Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.385
Filter
1.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38832467

ABSTRACT

BACKGROUND: Modern sequencing technologies offer extraordinary opportunities for virus discovery and virome analysis. Annotation of viral sequences from metagenomic data requires a complex series of steps to ensure accurate annotation of individual reads and assembled contigs. In addition, varying study designs will require project-specific statistical analyses. FINDINGS: Here we introduce Hecatomb, a bioinformatic platform coordinating commonly used tasks required for virome analysis. Hecatomb means "a great sacrifice." In this setting, Hecatomb is "sacrificing" false-positive viral annotations using extensive quality control and tiered-database searches. Hecatomb processes metagenomic data obtained from both short- and long-read sequencing technologies, providing annotations to individual sequences and assembled contigs. Results are provided in commonly used data formats useful for downstream analysis. Here we demonstrate the functionality of Hecatomb through the reanalysis of a primate enteric and a novel coral reef virome. CONCLUSION: Hecatomb provides an integrated platform to manage many commonly used steps for virome characterization, including rigorous quality control, host removal, and both read- and contig-based analysis. Each step is managed using the Snakemake workflow manager with dependency management using Conda. Hecatomb outputs several tables properly formatted for immediate use within popular data analysis and visualization tools, enabling effective data interpretation for a variety of study designs. Hecatomb is hosted on GitHub (github.com/shandley/hecatomb) and is available for installation from Bioconda and PyPI.


Subject(s)
Metagenomics , Software , Metagenomics/methods , Virome/genetics , Viruses/genetics , Viruses/classification , Animals , Computational Biology/methods , Genome, Viral , Metagenome
2.
New Microbiol ; 47(1): 28-32, 2024 May.
Article in English | MEDLINE | ID: mdl-38700880

ABSTRACT

Acute respiratory tract infections (ARI) are common diseases in children and adults and could cause severe infections in high-risk patients, like the immunocompromised and elderly, and are the leading cause of morbidity, hospitalization and mortality. This study aimed to explore the prevalence of respiratory viruses and the clinical impact of single- and multi-infection among hospitalized patients in various age groups. 3578 nasopharyngeal swabs (NPS) were analyzed for pathogen detection of acute respiratory tract infections. 930 out of 3578 NPS were diagnosed positive for at least one respiratory virus. The distribution of viral infections, prevalence and pathogen, differed significantly among age groups. Most RTI are observed in the age group over 65 years (50.6%) with a high SARS-CoV2 prevalence, following by group <5 years (25.6%), where the most frequently detected viruses were RSV, Rhinovirus, FluA-H3, MPV, and AdV. The co-infection rate also varies according to age and, in some cases, especially in older adults, could have severe clinical impact. This study emphasizes that it is important to know and analyze, in all age groups of hospitalized patients, the epidemiology of respiratory viruses, the prevalence of coinfections, and the clinical impact of various pathogens. Furthermore, in a clinical setting, the rapid diagnosis of respiratory infections by means of molecular tests is crucial not only to avoid hospital outbreaks, but also to allow early and optimal treatment to reduce morbidity and mortality.


Subject(s)
Coinfection , Respiratory Tract Infections , Humans , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Aged , Adult , Middle Aged , Child, Preschool , Adolescent , Child , Male , Young Adult , Female , Infant , Coinfection/epidemiology , Coinfection/virology , Aged, 80 and over , COVID-19/epidemiology , Prevalence , Hospitalization , SARS-CoV-2 , Virus Diseases/epidemiology , Virus Diseases/virology , Infant, Newborn , Pandemics , Viruses/isolation & purification , Viruses/classification , Viruses/genetics
3.
New Microbiol ; 47(1): 80-87, 2024 May.
Article in English | MEDLINE | ID: mdl-38700887

ABSTRACT

The COVID-19 pandemic forced the adoption of non-pharmaceutical interventions (NPIs) which influenced the circulation of other respiratory pathogens, such as Influenza virus (FLU), Parainfluenza virus (PIV), Respiratory Syncytial virus (RSV), Rhinovirus (RV), Enterovirus (EV), Adenovirus (AdV), Human Metapneumovirus (hMPV), and Human Coronavirus (CoV). The aim of the current study was to investigate how, with the end of the pandemic, the withdrawal of the NPIs impacted on the circulation and distribution of common respiratory viruses. The analyzed samples were collected from June 2021 to March 2023 (post-pandemic period) and compared to ones from the pandemic period. Nucleic acid detection of all respiratory viruses was performed by multiplex real time Polymerase Chain Reaction (PCR) and sequencing was conducted by Next Generation Sequencing (NGS) technique. Our analysis shows that the NPIs adopted against SARS-CoV-2 were also effective in controlling the spread of other respiratory viruses. Moreover, we documented how RV/EVs were the most commonly identified species, with the more abundant strains represented by Coxsackievirus (CV)-A/B and RV-A/C. RV/EVs were also detected in some co-infection cases; in particular, the majority of co-infections concerned CV-B/RV-A, CV-B/ECHO. Given the pandemic potential of respiratory viruses, accurate molecular screening is essential for a proper surveillance and prevention strategy.


Subject(s)
COVID-19 , Respiratory Tract Infections , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/virology , Italy/epidemiology , SARS-CoV-2/genetics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Pandemics , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Adult , Male , Child
4.
Sci Rep ; 14(1): 10337, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710802

ABSTRACT

Infectious diseases have long been a shaping force in human history, necessitating a comprehensive understanding of their dynamics. This study introduces a co-evolution model that integrates both epidemiological and evolutionary dynamics. Utilizing a system of differential equations, the model represents the interactions among susceptible, infected, and recovered populations for both ancestral and evolved viral strains. Methodologically rigorous, the model's existence and uniqueness have been verified, and it accommodates both deterministic and stochastic cases. A myriad of graphical techniques have been employed to elucidate the model's dynamics. Beyond its theoretical contributions, this model serves as a critical instrument for public health strategy, particularly predicting future outbreaks in scenarios where viral mutations compromise existing interventions.


Subject(s)
Stochastic Processes , Humans , Immune System/virology , Evolution, Molecular , Viruses/genetics , Viruses/immunology , Biological Evolution
5.
Appl Microbiol Biotechnol ; 108(1): 328, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717672

ABSTRACT

Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.


Subject(s)
Bacteria , Pseudogenes , Pseudogenes/genetics , Bacteria/genetics , Bacteria/classification , Virulence/genetics , Viruses/genetics , Viruses/classification
6.
Microbiome ; 12(1): 82, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725064

ABSTRACT

BACKGROUND: The rumen microbiome enables ruminants to digest otherwise indigestible feedstuffs, thereby facilitating the production of high-quality protein, albeit with suboptimal efficiency and producing methane. Despite extensive research delineating associations between the rumen microbiome and ruminant production traits, the functional roles of the pervasive and diverse rumen virome remain to be determined. RESULTS: Leveraging a recent comprehensive rumen virome database, this study analyzes virus-microbe linkages, at both species and strain levels, across 551 rumen metagenomes, elucidating patterns of microbial and viral diversity, co-occurrence, and virus-microbe interactions. Additionally, this study assesses the potential role of rumen viruses in microbial diversification by analyzing prophages found in rumen metagenome-assembled genomes. Employing CRISPR-Cas spacer-based matching and virus-microbe co-occurrence network analysis, this study suggests that the viruses in the rumen may regulate microbes at strain and community levels through both antagonistic and mutualistic interactions. Moreover, this study establishes that the rumen virome demonstrates responsiveness to dietary shifts and associations with key animal production traits, including feed efficiency, lactation performance, weight gain, and methane emissions. CONCLUSIONS: These findings provide a substantive framework for further investigations to unravel the functional roles of the virome in the rumen in shaping the microbiome and influencing overall animal production performance. Video Abstract.


Subject(s)
Metagenome , Rumen , Viruses , Rumen/microbiology , Rumen/virology , Animals , Viruses/classification , Viruses/genetics , Gastrointestinal Microbiome , Virome , Ruminants/microbiology , Ruminants/virology , Methane/metabolism , Animal Feed , Bacteria/classification , Bacteria/genetics
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38706321

ABSTRACT

Antiviral peptides (AVPs) have shown potential in inhibiting viral attachment, preventing viral fusion with host cells and disrupting viral replication due to their unique action mechanisms. They have now become a broad-spectrum, promising antiviral therapy. However, identifying effective AVPs is traditionally slow and costly. This study proposed a new two-stage computational framework for AVP identification. The first stage identifies AVPs from a wide range of peptides, and the second stage recognizes AVPs targeting specific families or viruses. This method integrates contrastive learning and multi-feature fusion strategy, focusing on sequence information and peptide characteristics, significantly enhancing predictive ability and interpretability. The evaluation results of the model show excellent performance, with accuracy of 0.9240 and Matthews correlation coefficient (MCC) score of 0.8482 on the non-AVP independent dataset, and accuracy of 0.9934 and MCC score of 0.9869 on the non-AMP independent dataset. Furthermore, our model can predict antiviral activities of AVPs against six key viral families (Coronaviridae, Retroviridae, Herpesviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae) and eight viruses (FIV, HCV, HIV, HPIV3, HSV1, INFVA, RSV, SARS-CoV). Finally, to facilitate user accessibility, we built a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼dbAMP/AVP/.


Subject(s)
Antiviral Agents , Computational Biology , Peptides , Antiviral Agents/pharmacology , Peptides/chemistry , Computational Biology/methods , Humans , Viruses , Machine Learning , Algorithms
8.
Theory Biosci ; 143(2): 153-160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722466

ABSTRACT

This study proposes a landscape-based scenario for the origin of viruses and cells, focusing on the adaptability of preexisting replicons from the RNP (ribonucleoprotein) world. The scenario postulates that life emerged in a subterranean "warm little pond" where organic matter accumulated, resulting in a prebiotic soup rich in nucleotides, amino acids, and lipids, which served as nutrients for the first self-replicating entities. Over time, the RNA world, followed by the RNP world, came into existence. Replicators/replicons, along with the nutritious soup from the pond, were washed out into the river and diluted. Lipid bubbles, enclosing organic matter, provided the last suitable environment for replicons to replicate. Two survival strategies emerged under these conditions: cell-like structures that obtained nutrients by merging with new bubbles, and virus-like entities that developed various techniques to transmit themselves to fresh bubbles. The presented hypothesis provides the possibility for the common origin of cells and viruses on rocky worlds hosting liquid water, like Earth.


Subject(s)
Origin of Life , Viruses , Amino Acids/chemistry , Lipids/chemistry , Nucleotides , RNA , Biological Evolution
9.
Water Res ; 257: 121741, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744061

ABSTRACT

Biological treatment is commonly used in coking wastewater (CWW) treatment. Prokaryotic microbial communities in CWW treatment have been comprehensively studied. However, viruses, as the critical microorganisms affecting microbial processes and thus engineering parameters, still remain poorly understood in CWW treatment context. Employing viromics sequencing, the composition and function of the viral community in CWW treatment were discovered, revealing novel viral communities and key auxiliary metabolic functions. Caudovirales appeared to be the predominant viral order in the oxic-hydrolytic-oxic (OHO) CWW treatment combination, showing relative abundances of 62.47 %, 56.64 % and 92.20 % in bioreactors O1, H and O2, respectively. At the family level, Myoviridae, Podoviridae and Siphoviridae mainly prevailed in bioreactors O1 and H while Phycodnaviridae dominated in O2. A total of 56.23-92.24% of novel viral contigs defied family-level characterization in this distinct CWW habitat. The virus-host prediction results revealed most viruses infecting the specific functional taxa Pseudomonas, Acidovorax and Thauera in the entire OHO combination, demonstrating the viruses affecting bacterial physiology and pollutants removal from CWW. Viral auxiliary metabolic genes (AMGs) were screened, revealing their involvement in the metabolism of contaminants and toxicity tolerance. In the bioreactor O1, AMGs were enriched in detoxification and phosphorus ingestion, where glutathione S-transferase (GSTs) and beta-ketoadipyl CoA thiolase (fadA) participated in biodegradation of polycyclic aromatic hydrocarbons and phenols, respectively. In the bioreactors H and O2, the AMGs focused on cell division and epicyte formation of the hosts, where GDPmannose 4,6-dehydratase (gmd) related to lipopolysaccharides biosynthesis was considered to play an important role in the growth of nitrifiers. The diversities of viruses and AMGs decreased along the CWW treatment process, pointing to a reinforced virus-host adaptive strategy in stressful operation environments. In this study, the symbiotic virus-bacteria interaction patterns were proposed with a theoretical basis for promoting CWW biological treatment efficiency. The findings filled the gaps in the virus-bacteria interactions at the full-scale CWW treatment and provided great value for understanding the mechanism of biological toxicity and sludge activity in industrial wastewater treatment.


Subject(s)
Wastewater , Wastewater/virology , Bioreactors , Bacteria/metabolism , Waste Disposal, Fluid/methods , Coke , Viruses , Symbiosis
10.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792094

ABSTRACT

Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.


Subject(s)
Antiviral Agents , Heterocyclic Compounds , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Humans , Virus Replication/drug effects , Structure-Activity Relationship , Viruses/drug effects , Virus Diseases/drug therapy , Animals
11.
Viruses ; 16(5)2024 05 09.
Article in English | MEDLINE | ID: mdl-38793631

ABSTRACT

Viral co-infections are frequently observed among children, but whether specific viral interactions enhance or diminish the severity of respiratory disease is still controversial. This study aimed to investigate the type of viral mono- and co-infections by also evaluating viral correlations in 3525 respiratory samples from 3525 pediatric in/outpatients screened by the Allplex Respiratory Panel Assays and with a Severe Acute Respiratory Syndrome-COronaVirus 2 (SARS-CoV-2) test available. Overall, viral co-infections were detected in 37.8% of patients and were more frequently observed in specimens from children with lower respiratory tract infections compared to those with upper respiratory tract infections (47.1% vs. 36.0%, p = 0.003). SARS-CoV-2 and influenza A were more commonly detected in mono-infections, whereas human bocavirus showed the highest co-infection rate (87.8% in co-infection). After analyzing viral pairings using Spearman's correlation test, it was noted that SARS-CoV-2 was negatively associated with all other respiratory viruses, whereas a markedly significant positive correlation (p < 0.001) was observed for five viral pairings (involving adenovirus/human bocavirus/human enterovirus/metapneumoviruses/rhinovirus). The correlation between co-infection and clinical outcome may be linked to the type of virus(es) involved in the co-infection rather than simple co-presence. Further studies dedicated to this important point are needed, since it has obvious implications from a diagnostic and clinical point of view.


Subject(s)
COVID-19 , Coinfection , Hospitals, Pediatric , Respiratory Tract Infections , SARS-CoV-2 , Tertiary Care Centers , Humans , Coinfection/epidemiology , Coinfection/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Italy/epidemiology , Child, Preschool , Child , Infant , Female , Male , Tertiary Care Centers/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/isolation & purification , Adolescent , Human bocavirus/isolation & purification , Human bocavirus/genetics , Virus Diseases/epidemiology , Virus Diseases/virology , Hospitalization , Viruses/isolation & purification , Viruses/classification , Viruses/genetics , Infant, Newborn , Metapneumovirus/isolation & purification , Metapneumovirus/genetics
12.
Viruses ; 16(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38793668

ABSTRACT

Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.


Subject(s)
Viruses , Humans , Viruses/classification , Viruses/genetics , Viruses/pathogenicity , Viruses/isolation & purification , Virus Diseases/virology , Animals
13.
Viruses ; 16(5)2024 05 18.
Article in English | MEDLINE | ID: mdl-38793683

ABSTRACT

This review focuses on the emerging field of flow virometry, the study and characterization of individual viral particles using flow cytometry instruments and protocols optimized for the detection of nanoscale events. Flow virometry faces considerable technical challenges including minimal light scattering by small viruses that complicates detection, coincidental detection of multiple small particles due to their high concentrations, and challenges with sample preparation including the inability to easily "wash" samples to remove unbound fluorescent antibodies. We will discuss how the field has overcome these challenges to reveal novel insights into viral biology.


Subject(s)
Flow Cytometry , Virion , Flow Cytometry/methods , Humans , Viruses , Animals
14.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793679

ABSTRACT

In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014. This technology offers several advantages over traditional methods and next-generation sequencing (NGS), such as the ability to generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability and flexibility in virus research, including viral detection and surveillance, genome assembly, the discovery of new variants and novel viruses, and the identification of chemical modifications. In this paper, we provide a comprehensive review of the development, principles, advantages, and applications of nanopore sequencing technology in animal and human virus research, aiming to offer fresh perspectives for future studies in this field.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Viruses , Nanopore Sequencing/methods , Animals , Humans , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Virus Diseases/virology , Virus Diseases/diagnosis , Genomics/methods , Nanopores
15.
Xenotransplantation ; 31(3): e12851, 2024.
Article in English | MEDLINE | ID: mdl-38747130

ABSTRACT

BACKGROUND: The German Xenotransplantation Consortium is in the process to prepare a clinical trial application (CTA) on xenotransplantation of genetically modified pig hearts. In the CTA documents to the central and national regulatory authorities, that is, the European Medicines Agency (EMA) and the Paul Ehrlich Institute (PEI), respectively, it is required to list the potential zoonotic or xenozoonotic porcine microorganisms including porcine viruses as well as to describe methods of detection in order to prevent their transmission. The donor animals should be tested using highly sensitive detection systems. I would like to define a detection system as the complex including the actual detection methods, either PCR-based, cell-based, or immunological methods and their sensitivity, as well as sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls. Lessons learned from the identification of porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) in the xenotransplanted heart in the recipient in the Baltimore study underline how important such systems are. The question is whether veterinary laboratories can supply such assays. METHODS: A total of 35 veterinary laboratories in Germany were surveyed for their ability to test for selected xenotransplantation-relevant viruses, including PCMV/PRV, hepatitis E virus, and porcine endogenous retrovirus-C (PERV-C). As comparison, data from Swiss laboratories and a laboratory in the USA were analyzed. Furthermore, we assessed which viruses were screened for in clinical and preclinical trials performed until now and during screening of pig populations. RESULTS: Of the nine laboratories that provided viral diagnostics, none of these included all potential viruses of concern, indeed, the most important assays confirmed in recent human trials, antibody detection of PCMV/PRV and screening for PERV-C were not available at all. The situation was similar in Swiss and US laboratories. Different viruses have been tested for in first clinical and preclinical trials performed in various countries. CONCLUSION: Based on these results it is necessary to establish special virological laboratories able to test for all xenotransplantation-relevant viruses using validated assays, optimally in the xenotransplantation centers.


Subject(s)
Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Swine , Humans , Viruses/isolation & purification , Laboratories , Germany , Virus Diseases/diagnosis , Heart Transplantation , Heterografts/virology
16.
Influenza Other Respir Viruses ; 18(5): e13310, 2024 May.
Article in English | MEDLINE | ID: mdl-38725276

ABSTRACT

BACKGROUND: A variety of viruses can cause acute respiratory infections (ARIs), resulting in a high disease burden worldwide. To explore the dominant viruses and their prevalence characteristics in children with ARIs, comprehensive surveillance was carried out in the Pudong New Area of Shanghai. METHODS: Between January 2013 and December 2022, the basic and clinical information, and respiratory tract specimens of 0-14 years old children with ARIs were collected in five sentinel hospitals in Shanghai Pudong. Each specimen was tested for eight respiratory viruses, and the positive rates of different age groups, case types (inpatient or outpatient) were analyzed. RESULTS: In our study, 30.67% (1294/4219) children with ARIs were positive for at least one virus. Influenza virus (IFV) was the most commonly detected respiratory virus (349/4219, 8.27%), followed by respiratory syncytial virus (RSV) (217/4219, 5.14%), para-influenza virus (PIV) (215/4219, 5.10%), and human coronavirus (HCoV, including 229E, OC43, NL63, and HKU1) (184/4219, 4.36%). IFV was the leading respiratory virus in outpatients aged 5-14 years (201/1673, 12.01%); RSV was the most prevalent respiratory virus in both inpatients (61/238, 25.63%) and outpatients (4/50, 8.00%) for ARI patients aged <6 months old. For PIV, HMPV, HCoV, and HRV, the risk of infection usually was higher among young children. Co-infection with more than two viruses was seen in 3.25% (137/4219). CONCLUSIONS: IFV and RSV played important roles in ARIs among children, but the risk populations were different. There are needs for targeted diagnosis and treatment and necessary immunization and non-pharmaceutical interventions.


Subject(s)
Respiratory Tract Infections , Humans , China/epidemiology , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child , Infant , Male , Adolescent , Female , Prevalence , Infant, Newborn , Viruses/isolation & purification , Viruses/classification , Virus Diseases/epidemiology , Virus Diseases/virology , Coinfection/epidemiology , Coinfection/virology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Acute Disease/epidemiology
17.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1352-1364, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783802

ABSTRACT

In recent years, nanoscale detection has played an increasingly important role in the research on viruses, exosomes, small bacteria, and organelles. The small size and complex biological natures of these particles, with the smallest known virus particle measuring only 17 nm in diameter and exosomes ranging from 30 nm to 150 nm in size, pose challenges to the classical large-scale (typically micron-scale) characterization methods, which has become a major obstacle in the research. The emergence of nanoscale detection and analysis technologies has filled the gap of optical microscopy, a conventional technique in this field. These technologies enable the sensitive and robust detection of objects that exceed the lower limit of optical detection, revealing the molecular composition and biological roles simultaneously. Currently, several commercialized instruments based on nanotechnology have emerged, providing complete single-particle detection solutions and achieving unique functionality based on their respective technological advantages. However, it is inevitable that these technologies have limitations in terms of application and detection capabilities, as they continue to evolve. This paper offers a thorough overview of the principles, advantages, limitations, and future development trends of several mainstream commercial instruments, aiming to serve researchers in selecting and utilizing these technologies.


Subject(s)
Nanoparticles , Nanotechnology , Nanoparticles/chemistry , Nanotechnology/methods , Exosomes , Viruses/isolation & purification , Particle Size
18.
Virol J ; 21(1): 116, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783310

ABSTRACT

OBJECTIVE: Cystic echinococcosis (CE) represents a profoundly perilous zoonotic disease. The advent of viral macrogenomics has facilitated the exploration of hitherto uncharted viral territories. In the scope of this investigation, our objective is to scrutinize disparities in the intestinal microbiotic ecosystems of canines dwelling in elevated terrains and those afflicted by Echinococcus infection, employing the tool of viral macrogenomics. METHODS: In this study, we collected a comprehensive total of 1,970 fecal samples from plateau dogs infected with Echinococcus, as well as healthy control plateau dogs from the Yushu and Guoluo regions in the highland terrain of China. These samples were subjected to viral macrogenomic analysis to investigate the viral community inhabiting the canine gastrointestinal tract. RESULTS: Our meticulous analysis led to the identification of 136 viral genomic sequences, encompassing eight distinct viral families. CONCLUSION: The outcomes of this study hold the potential to enhance our comprehension of the intricate interplay between hosts, parasites, and viral communities within the highland canine gut ecosystem. Through the examination of phage presence, it may aid in early detection or assessment of infection severity, providing valuable insights into Echinococcus infection and offering prospects for potential treatment strategies.


Subject(s)
Dog Diseases , Echinococcosis , Echinococcus , Feces , Gastrointestinal Microbiome , Animals , Dogs , Echinococcosis/veterinary , Dog Diseases/parasitology , Dog Diseases/microbiology , Dog Diseases/virology , China , Feces/parasitology , Feces/microbiology , Feces/virology , Echinococcus/genetics , Echinococcus/isolation & purification , Genome, Viral , Viruses/classification , Viruses/isolation & purification , Viruses/genetics
19.
J Med Virol ; 96(5): e29679, 2024 May.
Article in English | MEDLINE | ID: mdl-38767190

ABSTRACT

Acute gastroenteritis (AGE) represents a world public health relevant problem especially in children. Enteric viruses are the pathogens mainly involved in the episodes of AGE, causing about 70.00% of the cases. Apart from well-known rotavirus (RVA), adenovirus (AdV) and norovirus (NoV), there are various emerging viral pathogens potentially associated with AGE episodes. In this study, the presence of ten different enteric viruses was investigated in 152 fecal samples collected from children hospitalized for gastroenteritis. Real time PCR results showed that 49.3% of them were positive for viral detection with the following prevalence: norovirus GII 19.7%, AdV 15.8%, RVA 10.5%, human parechovirus (HPeV) 5.3%, enterovirus (EV) 3.3%, sapovirus (SaV) 2.6%. Salivirus (SalV), norovirus GI and astrovirus (AstV) 1.3% each, aichivirus (AiV) found in only one patient. In 38.2% of feces only one virus was detected, while co-infections were identified in 11.8% of the cases. Among young patients, 105 were ≤5 years old and 56.0% tested positive for viral detection, while 47 were >5 years old with 40.0% of them infected. Results obtained confirm a complex plethora of viruses potentially implicated in gastroenteritis in children, with some of them previously known for other etiologies but detectable in fecal samples. Subsequent studies should investigate the role of these viruses in causing gastroenteritis and explore the possibility that other symptoms may be ascribed to multiple infections.


Subject(s)
COVID-19 , Coinfection , Feces , Gastroenteritis , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Child, Preschool , Coinfection/virology , Coinfection/epidemiology , Feces/virology , Infant , Italy/epidemiology , Child , Male , Female , COVID-19/epidemiology , COVID-19/virology , Sapovirus/isolation & purification , Sapovirus/genetics , Viruses/isolation & purification , Viruses/classification , Viruses/genetics , Prevalence , Norovirus/isolation & purification , Norovirus/genetics , Adolescent , Virus Diseases/epidemiology , Virus Diseases/virology , Infant, Newborn , SARS-CoV-2 , Rotavirus/isolation & purification , Rotavirus/genetics , Adenoviridae/isolation & purification
20.
ACS Nano ; 18(20): 13214-13225, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717114

ABSTRACT

Facing the escalating threat of viruses worldwide, the development of efficient sensor elements for rapid virus detection has never been more critical. Traditional point-of-care (POC) sensors struggle due to their reliance on fragile biological receptors and limited adaptability to viral strains. In this study, we introduce a nanosensor design for receptor-free virus recognitions using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) functionalized with a poly(ethylene glycol) (PEG)-phospholipid (PEG-lipid) array. Three-dimensional (3D) corona interfaces of the nanosensor array enable selective and sensitive detection of diverse viruses, including Ebola, Lassa, H3N2, H1N1, Middle East respiratory syndrome (MERS), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and SARS-CoV-2, even without any biological receptors. The PEG-lipid components, designed considering chain length, fatty acid saturation, molecular weight, and end-group moieties, allow for precise quantification of viral recognition abilities. High-throughput automated screening of the array demonstrates how the physicochemical properties of the PEG-lipid/SWCNT 3D corona interfaces correlate with viral detection efficiency. Utilizing molecular dynamics and AutoDock simulations, we investigated the impact of PEG-lipid components on 3D corona interface formation, such as surface coverage and hydrodynamic radius and specific molecular interactions based on chemical potentials. Our findings not only enhance detection specificity across various antigens but also accelerate the development of sensor materials for promptly identifying and responding to emerging antigen threats.


Subject(s)
Nanotubes, Carbon , Polyethylene Glycols , SARS-CoV-2 , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry , SARS-CoV-2/isolation & purification , Humans , COVID-19/virology , Phospholipids/chemistry , Biosensing Techniques/methods , Viruses/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...