 107-113, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741406

ABSTRACT

Entecavir, an effective anti-hepatitis B drug with low resistance rate, was designed as sustained-release micro spheres in our previous study. Here, we aimed to reveal the drug-release mechanism by observing the drug distribution and degradation behavior of poly (lactic-co-glycolic acid) and to investigate the pharmacodynamics of entecavir micro spheres. Raman spectroscopy was used to analyze the distribution of active pharmaceutical ingredients in the micro spheres. The results showed that there was little entecavir near the micro sphere surface. With increasing micro sphere depth, the drug distribution gradually increased and larger-size entecavir crystals were mainly distributed near the spherical center. The degradation behavior of poly (lactic-co-glycolic acid) was investigated using gel permeation chromatography. Changes in poly (lactic-co-glycolic acid) molecular weights during micro sphere degradation revealed that dissolution dominated the release process, which proved our previous research results. Pharmacodynamics studies on transgenic mice indicated that the anti-hepatitis B virus replication effect was maintained for 42 days after a single injection of entecavir micro spheres, similar to the effect of daily oral administration of entecavir tablets for 28 days. The entecavir micro spheres prepared in this study had a good anti-hepatitis B virus replication effect and it is expected to be used in anti hepatitis B virus treatment against hepatitis B virus.


Subject(s)
Antiviral Agents , Guanine , Hepatitis B virus , Polylactic Acid-Polyglycolic Acid Copolymer , Guanine/pharmacology , Guanine/analogs & derivatives , Guanine/pharmacokinetics , Animals , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hepatitis B virus/drug effects , Drug Liberation , Mice, Transgenic , Mice , Virus Replication/drug effects , Microspheres , Delayed-Action Preparations , Hepatitis B/drug therapy , Particle Size , Polyglycolic Acid/chemistry , Spectrum Analysis, Raman , Lactic Acid
13.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732151

ABSTRACT

The influenza A virus nonstructural protein 1 (NS1), which is crucial for viral replication and immune evasion, has been identified as a significant drug target with substantial potential to contribute to the fight against influenza. The emergence of drug-resistant influenza A virus strains highlights the urgent need for novel therapeutics. This study proposes a combined theoretical criterion for the virtual screening of molecular libraries to identify candidate NS1 inhibitors. By applying the criterion to the ZINC Natural Product database, followed by ligand-based virtual screening and molecular docking, we proposed the most promising candidate as a potential NS1 inhibitor. Subsequently, the selected natural compound was experimentally evaluated, revealing measurable virus replication inhibition activity in cell culture. This approach offers a promising avenue for developing novel anti-influenza agents targeting the NS1 protein.


Subject(s)
Antiviral Agents , Biological Products , Molecular Docking Simulation , Viral Nonstructural Proteins , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Biological Products/pharmacology , Biological Products/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Influenza A virus/drug effects , Animals , Madin Darby Canine Kidney Cells , Dogs
14.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732202

ABSTRACT

Acquiring resistance against antiviral drugs is a significant problem in antimicrobial therapy. In order to identify novel antiviral compounds, the antiviral activity of eight plants indigenous to the southern region of Hungary against herpes simplex virus-2 (HSV-2) was investigated. The plant extracts and the plant compound carnosic acid were tested for their effectiveness on both the extracellular and intracellular forms of HSV-2 on Vero and HeLa cells. HSV-2 replication was measured by a direct quantitative PCR (qPCR). Among the tested plant extracts, Salvia rosmarinus (S. rosmarinus) exhibited a 90.46% reduction in HSV-2 replication at the 0.47 µg/mL concentration. Carnosic acid, a major antimicrobial compound found in rosemary, also demonstrated a significant dose-dependent inhibition of both extracellular and intracellular forms of HSV-2. The 90% inhibitory concentration (IC90) of carnosic acid was between 25 and 6.25 µg/mL. Proteomics and high-resolution respirometry showed that carnosic acid suppressed key ATP synthesis pathways such as glycolysis, citrate cycle, and oxidative phosphorylation. Inhibition of oxidative phosphorylation also suppressed HSV-2 replication up to 39.94-fold. These results indicate that the antiviral action of carnosic acid includes the inhibition of ATP generation by suppressing key energy production pathways. Carnosic acid holds promise as a potential novel antiviral agent against HSV-2.


Subject(s)
Abietanes , Adenosine Triphosphate , Antiviral Agents , Herpesvirus 2, Human , Plant Extracts , Virus Replication , Abietanes/pharmacology , Virus Replication/drug effects , Chlorocebus aethiops , Vero Cells , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/biosynthesis , Humans , Animals , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/physiology , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , HeLa Cells
15.
Chem Biol Drug Des ; 103(5): e14553, 2024 May.
Article in English | MEDLINE | ID: mdl-38789394

ABSTRACT

Evolutionary potential of viruses can result in outbreaks of well-known viruses and emergence of novel ones. Pharmacological methods of intervening the reproduction of various less popular, but not less important viruses are not available, as well as the spectrum of antiviral activity for most known compounds. In the framework of chemical biology paradigm, characterization of antiviral activity spectrum of new compounds allows to extend the antiviral chemical space and provides new important structure-activity relationships for data-driven drug discovery. Here we present a primary assessment of antiviral activity of spiro-annulated derivatives of seven-membered heterocycles, oxepane and azepane, in phenotypic assays against viruses with different genomes, virion structures, and genome realization schemes: orthoflavivirus (tick-borne encephalitis virus, TBEV), enteroviruses (poliovirus, enterovirus A71, echovirus 30), adenovirus (human adenovirus C5), hantavirus (Puumala virus). Hit compounds inhibited reproduction of adenovirus C5, the only DNA virus in the studied set, in the yield reduction assay, and did not inhibit reproduction of RNA viruses.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship , Oxepins/chemistry , Oxepins/pharmacology , Animals , Virus Replication/drug effects , Phenotype
16.
Mar Drugs ; 22(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38786581

ABSTRACT

Influenza A virus (IAV) can cause infection and illness in a wide range of animals, including humans, poultry, and swine, and cause annual epidemics, resulting in thousands of deaths and millions of hospitalizations all over the world. Thus, there is an urgent need to develop novel anti-IAV drugs with high efficiency and low toxicity. In this study, the anti-IAV activity of a marine-derived compound mycophenolic acid methyl ester (MAE) was intensively investigated both in vitro and in vivo. The results showed that MAE inhibited the replication of different influenza A virus strains in vitro with low cytotoxicity. MAE can mainly block some steps of IAV infection post adsorption. MAE may also inhibit viral replication through activating the cellular Akt-mTOR-S6K pathway. Importantly, oral treatment of MAE can significantly ameliorate pneumonia symptoms and reduce pulmonary viral titers, as well as improving the survival rate of mice, and this was superior to the effect of oseltamivir. In summary, the marine compound MAE possesses anti-IAV effects both in vitro and in vivo, which merits further studies for its development into a novel anti-IAV drug in the future.


Subject(s)
Antiviral Agents , Influenza A virus , Mycophenolic Acid , Orthomyxoviridae Infections , Virus Replication , Animals , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Mycophenolic Acid/pharmacology , Mice , Virus Replication/drug effects , Humans , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Mice, Inbred BALB C , Dogs , Female , Madin Darby Canine Kidney Cells , A549 Cells , Aquatic Organisms , Influenza, Human/drug therapy , Influenza, Human/virology
17.
Vet Res ; 55(1): 67, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783392

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), has caused substantial economic losses to the global swine industry due to the lack of effective commercial vaccines and drugs. There is an urgent need to develop alternative strategies for PRRS prevention and control, such as antiviral drugs. In this study, we identified ursonic acid (UNA), a natural pentacyclic triterpenoid from medicinal herbs, as a novel drug with anti-PRRSV activity in vitro. Mechanistically, a time-of-addition assay revealed that UNA inhibited PRRSV replication when it was added before, at the same time as, and after PRRSV infection was induced. Compound target prediction and molecular docking analysis suggested that UNA interacts with the active pocket of PTPN1, which was further confirmed by a target protein interference assay and phosphatase activity assay. Furthermore, UNA inhibited PRRSV replication by targeting PTPN1, which inhibited IFN-ß production. In addition, UNA displayed antiviral activity against porcine epidemic diarrhoea virus (PEDV) and Seneca virus A (SVA) replication in vitro. These findings will be helpful for developing novel prophylactic and therapeutic agents against PRRS and other swine virus infections.


Subject(s)
Antiviral Agents , Immunity, Innate , Porcine respiratory and reproductive syndrome virus , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Triterpenes , Virus Replication , Animals , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/drug effects , Virus Replication/drug effects , Immunity, Innate/drug effects , Antiviral Agents/pharmacology , Swine , Triterpenes/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Plants, Medicinal/chemistry , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology
18.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793547

ABSTRACT

Severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) has infected more than 762 million people to date and has caused approximately 7 million deaths all around the world, involving more than 187 countries. Although currently available vaccines show high efficacy in preventing severe respiratory complications in infected patients, the high number of mutations in the S proteins of the current variants is responsible for the high level of immune evasion and transmissibility of the virus and the reduced effectiveness of acquired immunity. In this scenario, the development of safe and effective drugs of synthetic or natural origin to suppress viral replication and treat acute forms of COVID-19 remains a valid therapeutic challenge. Given the successful history of flavonoids-based drug discovery, we developed esters of substituted cinnamic acids with quercetin to evaluate their in vitro activity against a broad spectrum of Coronaviruses. Interestingly, two derivatives, the 3,4-methylenedioxy 6 and the ester of acid 7, have proved to be effective in reducing OC43-induced cytopathogenicity, showing interesting EC50s profiles. The ester of synaptic acid 7 in particular, which is not endowed with relevant cytotoxicity under any of the tested conditions, turned out to be active against OC43 and SARS-CoV-2, showing a promising EC50. Therefore, said compound was selected as the lead object of further analysis. When tested in a yield reduction, assay 7 produced a significant dose-dependent reduction in viral titer. However, the compound was not virucidal, as exposure to high concentrations of it did not affect viral infectivity, nor did it affect hCoV-OC43 penetration into pre-treated host cells. Additional studies on the action mechanism have suggested that our derivative may inhibit viral endocytosis by reducing viral attachment to host cells.


Subject(s)
Antiviral Agents , Cinnamates , Esters , Quercetin , SARS-CoV-2 , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Cinnamates/pharmacology , Cinnamates/chemistry , Esters/pharmacology , Esters/chemistry , Humans , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , COVID-19 Drug Treatment , Chlorocebus aethiops , Vero Cells , COVID-19/virology , Cell Line
19.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793559

ABSTRACT

Coxsackievirus B3 (CVB3) is a positive single-strand RNA genome virus which belongs to the enterovirus genus in the picornavirus family, like poliovirus. It is one of the most prevalent pathogens that cause myocarditis and pancreatitis in humans. However, a suitable therapeutic medication and vaccination have yet to be discovered. Caboxamycin, a benzoxazole antibiotic isolated from the culture broth of the marine strain Streptomyces sp., SC0774, showed an antiviral effect in CVB3-infected HeLa cells and a CVB3-induced myocarditis mouse model. Caboxamycin substantially decreased CVB3 VP1 production and cleavage of translation factor eIF4G1 from CVB3 infection. Virus-positive and -negative strand RNA was dramatically reduced by caboxamycin treatment. In addition, the cleavage of the pro-apoptotic molecules BAD, BAX, and caspase3 was significantly inhibited by caboxamycin treatment. In animal experiments, the survival rate of mice was improved following caboxamycin treatment. Moreover, caboxamycin treatment significantly decreased myocardial damage and inflammatory cell infiltration. Our study showed that caboxamycin dramatically suppressed cardiac inflammation and mouse death. This result suggests that caboxamycin may be suitable as a potential antiviral drug for CVB3.


Subject(s)
Antiviral Agents , Coxsackievirus Infections , Disease Models, Animal , Enterovirus B, Human , Myocarditis , Animals , Myocarditis/drug therapy , Myocarditis/virology , Mice , Coxsackievirus Infections/drug therapy , Coxsackievirus Infections/virology , Humans , Enterovirus B, Human/drug effects , HeLa Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Male , Mice, Inbred BALB C , Inflammation/drug therapy , Inflammation/virology , Virus Replication/drug effects
20.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792094

ABSTRACT

Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.


Subject(s)
Antiviral Agents , Heterocyclic Compounds , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Humans , Virus Replication/drug effects , Structure-Activity Relationship , Viruses/drug effects , Virus Diseases/drug therapy , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...