Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68.162
Filter
1.
J Vis ; 24(6): 3, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38837169

ABSTRACT

The primary symptom of visual snow syndrome (VSS) is the unremitting perception of small, flickering dots covering the visual field. VSS is a serious but poorly understood condition that can interfere with daily tasks. Several studies have provided qualitative data about the appearance of visual snow, but methods to quantify the symptom are lacking. Here, we developed a task in which participants with VSS adjusted parameters of simulated visual snow on a computer monitor until the simulation matched their internal visual snow. On each trial, participants (n = 31 with VSS) modified the size, density, update speed, and contrast of the simulation. Participants' settings were highly reliable across trials (intraclass correlation coefficients > 0.89), and they reported that the task was effective at stimulating their visual snow. On average, visual snow was very small (less than 2 arcmin in diameter), updated quickly (mean temporal frequency = 18.2 Hz), had low density (mean snow elements vs. background = 2.87%), and had low contrast (average root mean square contrast = 2.56%). Our task provided a quantitative assessment of visual snow percepts, which may help individuals with VSS communicate their experience to others, facilitate assessment of treatment efficacy, and further our understanding of the trajectory of symptoms, as well as the neural origins of VSS.


Subject(s)
Visual Fields , Humans , Adult , Male , Female , Visual Fields/physiology , Young Adult , Photic Stimulation/methods , Middle Aged , Contrast Sensitivity/physiology , Perceptual Disorders/physiopathology , Perceptual Disorders/etiology , Visual Perception/physiology , Computer Simulation , Vision Disorders/physiopathology
2.
Nat Commun ; 15(1): 4829, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844438

ABSTRACT

Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina.


Subject(s)
Orientation , Retina , Animals , Retina/physiology , Mice , Orientation/physiology , Photic Stimulation , Mice, Inbred C57BL , Computer Simulation , Visual Perception/physiology , Models, Neurological , Orientation, Spatial/physiology , Retinal Ganglion Cells/physiology
3.
Sci Rep ; 14(1): 13140, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849423

ABSTRACT

Attention is often viewed as a mental spotlight, which can be scaled like a zoom lens at specific spatial locations and features a center-surround gradient. Here, we demonstrate a neural signature of attention spotlight in signal transmission along the visual hierarchy. fMRI background connectivity analysis was performed between retinotopic V1 and downstream areas to characterize the spatial distribution of inter-areal interaction under two attentional states. We found that, compared to diffused attention, focal attention sharpened the spatial gradient in the strength of the background connectivity. Dynamic causal modeling analysis further revealed the effect of attention in both the feedback and feedforward connectivity between V1 and extrastriate cortex. In a context which induced a strong effect of crowding, the effect of attention in the background connectivity profile diminished. Our findings reveal a context-dependent attention prioritization in information transmission via modulating the recurrent processing across the early stages in human visual cortex.


Subject(s)
Attention , Magnetic Resonance Imaging , Visual Cortex , Humans , Visual Cortex/physiology , Attention/physiology , Male , Magnetic Resonance Imaging/methods , Female , Adult , Visual Perception/physiology , Young Adult , Brain Mapping/methods , Photic Stimulation , Visual Pathways/physiology
4.
PeerJ ; 12: e17295, 2024.
Article in English | MEDLINE | ID: mdl-38827290

ABSTRACT

This study aimed to examine the influence of sport skill levels on behavioural and neuroelectric performance in visuospatial attention and memory visuospatial tasks were administered to 54 participants, including 18 elite and 18 amateur table tennis players and 18 nonathletes, while event-related potentials were recorded. In all the visuospatial attention and memory conditions, table tennis players displayed faster reaction times than nonathletes, regardless of skill level, although there was no difference in accuracy between groups. In addition, regardless of task conditions, both player groups had a greater P3 amplitude than nonathletes, and elite players exhibited a greater P3 amplitude than amateurs players. The results of this study indicate that table tennis players, irrespective of their skill level, exhibit enhanced visuospatial capabilities. Notably, athletes at the elite level appear to benefit from an augmented allocation of attentional resources when engaging in visuospatial tasks.


Subject(s)
Attention , Cognition , Evoked Potentials , Reaction Time , Humans , Male , Young Adult , Attention/physiology , Cognition/physiology , Evoked Potentials/physiology , Reaction Time/physiology , Female , Tennis/physiology , Tennis/psychology , Adult , Space Perception/physiology , Athletes/psychology , Athletic Performance/physiology , Visual Perception/physiology , Electroencephalography , Adolescent
5.
Proc Natl Acad Sci U S A ; 121(24): e2317707121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830105

ABSTRACT

Human pose, defined as the spatial relationships between body parts, carries instrumental information supporting the understanding of motion and action of a person. A substantial body of previous work has identified cortical areas responsive to images of bodies and different body parts. However, the neural basis underlying the visual perception of body part relationships has received less attention. To broaden our understanding of body perception, we analyzed high-resolution fMRI responses to a wide range of poses from over 4,000 complex natural scenes. Using ground-truth annotations and an application of three-dimensional (3D) pose reconstruction algorithms, we compared similarity patterns of cortical activity with similarity patterns built from human pose models with different levels of depth availability and viewpoint dependency. Targeting the challenge of explaining variance in complex natural image responses with interpretable models, we achieved statistically significant correlations between pose models and cortical activity patterns (though performance levels are substantially lower than the noise ceiling). We found that the 3D view-independent pose model, compared with two-dimensional models, better captures the activation from distinct cortical areas, including the right posterior superior temporal sulcus (pSTS). These areas, together with other pose-selective regions in the LOTC, form a broader, distributed cortical network with greater view-tolerance in more anterior patches. We interpret these findings in light of the computational complexity of natural body images, the wide range of visual tasks supported by pose structures, and possible shared principles for view-invariant processing between articulated objects and ordinary, rigid objects.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Adult , Brain/physiology , Brain/diagnostic imaging , Brain Mapping/methods , Visual Perception/physiology , Posture/physiology , Young Adult , Imaging, Three-Dimensional/methods , Photic Stimulation/methods , Algorithms
6.
Mol Autism ; 15(1): 23, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831439

ABSTRACT

BACKGROUND: Categorization and its influence on perceptual discrimination are essential processes to organize information efficiently. Individuals with Autism Spectrum Condition (ASC) are suggested to display enhanced discrimination on the one hand, but also to experience difficulties with generalization and ignoring irrelevant differences on the other, which underlie categorization. Studies on categorization and discrimination in ASC have mainly focused on one process at a time, however, and typically only used either behavioral or neural measures in isolation. Here, we aim to investigate the interrelationships between these perceptual processes using novel stimuli sampled from a well-controlled artificial stimulus space. In addition, we complement standard behavioral psychophysical tasks with frequency-tagging EEG (FT-EEG) to obtain a direct, non-task related neural index of discrimination and categorization. METHODS: The study was completed by 38 adults with ASC and 38 matched neurotypical (NT) individuals. First, we assessed baseline discrimination sensitivity by administering FT-EEG measures and a complementary behavioral task. Second, participants were trained to categorize the stimuli into two groups. Finally, participants again completed the neural and behavioral discrimination sensitivity measures. RESULTS: Before training, NT participants immediately revealed a categorical tuning of discrimination, unlike ASC participants who showed largely similar discrimination sensitivity across the stimuli. During training, both autistic and non-autistic participants were able to categorize the stimuli into two groups. However, in the initial training phase, ASC participants were less accurate and showed more variability, as compared to their non-autistic peers. After training, ASC participants showed significantly enhanced neural and behavioral discrimination sensitivity across the category boundary. Behavioral indices of a reduced categorical processing and perception were related to the presence of more severe autistic traits. Bayesian analyses confirmed overall results. LIMITATIONS: Data-collection occurred during the COVID-19 pandemic. CONCLUSIONS: Our behavioral and neural findings indicate that adults with and without ASC are able to categorize highly similar stimuli. However, while categorical tuning of discrimination sensitivity was spontaneously present in the NT group, it only emerged in the autistic group after explicit categorization training. Additionally, during training, adults with autism were slower at category learning. Finally, this multi-level approach sheds light on the mechanisms underlying sensory and information processing issues in ASC.


Subject(s)
Electroencephalography , Humans , Male , Adult , Female , Young Adult , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Discrimination, Psychological , Learning , Photic Stimulation , Visual Perception , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology
7.
Sci Rep ; 14(1): 12852, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834578

ABSTRACT

The dorsal pulvinar has been implicated in visuospatial attentional and perceptual confidence processing. Pulvinar lesions in humans and monkeys lead to spatial neglect symptoms, including an overt spatial saccade bias during free choices. However, it remains unclear whether disrupting the dorsal pulvinar during target selection that relies on a perceptual decision leads to a perceptual impairment or a more general spatial orienting and choice deficit. To address this question, we reversibly inactivated the unilateral dorsal pulvinar by injecting GABA-A agonist THIP while two macaque monkeys performed a color discrimination saccade task with varying perceptual difficulty. We used Signal Detection Theory and simulations to dissociate perceptual sensitivity (d-prime) and spatial selection bias (response criterion) effects. We expected a decrease in d-prime if dorsal pulvinar affects perceptual discrimination and a shift in response criterion if dorsal pulvinar is mainly involved in spatial orienting. After the inactivation, we observed response criterion shifts away from contralesional stimuli, especially when two competing stimuli in opposite hemifields were present. Notably, the d-prime and overall accuracy remained largely unaffected. Our results underline the critical contribution of the dorsal pulvinar to spatial orienting and action selection while showing it to be less important for visual perceptual discrimination.


Subject(s)
Pulvinar , Saccades , Animals , Pulvinar/physiology , Saccades/physiology , Male , Space Perception/physiology , Visual Perception/physiology , Photic Stimulation , Macaca mulatta , Attention/physiology
8.
Sci Rep ; 14(1): 12796, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834699

ABSTRACT

Imagining natural scenes enables us to engage with a myriad of simulated environments. How do our brains generate such complex mental images? Recent research suggests that cortical alpha activity carries information about individual objects during visual imagery. However, it remains unclear if more complex imagined contents such as natural scenes are similarly represented in alpha activity. Here, we answer this question by decoding the contents of imagined scenes from rhythmic cortical activity patterns. In an EEG experiment, participants imagined natural scenes based on detailed written descriptions, which conveyed four complementary scene properties: openness, naturalness, clutter level and brightness. By conducting classification analyses on EEG power patterns across neural frequencies, we were able to decode both individual imagined scenes as well as their properties from the alpha band, showing that also the contents of complex visual images are represented in alpha rhythms. A cross-classification analysis between alpha power patterns during the imagery task and during a perception task, in which participants were presented images of the described scenes, showed that scene representations in the alpha band are partly shared between imagery and late stages of perception. This suggests that alpha activity mediates the top-down re-activation of scene-related visual contents during imagery.


Subject(s)
Alpha Rhythm , Electroencephalography , Imagination , Visual Perception , Humans , Imagination/physiology , Male , Female , Alpha Rhythm/physiology , Adult , Visual Perception/physiology , Young Adult , Photic Stimulation , Cerebral Cortex/physiology
9.
J Sports Sci Med ; 23(2): 289-304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841637

ABSTRACT

Perception is an essential component of children's psychological development, which is foundational to children's ability to understand and adapt to their external environment. Perception is also a crucial tool for understand and navigating one's surroundings, enabling children to identify objects and react appropriately to settings or situations. Substantial evidence indicates that engaging in physical activity is beneficial for the development of children's perceptual abilities, as the two are closely intertwined. Still, more research is necessary to gain a full understanding of the impact of physical activity on children's perception. To further identify and quantify the effects of physical activity on a number of specific perceptions in children. Systematic review and meta-analysis. Searches were performed using five online databases (i.e., PubMed, SPORTDiscus, PsycINFO, Web of Science, and Cochrane Library) for articles published up to and including June 2023 to identify eligible citations. A total of 12 randomized controlled trials, encompassing 1,761 children under the age of 12, were analyzed. Overall, physical activity as an intervention showed a notable effect on the development of children's perceptions. The meta-analysis indicated that participating in physical activity for 30 minutes around, daily, had a greater impact on children's visual perception and executive functioning than on their motor perception, body perception, and global self-worth (SMD = 1.33, 95% CI: 0.75, 1.91, p < 0.001). The effects of physical activity on children's perception performance varied by participant characteristics, with physical activity having better effects on body perception and overall self-worth in children who were obese or overweight. Furthermore, physical activity can also enhance executive function and attention in children with developmental coordination disorders. The effects of physical activity on children's perception performance varied according to the intervention time, with different activity durations resulting in different perception performances. Therefore, parents and educators must prioritize an appropriate length of physical activity time for children to ensure their optimal growth and development. Registration and protocol CRD42023441119.


Subject(s)
Executive Function , Exercise , Perception , Humans , Child , Exercise/psychology , Perception/physiology , Executive Function/physiology , Child Development , Visual Perception , Randomized Controlled Trials as Topic , Body Image
10.
Brain Nerve ; 76(6): 709-714, 2024 Jun.
Article in Japanese | MEDLINE | ID: mdl-38853498

ABSTRACT

Visual search is a useful experimental paradigm investigating various aspects of attention. For efficient search, participants must avoid revisiting previously viewed objects. Inhibitory tagging and inhibition of return are phenomena related to this process, but their neural mechanisms are yet to be elucidated. Recent studies have shown that the rate of revisit behavior during visual search correlates with working memory capacity. This suggests that top-down signals from the frontal executive system alter the priority map that guides attention and eye movements. With this in mind, we have developed a novel visual search paradigm with many identical distractors and an evaluation model that assesses multiple parameters of working memory. The model incorporated memory capacity, memory decay, and utility rate, and when applied to data obtained from experimental animals, these parameters could be reliably evaluated. Furthermore, using the behavioral paradigm and model, we found that systemic administration of subanesthetic dose of ketamine decreased utility rate and memory capacity, while nicotine administration increased utility rate. Since our behavioral paradigm does not require complex instruction, it can be applied to a variety of patients in future clinical studies.


Subject(s)
Attention , Memory, Short-Term , Memory, Short-Term/physiology , Humans , Animals , Attention/physiology , Visual Perception/physiology , Eye Movements/physiology
11.
Brain Behav ; 14(6): e3567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841742

ABSTRACT

BACKGROUND: Visual attention-related processes that underlie visual search behavior are impaired in both the early stages of Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), which is considered a risk factor for AD. Although traditional computer-based array tasks have been used to investigate visual search, information on the visual search patterns of AD and MCI patients in real-world environments is limited. AIM: The objective of this study was to evaluate the differences in visual search behaviors among individuals with AD, aMCI, and healthy controls (HCs) in real-world scenes. MATERIALS AND METHODS: A total of 92 participants were enrolled, including 28 with AD, 32 with aMCI, and 32 HCs. During the visual search task, participants were instructed to look at a single target object amid distractors, and their eye movements were recorded. RESULTS: The results indicate that patients with AD made more fixations on distractors and fewer fixations on the target, compared to patients with aMCI and HC groups. Additionally, AD patients had longer fixation durations on distractors and spent less time looking at the target than both patients with aMCI and HCs. DISCUSSION: These findings suggest that visual search behavior is impaired in patients with AD and can be distinguished from aMCI and healthy individuals. For future studies, it is important to longitudinally monitor visual search behavior in the progression from aMCI to AD. CONCLUSION: Our study holds significance in elucidating the interplay between impairments in attention, visual processes, and other underlying cognitive processes, which contribute to the functional decline observed in individuals with AD and aMCI.


Subject(s)
Alzheimer Disease , Attention , Cognitive Dysfunction , Visual Perception , Humans , Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Female , Male , Aged , Attention/physiology , Visual Perception/physiology , Amnesia/physiopathology , Eye Movements/physiology , Aged, 80 and over , Middle Aged
12.
PLoS One ; 19(6): e0303959, 2024.
Article in English | MEDLINE | ID: mdl-38843176

ABSTRACT

Phase-amplitude coupling (PAC) has been used as a powerful tool to understand the mechanism underlying neural binding by investigating neural synchrony across different frequency bands. This study examined the possibility that dysregulated alpha-gamma modulation may be crucially involved in aberrant brain functioning in autism spectrum disorder (ASD). Magnetoencephalographic data were recorded from 13 adult participants with ASD and 16 controls. The time-coursed sources averaged over a primary visual area 1 and fusiform gyrus area were reconstructed with the minimum-norm estimate method. The alpha-gamma PAC was further calculated based on these sources. The statistical analysis was implemented based on the PAC and directed asymmetry index. The results showed the hyper-activity coupling for ASD at the no-face condition and revealed the importance of alpha-gamma phase modulation in detecting a face. Our data provides novel evidence for the role of the alpha-gamma PAC and suggests that the globe connectivity may be more critical during visual perception.


Subject(s)
Autism Spectrum Disorder , Magnetoencephalography , Visual Perception , Humans , Autism Spectrum Disorder/physiopathology , Male , Adult , Female , Visual Perception/physiology , Young Adult , Brain Mapping/methods , Case-Control Studies
13.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850216

ABSTRACT

Whether attention is a prerequisite of perceptual awareness or an independent and dissociable process remains a matter of debate. Importantly, understanding the relation between attention and awareness is probably not possible without taking into account the fact that both are heterogeneous and multifaceted mechanisms. Therefore, the present study tested the impact on visual awareness of two attentional mechanisms proposed by the Posner model: temporal alerting and spatio-temporal orienting. Specifically, we evaluated the effects of attention on the perceptual level, by measuring objective and subjective awareness of a threshold-level stimulus; and on the neural level, by investigating how attention affects two postulated event-related potential correlates of awareness. We found that alerting and orienting mechanisms additively facilitate perceptual consciousness, with activation of the latter resulting in the most vivid awareness. Furthermore, we found that late positivity is unlikely to constitute a neural correlate of consciousness as its amplitude was modulated by both attentional mechanisms, but early visual awareness negativity was independent of the alerting and orienting mechanisms. In conclusion, our study reveals a nuanced relationship between attention and awareness; moreover, by investigating the effect of the alerting mechanism, this study provides insights into the role of temporal attention in perceptual consciousness.


Subject(s)
Attention , Awareness , Electroencephalography , Evoked Potentials , Visual Perception , Humans , Attention/physiology , Awareness/physiology , Male , Female , Young Adult , Adult , Visual Perception/physiology , Evoked Potentials/physiology , Photic Stimulation/methods , Space Perception/physiology , Consciousness/physiology , Brain/physiology
14.
PLoS One ; 19(5): e0303400, 2024.
Article in English | MEDLINE | ID: mdl-38739635

ABSTRACT

Visual abilities tend to vary predictably across the visual field-for simple low-level stimuli, visibility is better along the horizontal vs. vertical meridian and in the lower vs. upper visual field. In contrast, face perception abilities have been reported to show either distinct or entirely idiosyncratic patterns of variation in peripheral vision, suggesting a dissociation between the spatial properties of low- and higher-level vision. To assess this link more clearly, we extended methods used in low-level vision to develop an acuity test for face perception, measuring the smallest size at which facial gender can be reliably judged in peripheral vision. In 3 experiments, we show the characteristic inversion effect, with better acuity for upright faces than inverted, demonstrating the engagement of high-level face-selective processes in peripheral vision. We also observe a clear advantage for gender acuity on the horizontal vs. vertical meridian and a smaller-but-consistent lower- vs. upper-field advantage. These visual field variations match those of low-level vision, indicating that higher-level face processing abilities either inherit or actively maintain the characteristic patterns of spatial selectivity found in early vision. The commonality of these spatial variations throughout the visual hierarchy means that the location of faces in our visual field systematically influences our perception of them.


Subject(s)
Facial Recognition , Visual Fields , Humans , Visual Fields/physiology , Female , Male , Adult , Facial Recognition/physiology , Young Adult , Photic Stimulation , Visual Perception/physiology , Visual Acuity/physiology , Face/physiology
15.
J Vis ; 24(5): 3, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38709511

ABSTRACT

In everyday life we frequently make simple visual judgments about object properties, for example, how big or wide is a certain object? Our goal is to test whether there are also task-specific oculomotor routines that support perceptual judgments, similar to the well-established exploratory routines for haptic perception. In a first study, observers saw different scenes with two objects presented in a photorealistic virtual reality environment. Observers were asked to judge which of two objects was taller or wider while gaze was tracked. All tasks were performed with the same set of virtual objects in the same scenes, so that we can compare spatial characteristics of exploratory gaze behavior to quantify oculomotor routines for each task. Width judgments showed fixations around the center of the objects with larger horizontal spread. In contrast, for height judgments, gaze was shifted toward the top of the objects with larger vertical spread. These results suggest specific strategies in gaze behavior that presumably are used for perceptual judgments. To test the causal link between oculomotor behavior and perception, in a second study, observers could freely gaze at the object or we introduced a gaze-contingent setup forcing observers to fixate specific positions on the object. Discrimination performance was similar between free-gaze and the gaze-contingent conditions for width and height judgments. These results suggest that although gaze is adapted for different tasks, performance seems to be based on a perceptual strategy, independent of potential cues that can be provided by the oculomotor system.


Subject(s)
Eye Movements , Fixation, Ocular , Judgment , Humans , Judgment/physiology , Male , Female , Adult , Eye Movements/physiology , Young Adult , Fixation, Ocular/physiology , Photic Stimulation/methods , Virtual Reality , Visual Perception/physiology
16.
Nat Commun ; 15(1): 4183, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760341

ABSTRACT

Revealing how the mind represents information is a longstanding goal of cognitive science. However, there is currently no framework for reconstructing the broad range of mental representations that humans possess. Here, we ask participants to indicate what they perceive in images made of random visual features in a deep neural network. We then infer associations between the semantic features of their responses and the visual features of the images. This allows us to reconstruct the mental representations of multiple visual concepts, both those supplied by participants and other concepts extrapolated from the same semantic space. We validate these reconstructions in separate participants and further generalize our approach to predict behavior for new stimuli and in a new task. Finally, we reconstruct the mental representations of individual observers and of a neural network. This framework enables a large-scale investigation of conceptual representations.


Subject(s)
Neural Networks, Computer , Humans , Male , Female , Adult , Semantics , Young Adult , Visual Perception/physiology , Behavior , Cognition/physiology , Photic Stimulation/methods
17.
J Bodyw Mov Ther ; 38: 81-85, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763620

ABSTRACT

BACKGROUND: The interest in virtual reality (VR) applications has been on the rise in recent years. However, the impact of VR on postural stability remains unclear. RESEARCH QUESTION: The study has two primary objectives: first, to compare postural stability in a 3D-immersed virtual reality environment (VE) and a real environment (RE), and second, to investigate the effect of positive and negative visual feedback, which are subconditions of VE on postural stability. METHODS: The observational study recruited 20 healthy adults (10 male, 10 female, 22.8 ± 1.8 years) who underwent postural stability assessments in both RE and VE. In VE, participants received visual stimuli in three different ways: without visual feedback, with positive and negative visual feedback that they would consider themselves to be directed towards postural stability outcomes. The RE included two conditions: eyes open (EO) and eyes closed (EC). Postural stability was evaluated with sway velocity, sway area, and perimeter variables obtained from a force platform. RESULTS: All postural stability variables were significantly lower in the RE than in the VE (p < 0.05). There was no significant difference between the VE and EC in terms of sway velocity and sway area (p > 0.05). The visual feedback in the VE did not affect participants' postural stability (p > 0.05). VE may cause an increase in postural sway variables compared to RE and postural requirements may be higher in VE compared to RE. SIGNIFICANCE: This is the first and only study examining the effect of different visual feedback on postural stability in VE.


Subject(s)
Feedback, Sensory , Postural Balance , Virtual Reality , Humans , Postural Balance/physiology , Female , Male , Young Adult , Feedback, Sensory/physiology , Adult , Visual Perception/physiology
18.
Brain Behav ; 14(5): e3517, 2024 May.
Article in English | MEDLINE | ID: mdl-38702896

ABSTRACT

INTRODUCTION: Attention and working memory are key cognitive functions that allow us to select and maintain information in our mind for a short time, being essential for our daily life and, in particular, for learning and academic performance. It has been shown that musical training can improve working memory performance, but it is still unclear if and how the neural mechanisms of working memory and particularly attention are implicated in this process. In this work, we aimed to identify the oscillatory signature of bimodal attention and working memory that contributes to improved working memory in musically trained children. MATERIALS AND METHODS: We recruited children with and without musical training and asked them to complete a bimodal (auditory/visual) attention and working memory task, whereas their brain activity was measured using electroencephalography. Behavioral, time-frequency, and source reconstruction analyses were made. RESULTS: Results showed that, overall, musically trained children performed better on the task than children without musical training. When comparing musically trained children with children without musical training, we found modulations in the alpha band pre-stimuli onset and the beginning of stimuli onset in the frontal and parietal regions. These correlated with correct responses to the attended modality. Moreover, during the end phase of stimuli presentation, we found modulations correlating with correct responses independent of attention condition in the theta and alpha bands, in the left frontal and right parietal regions. CONCLUSIONS: These results suggest that musically trained children have improved neuronal mechanisms for both attention allocation and memory encoding. Our results can be important for developing interventions for people with attention and working memory difficulties.


Subject(s)
Alpha Rhythm , Attention , Memory, Short-Term , Music , Theta Rhythm , Humans , Memory, Short-Term/physiology , Attention/physiology , Male , Female , Child , Theta Rhythm/physiology , Alpha Rhythm/physiology , Auditory Perception/physiology , Electroencephalography , Visual Perception/physiology , Brain/physiology
19.
Cogn Sci ; 48(5): e13452, 2024 05.
Article in English | MEDLINE | ID: mdl-38742272

ABSTRACT

Slower perceptual alternations, a notable perceptual effect observed in psychiatric disorders, can be alleviated by antidepressant therapies that affect serotonin levels in the brain. While these phenomena have been well documented, the underlying neurocognitive mechanisms remain to be elucidated. Our study bridges this gap by employing a computational cognitive approach within a Bayesian predictive coding framework to explore these mechanisms in depression. We fitted a prediction error (PE) model to behavioral data from a binocular rivalry task, uncovering that significantly higher initial prior precision and lower PE led to a slower switch rate in patients with depression. Furthermore, serotonin-targeting antidepressant treatments significantly decreased the prior precision and increased PE, both of which were predictive of improvements in the perceptual alternation rate of depression patients. These findings indicated that the substantially slower perception switch rate in patients with depression was caused by the greater reliance on top-down priors and that serotonin treatment's efficacy was in its recalibration of these priors and enhancement of PE. Our study not only elucidates the cognitive underpinnings of depression, but also suggests computational modeling as a potent tool for integrating cognitive science with clinical psychology, advancing our understanding and treatment of cognitive impairments in depression.


Subject(s)
Bayes Theorem , Depression , Humans , Male , Female , Adult , Visual Perception , Antidepressive Agents/therapeutic use , Serotonin/metabolism , Middle Aged
20.
Sci Rep ; 14(1): 10494, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714660

ABSTRACT

Binocular visual plasticity can be initiated via either bottom-up or top-down mechanisms, but it is unknown if these two forms of adult plasticity can be independently combined. In seven participants with normal binocular vision, sensory eye dominance was assessed using a binocular rivalry task, before and after a period of monocular deprivation and with and without selective attention directed towards one eye. On each trial, participants reported the dominant monocular target and the inter-ocular contrast difference between the stimuli was systematically altered to obtain estimates of ocular dominance. We found that both monocular light- and pattern-deprivation shifted dominance in favour of the deprived eye. However, this shift was completely counteracted if the non-deprived eye's stimulus was selectively attended. These results reveal that shifts in ocular dominance, driven by bottom-up and top-down selection, appear to act independently to regulate the relative contrast gain between the two eyes.


Subject(s)
Dominance, Ocular , Vision, Binocular , Humans , Vision, Binocular/physiology , Dominance, Ocular/physiology , Adult , Male , Female , Young Adult , Neuronal Plasticity/physiology , Photic Stimulation , Vision, Monocular/physiology , Visual Perception/physiology , Attention/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...