Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.495
Filter
1.
Acta Neuropathol Commun ; 12(1): 85, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822433

ABSTRACT

Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.


Subject(s)
Dimethyl Sulfoxide , Mice, Inbred C57BL , Animals , Mice , Dimethyl Sulfoxide/pharmacology , Biomarkers/metabolism , Mice, Transgenic , Tomography, Optical Coherence , Retinal Rod Photoreceptor Cells/drug effects , Contrast Sensitivity/drug effects , Contrast Sensitivity/physiology , Disease Models, Animal , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Vision, Ocular/drug effects , Vision, Ocular/physiology
2.
Sci Adv ; 10(19): eadj8571, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728400

ABSTRACT

The development of sparse edge coding in the mammalian visual cortex depends on early visual experience. In humans, there are multiple indicators that the statistics of early visual experiences has unique properties that may support these developments. However, there are no direct measures of the edge statistics of infant daily-life experience. Using head-mounted cameras to capture egocentric images of young infants and adults in the home, we found infant images to have distinct edge statistics relative to adults. For infants, scenes with sparse edge patterns-few edges and few orientations-dominate. The findings implicate biased early input at the scale of daily life that is likely specific to the early months after birth and provide insights into the quality, amount, and timing of the visual experiences during the foundational developmental period for human vision.


Subject(s)
Visual Perception , Humans , Infant , Visual Perception/physiology , Female , Adult , Male , Visual Cortex/physiology , Photic Stimulation , Vision, Ocular/physiology
3.
Sci Rep ; 14(1): 10164, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702338

ABSTRACT

Orientation processing is one of the most fundamental functions in both visual and somatosensory perception. Converging findings suggest that orientation processing in both modalities is closely linked: somatosensory neurons share a similar orientation organisation as visual neurons, and the visual cortex has been found to be heavily involved in tactile orientation perception. Hence, we hypothesized that somatosensation would exhibit a similar orientation adaptation effect, and this adaptation effect would be transferable between the two modalities, considering the above-mentioned connection. The tilt aftereffect (TAE) is a demonstration of orientation adaptation and is used widely in behavioural experiments to investigate orientation mechanisms in vision. By testing the classic TAE paradigm in both tactile and crossmodal orientation tasks between vision and touch, we were able to show that tactile perception of orientation shows a very robust TAE, similar to its visual counterpart. We further show that orientation adaptation in touch transfers to produce a TAE when tested in vision, but not vice versa. Additionally, when examining the test sequence following adaptation for serial effects, we observed another asymmetry between the two conditions where the visual test sequence displayed a repulsive intramodal serial dependence effect while the tactile test sequence exhibited an attractive serial dependence. These findings provide concrete evidence that vision and touch engage a similar orientation processing mechanism. However, the asymmetry in the crossmodal transfer of TAE and serial dependence points to a non-reciprocal connection between the two modalities, providing further insights into the underlying processing mechanism.


Subject(s)
Adaptation, Physiological , Touch Perception , Visual Perception , Humans , Male , Female , Adult , Touch Perception/physiology , Visual Perception/physiology , Young Adult , Orientation/physiology , Touch/physiology , Orientation, Spatial/physiology , Vision, Ocular/physiology , Visual Cortex/physiology
4.
Arq Bras Oftalmol ; 87(3): e20230257, 2024.
Article in English | MEDLINE | ID: mdl-38716966

ABSTRACT

PURPOSE: This review emphasizes the effect of light on visual efficiency, the impact of different lighting focuses, types of lighting, and their influence on vision and productivity. Light sources and standards are intriguing subjects for ophthalmologists. Guidelines regarding the level of lighting influence on visual activities can enhance visual performance.Methods: This article was developed based on literature reviews, with a bibliographic survey conducted in databases such as PubMed, MEDLINE, Web of Science, Embase, LILACS, and SciELO. RESULTS: Provides recommendations for understanding information regarding the influence of lighting on visual performance. CONCLUSION: Proper workplace lighting is crucial for improving visual efficiency, safety, productivity, and worker health. Efficient workplace lighting should avoid light sources directed towards the worker's face, prevent harmful glare, be more intense in the work area, and uniform in the rest of the room. Ophthalmologists should be knowledgeable about and provide guidance on correct lighting to ensure patient comfort and satisfaction with visual correction.


Subject(s)
Lighting , Humans , Vision, Ocular/physiology , Visual Acuity/physiology , Workplace , Occupational Health , Glare , Light
5.
Nat Commun ; 15(1): 4053, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744848

ABSTRACT

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Subject(s)
Callithrix , Hippocampus , Spatial Navigation , Animals , Callithrix/physiology , Spatial Navigation/physiology , Hippocampus/physiology , Male , Locomotion/physiology , Vision, Ocular/physiology , Pyramidal Cells/physiology , Head Movements/physiology , Interneurons/physiology , Female , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology
6.
Sci Robot ; 9(90): eadj8124, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809998

ABSTRACT

Neuromorphic vision sensors or event cameras have made the visual perception of extremely low reaction time possible, opening new avenues for high-dynamic robotics applications. These event cameras' output is dependent on both motion and texture. However, the event camera fails to capture object edges that are parallel to the camera motion. This is a problem intrinsic to the sensor and therefore challenging to solve algorithmically. Human vision deals with perceptual fading using the active mechanism of small involuntary eye movements, the most prominent ones called microsaccades. By moving the eyes constantly and slightly during fixation, microsaccades can substantially maintain texture stability and persistence. Inspired by microsaccades, we designed an event-based perception system capable of simultaneously maintaining low reaction time and stable texture. In this design, a rotating wedge prism was mounted in front of the aperture of an event camera to redirect light and trigger events. The geometrical optics of the rotating wedge prism allows for algorithmic compensation of the additional rotational motion, resulting in a stable texture appearance and high informational output independent of external motion. The hardware device and software solution are integrated into a system, which we call artificial microsaccade-enhanced event camera (AMI-EV). Benchmark comparisons validated the superior data quality of AMI-EV recordings in scenarios where both standard cameras and event cameras fail to deliver. Various real-world experiments demonstrated the potential of the system to facilitate robotics perception both for low-level and high-level vision tasks.


Subject(s)
Algorithms , Equipment Design , Robotics , Saccades , Visual Perception , Robotics/instrumentation , Humans , Saccades/physiology , Visual Perception/physiology , Motion , Software , Reaction Time/physiology , Biomimetics/instrumentation , Fixation, Ocular/physiology , Eye Movements/physiology , Vision, Ocular/physiology
7.
Sci Robot ; 9(90): eadk6903, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809996

ABSTRACT

Avian eyes have deep central foveae as a result of extensive evolution. Deep foveae efficiently refract incident light, creating a magnified image of the target object and making it easier to track object motion. These features are essential for detecting and tracking remote objects in dynamic environments. Furthermore, avian eyes respond to a wide spectrum of light, including visible and ultraviolet light, allowing them to efficiently distinguish the target object from complex backgrounds. Despite notable advances in artificial vision systems that mimic animal vision, the exceptional object detection and targeting capabilities of avian eyes via foveated and multispectral imaging remain underexplored. Here, we present an artificial vision system that capitalizes on these aspects of avian vision. We introduce an artificial fovea and vertically stacked perovskite photodetector arrays whose designs were optimized by theoretical simulations for the demonstration of foveated and multispectral imaging. The artificial vision system successfully identifies colored and mixed-color objects and detects remote objects through foveated imaging. The potential for use in uncrewed aerial vehicles that need to detect, track, and recognize distant targets in dynamic environments is also discussed. Our avian eye-inspired perovskite artificial vision system marks a notable advance in bioinspired artificial visions.


Subject(s)
Biomimetics , Birds , Calcium Compounds , Oxides , Titanium , Vision, Ocular , Animals , Birds/physiology , Vision, Ocular/physiology , Biomimetics/instrumentation , Fovea Centralis/physiology , Equipment Design , Biomimetic Materials , Computer Simulation
8.
Sci Robot ; 9(90): eadp5682, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809997

ABSTRACT

Bioinspiration from avian eyes allows development of artificial vision systems with foveated and multispectral imaging.


Subject(s)
Biomimetics , Birds , Vision, Ocular , Animals , Vision, Ocular/physiology , Biomimetics/instrumentation , Eye , Robotics/instrumentation , Humans , Equipment Design , Biomimetic Materials
9.
PLoS One ; 19(5): e0303987, 2024.
Article in English | MEDLINE | ID: mdl-38814909

ABSTRACT

Digital video incurs many distortions during processing, compression, storage, and transmission, which can reduce perceived video quality. Developing adaptive video transmission methods that provide increased bandwidth and reduced storage space while preserving visual quality requires quality metrics that accurately describe how people perceive distortion. A severe problem for developing new video quality metrics is the limited data on how the early human visual system simultaneously processes spatial and temporal information. The problem is exacerbated by the fact that the few data collected in the middle of the last century do not consider current display equipment and are subject to medical intervention during collection, which does not guarantee a proper description of the conditions under which media content is currently consumed. In this paper, the 27840 thresholds of the visibility of spatio-temporal sinusoidal variations necessary to determine the artefacts that a human perceives were measured by a new method using different spatial sizes and temporal modulation rates. A multidimensional model of human contrast sensitivity in modern conditions of video content presentation is proposed based on new large-scale data obtained during the experiment. We demonstrate that the presented visibility model has a distinct advantage in predicting subjective video quality by testing with video quality metrics and including our and other visibility models against three publicly available video datasets.


Subject(s)
Contrast Sensitivity , Video Recording , Humans , Contrast Sensitivity/physiology , Visual Perception/physiology , Vision, Ocular/physiology
10.
Sci Rep ; 14(1): 11642, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773346

ABSTRACT

Vision restoration is one of the most promising applications of optogenetics. However, it is limited due to the poor-sensitivity, slow-kinetics and narrow band absorption spectra of opsins. Here, a detailed theoretical study of retinal ganglion neurons (RGNs) expressed with ChRmine, ReaChR, CoChR, CatCh and their mutants, with near monochromatic LEDs, and broadband sunlight, halogen lamp, RGB LED light, and pure white light sources has been presented. All the opsins exhibit improved light sensitivity and larger photocurrent on illuminating with broadband light sources compared to narrow band LEDs. ChRmine allows firing at ambient sunlight (1.5 nW/mm2) and pure white light (1.2 nW/mm2), which is lowest among the opsins considered. The broadband activation spectrum of ChRmine and its mutants is also useful to restore color sensitivity. Although ChRmine exhibits slower turn-off kinetics with broadband light, high-fidelity spikes can be evoked upto 50 Hz. This limit extends upto 80 Hz with the improved hsChRmine mutant although it requires double the irradiance compared to ChRmine. The present study shows that ChRmine and its mutants allow activation of RGNs with ambient light which is useful for goggle-free white light optogenetic retinal prostheses with improved quality of restored vision.


Subject(s)
Light , Optogenetics , Retinal Ganglion Cells , Optogenetics/methods , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Humans , Mutation , Animals , Opsins/genetics , Opsins/metabolism , Vision, Ocular/physiology
11.
Nat Commun ; 15(1): 4501, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802354

ABSTRACT

How the spike output of the retina enables human visual perception is not fully understood. Here, we address this at the sensitivity limit of vision by correlating human visual perception with the spike outputs of primate ON and OFF parasol (magnocellular) retinal ganglion cells in tightly matching stimulus conditions. We show that human vision at its ultimate sensitivity limit depends on the spike output of the ON but not the OFF retinal pathway. Consequently, nonlinear signal processing in the retinal ON pathway precludes perceptual detection of single photons in darkness but enables quantal-resolution discrimination of differences in light intensity.


Subject(s)
Photic Stimulation , Photons , Retina , Retinal Ganglion Cells , Animals , Humans , Retinal Ganglion Cells/physiology , Retina/physiology , Visual Perception/physiology , Contrast Sensitivity/physiology , Male , Adult , Female , Primates , Visual Pathways/physiology , Macaca mulatta , Vision, Ocular/physiology
12.
Nat Commun ; 15(1): 4481, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802397

ABSTRACT

Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain's visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.


Subject(s)
Blindness , Retina , Visual Prosthesis , Retina/diagnostic imaging , Retina/physiology , Animals , Blindness/therapy , Blindness/physiopathology , Retinal Degeneration/therapy , Retinal Degeneration/diagnostic imaging , Ultrasonic Waves , Humans , Neurons/physiology , Ultrasonography/methods , Vision, Ocular/physiology
13.
Biol Open ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38738649

ABSTRACT

The common sunfish (Lepomis gibbosus) likely relies on vision for many vital behaviors that require the perception of small objects such as detection of prey items or body marks of conspecifics. A previous study documented the single target acuity (STA) for stationary targets. Under many, if not most, circumstances, however, objects of interest are moving, which is why the current study tested the effect of the ecologically relevant parameter motion on sunfish STA. The STA was determined in two sunfish for targets moving randomly at a velocity of 3.4 deg/s. The STA for moving targets (0.144±0.002 deg) was equal to the STA for stationary targets obtained from the same fish individuals under the experimental conditions of this/the previous study. Our results contribute to a comprehensive understanding of fish vision, extending the large data set available on grating acuity.


Subject(s)
Fishes , Animals , Fishes/physiology , Vision, Ocular/physiology , Perciformes/physiology , Visual Acuity
14.
Ying Yong Sheng Tai Xue Bao ; 35(3): 858-866, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646774

ABSTRACT

Insect visual electrophysiological techniques are important to study the electrical characteristics of photoreceptor cells and visual neurons in insects, including electroretinography (ERG) and microelectrode intracellular recording (MIR). ERG records the changes of voltage or electric current in the retina of insects in response to different light stimuli, which occurs outside the cell. MIR records the changes in individual photoreceptor cells or visual neurons of an insect exposed to different lights, which occurs inside the cell. Insect visual electrophysiological techniques can explore the mechanism of electrophysiological response of insects' vision to light and reveal their sensitive light spectra and photoreceptor types. This review introduced the basic structure and the principle of ERG and MIR, and summarized their applications in insect researches in the past 20 years, which would provide references for elucidating the mechanism of light perception in insects and the use of insect phototropism to control pests.


Subject(s)
Electroretinography , Insecta , Photoreceptor Cells, Invertebrate , Animals , Insecta/physiology , Electroretinography/methods , Photoreceptor Cells, Invertebrate/physiology , Vision, Ocular/physiology , Microelectrodes , Electrophysiological Phenomena , Electrophysiology/methods
15.
Chaos ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38648384

ABSTRACT

Animal groups exhibit various captivating movement patterns, which manifest as intricate interactions among group members. Several models have been proposed to elucidate collective behaviors in animal groups. These models achieve a certain degree of efficacy; however, inconsistent experimental findings suggest insufficient accuracy. Experiments have shown that some organisms employ a single information channel and visual lateralization to glean knowledge from other individuals in collective movements. In this study, we consider individuals' visual lateralization and a single information channel and develop a self-propelled particle model to describe the collective behavior of large groups. The results suggest that homogeneous visual lateralization gives the group a strong sense of cohesiveness, thereby enabling diverse collective behaviors. As the overlapping field grows, the cohesiveness gradually dissipates. Inconsistent visual lateralization among group members can reduce the cohesiveness of the group, and when there is a high degree of heterogeneity in visual lateralization, the group loses their cohesiveness. This study also examines the influence of visual lateralization heterogeneity on specific formations, and the results indicate that the directional migration formation is responsive to such heterogeneity. We propose an information network to portray the transmission of information within groups, which explains the cohesiveness of groups and the sensitivity of the directional migration formation.


Subject(s)
Behavior, Animal , Animals , Behavior, Animal/physiology , Models, Biological , Functional Laterality/physiology , Social Behavior , Visual Perception/physiology , Vision, Ocular/physiology
16.
Bioessays ; 46(5): e2300240, 2024 May.
Article in English | MEDLINE | ID: mdl-38593308

ABSTRACT

The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.


Subject(s)
Biological Evolution , Insecta , Vision, Ocular , Animals , Vision, Ocular/physiology , Insecta/physiology , Insecta/genetics , Eye/anatomy & histology , Compound Eye, Arthropod/physiology , Compound Eye, Arthropod/anatomy & histology
17.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38680124

ABSTRACT

Schooling is a collective behavior that relies on a fish's ability to sense and respond to the other fish around it. Previous work has identified 'rules' of schooling - attraction to neighbors that are far away, repulsion from neighbors that are too close and alignment with neighbors at the correct distance - but we do not understand well how these rules emerge from the sensory physiology and behavior of individual fish. In particular, fish use both vision and their lateral lines to sense each other, but it is unclear how much they rely on information from these sensory modalities to coordinate schooling behavior. To address this question, we studied how the schooling of giant danios (Devario aequipinnatus) changes when they are unable to see or use their lateral lines. We found that giant danios were able to school without their lateral lines but did not school in darkness. Surprisingly, giant danios in darkness had the same attraction properties as fish in light when they were in close proximity, indicating that they could sense nearby fish with their lateral lines. However, they were not attracted to more distant fish, suggesting that long-distance attraction through vision is important for maintaining a cohesive school. These results help us expand our understanding of the roles that vision and the lateral line play in the schooling of some fish species.


Subject(s)
Vision, Ocular , Animals , Vision, Ocular/physiology , Social Behavior , Lateral Line System/physiology , Darkness , Cyprinidae/physiology , Behavior, Animal/physiology
18.
Optom Vis Sci ; 101(4): 232, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38684066
19.
Nat Neurosci ; 27(6): 1157-1166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684892

ABSTRACT

In natural vision, primates actively move their eyes several times per second via saccades. It remains unclear whether, during this active looking, visual neurons exhibit classical retinotopic properties, anticipate gaze shifts or mirror the stable quality of perception, especially in complex natural scenes. Here, we let 13 monkeys freely view thousands of natural images across 4.6 million fixations, recorded 883 h of neuronal responses in six areas spanning primary visual to anterior inferior temporal cortex and analyzed spatial, temporal and featural selectivity in these responses. Face neurons tracked their receptive field contents, indicated by category-selective responses. Self-consistency analysis showed that general feature-selective responses also followed eye movements and remained gaze-dependent over seconds of viewing the same image. Computational models of feature-selective responses located retinotopic receptive fields during free viewing. We found limited evidence for feature-selective predictive remapping and no viewing-history integration. Thus, ventral visual neurons represent the world in a predominantly eye-centered reference frame during natural vision.


Subject(s)
Eye Movements , Macaca mulatta , Neurons , Visual Cortex , Animals , Visual Cortex/physiology , Eye Movements/physiology , Neurons/physiology , Male , Photic Stimulation/methods , Visual Perception/physiology , Fixation, Ocular/physiology , Saccades/physiology , Vision, Ocular/physiology , Female
20.
Brain Behav Evol ; 99(2): 96-108, 2024.
Article in English | MEDLINE | ID: mdl-38447544

ABSTRACT

BACKGROUND: By examining species-specific innate behaviours, neuroethologists have characterized unique neural strategies and specializations from throughout the animal kingdom. Simultaneously, the field of evolutionary developmental biology (informally, "evo-devo") seeks to make inferences about animals' evolutionary histories through careful comparison of developmental processes between species, because evolution is the evolution of development. Yet despite the shared focus on cross-species comparisons, there is surprisingly little crosstalk between these two fields. Insights can be gleaned at the intersection of neuroethology and evo-devo. Every animal develops within an environment, wherein ecological pressures advantage some behaviours and disadvantage others. These pressures are reflected in the neurodevelopmental strategies employed by different animals across taxa. SUMMARY: Vision is a system of particular interest for studying the adaptation of animals to their environments. The visual system enables a wide variety of animals across the vertebrate lineage to interact with their environments, presenting a fantastic opportunity to examine how ecological pressures have shaped animals' behaviours and developmental strategies. Applying a neuroethological lens to the study of visual development, we advance a novel theory that accounts for the evolution of spontaneous retinal waves, an important phenomenon in the development of the visual system, across the vertebrate lineage. KEY MESSAGES: We synthesize literature on spontaneous retinal waves from across the vertebrate lineage. We find that ethological considerations explain some cross-species differences in the dynamics of retinal waves. In zebrafish, retinal waves may be more important for the development of the retina itself, rather than the retinofugal projections. We additionally suggest empirical tests to determine whether Xenopus laevis experiences retinal waves.


Subject(s)
Biological Evolution , Vertebrates , Vision, Ocular , Animals , Vertebrates/physiology , Vision, Ocular/physiology , Retina/physiology , Retina/growth & development , Ethology
SELECTION OF CITATIONS
SEARCH DETAIL
...