Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.628
Filter
1.
PLoS One ; 19(5): e0303060, 2024.
Article in English | MEDLINE | ID: mdl-38723008

ABSTRACT

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Subject(s)
Diet, High-Fat , Fructose , Hyperglycemia , Inflammation , Oxidative Stress , Rutin , Vitamin A , Animals , Rutin/pharmacology , Oxidative Stress/drug effects , Fructose/adverse effects , Rats , Diet, High-Fat/adverse effects , Vitamin A/pharmacology , Vitamin A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Male , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/chemically induced , Molecular Docking Simulation , Rats, Wistar , Disease Models, Animal , Glycosylation/drug effects , Metformin/pharmacology , Glycated Hemoglobin/metabolism , NF-kappa B/metabolism , Hexokinase/metabolism , Catalase/metabolism
2.
BMC Res Notes ; 17(1): 140, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755665

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19)-associated tracheal stenosis (COATS) may occur as a result of prolonged intubation during COVID-19 infection. We aimed to investigate patterns of gene expression in the tracheal granulation tissue of patients with COATS, leverage gene expression data to identify dysregulated cellular pathways and processes, and discuss potential therapeutic options based on the identified gene expression profiles. METHODS: Adult patients (age ≥ 18 years) presenting to clinics for management of severe, recalcitrant COATS were included in this study. RNA sequencing and differential gene expression analysis was performed with transcriptomic data for normal tracheal tissue being used as a control. The top ten most highly upregulated and downregulated genes were identified. For each of these pathologically dysregulated genes, we identified key cellular pathways and processes they are involved in using Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) applied via Database for Annotation, Visualization, and Integrated Discovery (DAVID). RESULTS: Two women, aged 36 years and 37 years, were included. The profile of dysregulated genes indicated a cellular response consistent with viral infection (CXCL11, PI15, CCL8, DEFB103A, IFI6, ACOD1, and DEFB4A) and hyperproliferation/hypergranulation (MMP3, CASP14 and HAS1), while downregulated pathways included retinol metabolism (ALDH1A2, RBP1, RBP4, CRABP1 and CRABP2). CONCLUSION: Gene expression changes consistent with persistent viral infection and dysregulated retinol metabolism may promote tracheal hypergranulation and hyperproliferation leading to COATS. Given the presence of existing literature highlighting retinoic acid's ability to favorably regulate these genes, improve cell-cell adhesion, and decrease overall disease severity in COVID-19, future studies must evaluate its utility for adjunctive management of COATS in animal models and clinical settings.


Subject(s)
COVID-19 , Tracheal Stenosis , Transcriptome , Vitamin A , Humans , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Female , Vitamin A/metabolism , Adult , Tracheal Stenosis/genetics , Tracheal Stenosis/metabolism , Transcriptome/genetics , SARS-CoV-2 , Gene Expression Profiling/methods , Trachea/metabolism , Trachea/virology
3.
Exp Dermatol ; 33(5): e15103, 2024 May.
Article in English | MEDLINE | ID: mdl-38794829

ABSTRACT

Erythrodermic psoriasis (EP) is a rare and life-threatening disease, the pathogenesis of which remains to be largely unknown. Metabolomics analysis can provide global information on disease pathophysiology, candidate biomarkers, and potential intervention strategies. To gain a better understanding of the mechanisms of EP and explore the serum metabolic signature of EP, we conducted an untargeted metabolomics analysis from 20 EP patients and 20 healthy controls. Furthermore, targeted metabolomics for focused metabolites were identified in the serum samples of 30 EP patients and 30 psoriasis vulgaris (PsV) patients. In the untargeted analysis, a total of 2992 molecular features were extracted from each sample, and the peak intensity of each feature was obtained. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed significant difference between groups. After screening, 98 metabolites were found to be significantly dysregulated in EP, including 67 down-regulated and 31 up-regulated. EP patients had lower levels of L-tryptophan, L-isoleucine, retinol, lysophosphatidylcholine (LPC), and higher levels of betaine and uric acid. KEGG analysis showed differential metabolites were enriched in amino acid metabolism and glycerophospholipid metabolism. The targeted metabolomics showed lower L-tryptophan in EP than PsV with significant difference and L-tryptophan levels were negatively correlated with the PASI scores. The serum metabolic signature of EP was discovered. Amino acid and glycerophospholipid metabolism were dysregulated in EP. The metabolite differences provide clues for pathogenesis of EP and they may provide insights for therapeutic interventions.


Subject(s)
Metabolomics , Principal Component Analysis , Psoriasis , Humans , Psoriasis/blood , Psoriasis/metabolism , Metabolomics/methods , Male , Female , Adult , Middle Aged , Chromatography, Liquid , Betaine/blood , Biomarkers/blood , Tryptophan/blood , Tryptophan/metabolism , Lysophosphatidylcholines/blood , Isoleucine/blood , Uric Acid/blood , Vitamin A/blood , Case-Control Studies , Mass Spectrometry , Dermatitis, Exfoliative/blood , Glycerophospholipids/blood , Discriminant Analysis , Down-Regulation , Least-Squares Analysis , Liquid Chromatography-Mass Spectrometry
4.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786093

ABSTRACT

Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.


Subject(s)
Retinoids , Humans , Retinoids/metabolism , Animals , Retina/metabolism , Retinaldehyde/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Vitamin A/metabolism
5.
ACS Appl Mater Interfaces ; 16(20): 25740-25756, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722759

ABSTRACT

Micro- and nano-plastics (NPs) are found in human milk, blood, tissues, and organs and associate with aberrant health outcomes including inflammation, genotoxicity, developmental disorders, onset of chronic diseases, and autoimmune disorders. Yet, interfacial interactions between plastics and biomolecular systems remain underexplored. Here, we have examined experimentally, in vitro, in vivo, and by computation, the impact of polystyrene (PS) NPs on a host of biomolecular systems and assemblies. Our results reveal that PS NPs essentially abolished the helix-content of the milk protein ß-lactoglobulin (BLG) in a dose-dependent manner. Helix loss is corelated with the near stoichiometric formation of ß-sheet elements in the protein. Structural alterations in BLG are also likely responsible for the nanoparticle-dependent attrition in binding affinity and weaker on-rate constant of retinol, its physiological ligand (compromising its nutritional role). PS NP-driven helix-to-sheet conversion was also observed in the amyloid-forming trajectory of hen egg-white lysozyme (accelerated fibril formation and reduced helical content in fibrils). Caenorhabditis elegans exposed to PS NPs exhibited a decrease in the fluorescence of green fluorescent protein-tagged dopaminergic neurons and locomotory deficits (akin to the neurotoxin paraquat exposure). Finally, in silico analyses revealed that the most favorable PS/BLG docking score and binding energies corresponded to a pose near the hydrophobic ligand binding pocket (calyx) of the protein where the NP fragment was found to make nonpolar contacts with side-chain residues via the hydrophobic effect and van der Waals forces, compromising side chain/retinol contacts. Binding energetics indicate that PS/BLG interactions destabilize the binding of retinol to the protein and can potentially displace retinol from the calyx region of BLG, thereby impairing its biological function. Collectively, the experimental and high-resolution in silico data provide new insights into the mechanism(s) by which PS NPs corrupt the bimolecular structure and function, induce amyloidosis and onset neuronal injury, and drive aberrant physiological and behavioral outcomes.


Subject(s)
Caenorhabditis elegans , Lactoglobulins , Muramidase , Animals , Muramidase/chemistry , Muramidase/metabolism , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Caenorhabditis elegans/metabolism , Polystyrenes/chemistry , Nanoparticles/chemistry , Vitamin A/chemistry , Vitamin A/metabolism , Humans , Homeostasis/drug effects , Plastics/chemistry
6.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732592

ABSTRACT

This review aims to evaluate the efficacy of any vitamin administration(s) in preventing and managing COVID-19 and/or long-COVID. Databases were searched up to May 2023 to identify randomized clinical trials comparing data on the effects of vitamin supplementation(s) versus placebo or standard of care on the two conditions of interest. Inverse-variance random-effects meta-analyses were conducted to estimate pooled risk ratios (RRs) and 95% confidence intervals (CIs) for all-cause mortality between supplemented and non-supplemented individuals. Overall, 37 articles were included: two regarded COVID-19 and long-COVID prevention and 35 records the COVID-19 management. The effects of vitamin D in preventing COVID-19 and long-COVID were contrasting. Similarly, no conclusion could be drawn on the efficacy of multivitamins, vitamin A, and vitamin B in COVID-19 management. A few positive findings were reported in some vitamin C trials but results were inconsistent in most outcomes, excluding all-cause mortality (RR = 0.84; 95% CI: 0.72-0.97). Vitamin D results were mixed in most aspects, including mortality, in which benefits were observed in regular administrations only (RR = 0.67; 95% CI: 0.49-0.91). Despite some benefits, results were mostly contradictory. Variety in recruitment and treatment protocols might explain this heterogeneity. Better-designed studies are needed to clarify these vitamins' potential effects against SARS-CoV-2.


Subject(s)
Ascorbic Acid , COVID-19 , Dietary Supplements , Randomized Controlled Trials as Topic , SARS-CoV-2 , Vitamin A , Vitamin D , Vitamins , Humans , COVID-19/prevention & control , COVID-19/mortality , Vitamins/therapeutic use , Vitamin D/therapeutic use , Vitamin D/administration & dosage , Ascorbic Acid/therapeutic use , Ascorbic Acid/administration & dosage , Vitamin A/therapeutic use , Vitamin A/administration & dosage , COVID-19 Drug Treatment , Vitamin B Complex/therapeutic use
7.
Nutrients ; 16(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732639

ABSTRACT

The combination of vitamin A and D derivatives with classical chemotherapeutic treatments results in more satisfactory outcomes. The use of drug combinations, such as 9cUAB130 with carboplatin and cisplatin with TAC-101, shows enhanced cytotoxic effects and reductions in ovarian tumor volume compared to single-drug treatments. Combining cisplatin with calcitriol and progesterone increases VDR expression, potentially enhancing the effectiveness of anticancer therapy in ovarian cancer. The effectiveness of vitamin derivatives in anticancer treatment may vary depending on the characteristics of the tumor and the cell line from which it originated. An increase in thiamine intake of one unit is associated with an 18% decrease in HPV infection. Higher intake of vitamin C by 50 mg/day is linked to a lower risk of cervical neoplasia. Beta-carotene, vitamin C, and vitamin E are associated with risk reductions of 12%, 15%, and 9% in endometrial cancer, respectively. A balanced daily intake of vitamins is important, as both deficiency and excess can influence cancer development. It has been observed that there is a U-shaped relationship between group B vitamins and metabolic markers and clinical outcomes.


Subject(s)
Genital Neoplasms, Female , Vitamins , Humans , Female , Vitamins/pharmacology , Vitamins/administration & dosage , Ovarian Neoplasms , Vitamin D/administration & dosage , Dietary Supplements , Antineoplastic Combined Chemotherapy Protocols , Vitamin A , Antineoplastic Agents/pharmacology , Vitamin E/pharmacology
8.
Front Endocrinol (Lausanne) ; 15: 1298851, 2024.
Article in English | MEDLINE | ID: mdl-38711977

ABSTRACT

The first evidence of the existence of vitamin A was the observation 1881 that a substance present in small amounts in milk was necessary for normal development and life. It was not until more than 100 years later that it was understood that vitamin A acts as a hormone through nuclear receptors. Unlike classical hormones, vitamin A cannot be synthesized by the body but needs to be supplied by the food as retinyl esters in animal products and ß-carotene in vegetables and fruits. Globally, vitamin A deficiency is a huge health problem, but in the industrialized world excess of vitamin A has been suggested to be a risk factor for secondary osteoporosis and enhanced susceptibility to fractures. Preclinical studies unequivocally have shown that increased amounts of vitamin A cause decreased cortical bone mass and weaker bones due to enhanced periosteal bone resorption. Initial clinical studies demonstrated a negative association between intake of vitamin A, as well as serum levels of vitamin A, and bone mass and fracture susceptibility. In some studies, these observations have been confirmed, but in other studies no such associations have been observed. One meta-analysis found that both low and high serum levels of vitamin A were associated with increased relative risk of hip fractures. Another meta-analysis also found that low levels of serum vitamin A increased the risk for hip fracture but could not find any association with high serum levels of vitamin A and hip fracture. It is apparent that more clinical studies, including large numbers of incident fractures, are needed to determine which levels of vitamin A that are harmful or beneficial for bone mass and fracture. It is the aim of the present review to describe how vitamin A was discovered and how vitamin A is absorbed, metabolized and is acting as a ligand for nuclear receptors. The effects by vitamin A in preclinical studies are summarized and the clinical investigations studying the effect by vitamin A on bone mass and fracture susceptibility are discussed in detail.


Subject(s)
Bone Density , Fractures, Bone , Vitamin A , Humans , Vitamin A/metabolism , Vitamin A/blood , Animals , Fractures, Bone/metabolism , Fractures, Bone/etiology , Fractures, Bone/epidemiology , Signal Transduction , Osteoporosis/metabolism , Vitamin A Deficiency/metabolism , Vitamin A Deficiency/complications , Bone and Bones/metabolism
9.
Sci Rep ; 14(1): 10699, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729974

ABSTRACT

In recent years it became apparent that, in mammals, rhodopsin and other opsins, known to act as photosensors in the visual system, are also present in spermatozoa, where they function as highly sensitive thermosensors for thermotaxis. The intriguing question how a well-conserved protein functions as a photosensor in one type of cells and as a thermosensor in another type of cells is unresolved. Since the moiety that confers photosensitivity on opsins is the chromophore retinal, we examined whether retinal is substituted in spermatozoa with a thermosensitive molecule. We found by both functional assays and mass spectrometry that retinal is present in spermatozoa and required for thermotaxis. Thus, starvation of mice for vitamin A (a precursor of retinal) resulted in loss of sperm thermotaxis, without affecting motility and the physiological state of the spermatozoa. Thermotaxis was restored after replenishment of vitamin A. Using reversed-phase ultra-performance liquid chromatography mass spectrometry, we detected the presence of retinal in extracts of mouse and human spermatozoa. By employing UltraPerformance convergence chromatography, we identified a unique retinal isomer in the sperm extracts-tri-cis retinal, different from the photosensitive 11-cis isomer in the visual system. The facts (a) that opsins are thermosensors for sperm thermotaxis, (b) that retinal is essential for thermotaxis, and (c) that tri-cis retinal isomer uniquely resides in spermatozoa and is relatively thermally unstable, suggest that tri-cis retinal is involved in the thermosensing activity of spermatozoa.


Subject(s)
Opsins , Retinaldehyde , Spermatozoa , Vitamin A , Male , Animals , Spermatozoa/metabolism , Spermatozoa/physiology , Mice , Opsins/metabolism , Humans , Retinaldehyde/metabolism , Vitamin A/metabolism , Taxis Response/physiology , Sperm Motility/physiology , Isomerism
10.
Sci Rep ; 14(1): 10859, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740865

ABSTRACT

Vitamin A plays a pivotal role in health, particularly in regulating fat metabolism. Despite its significance, research into the direct relationship between vitamin A levels and obesity, especially among adolescents, is sparse. This study aims to explore this association within the adolescent population in the United States. This cross-sectional study analyzed the National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2006, with 8218 participants. The levels of vitamin A in the serum were determined based on utilizing high-performance liquid chromatography with photodiode array detection. The relationship between serum vitamin A concentrations and body mass index (BMI) was evaluated using weighted multiple linear regression models, incorporating subgroup analyses by sex and race/ethnicity to provide nuanced insights. A positive correlation was observed between serum vitamin A levels and BMI, with BMI increasing progressively across vitamin A quartiles (P < 0.001). Using the lowest quartile of serum vitamin A as a reference, the BMI of the highest quartile of serum vitamin A was 1.236 times higher (95% CI 0.888, 1.585). Subgroup analyses revealed that this positive association persisted across different genders and racial/ethnic groups (P < 0.001). Notably, smooth curve fitting and saturation threshold analysis unveiled an inverted U-shaped relationship between serum vitamin A and BMI among female adolescents, non-Hispanic Whites, Mexican Americans, and other races/ethnicities groups. Our study substantiates the association between serum vitamin A levels and the risk of obesity/overweight status in adolescents. The findings suggest the potential serum vitamin A is an early biomarker for identifying obesity risk, although further studies are needed to determine to clarify its role as a contributing factor to obesity. This study contributes to the understanding of nutritional influences on adolescent obesity, highlighting the need for targeted interventions based on serum biomarkers.


Subject(s)
Body Mass Index , Nutrition Surveys , Vitamin A , Humans , Adolescent , Female , Male , Vitamin A/blood , Cross-Sectional Studies , United States/epidemiology , Obesity/blood , Obesity/epidemiology , Child
11.
Front Cell Infect Microbiol ; 14: 1404960, 2024.
Article in English | MEDLINE | ID: mdl-38803574

ABSTRACT

Staphylococcus aureus and Staphylococcus epidermidis stand as notorious threats to human beings owing to the myriad of infections they cause. The bacteria readily form biofilms that help in withstanding the effects of antibiotics and the immune system. Intending to combat the biofilm formation and reduce the virulence of the pathogens, we investigated the effects of carotenoids, crocetin, and crocin, on four Staphylococcal strains. Crocetin was found to be the most effective as it diminished the biofilm formation of S. aureus ATCC 6538 significantly at 50 µg/mL without exhibiting bactericidal effect (MIC >800 µg/mL) and also inhibited the formation of biofilm by MSSA 25923 and S. epidermidis at a concentration as low as 2 µg/mL, and that by methicillin-resistant S. aureus MW2 at 100 µg/mL. It displayed minimal to no antibiofilm efficacy on the Gram-negative strains Escherichia coli O157:H7 and Pseudomonas aeruginosa as well as a fungal strain of Candida albicans. It could also curb the formation of fibrils, which partly contributes to the biofilm formation in S. epidermidis. Additionally, the ADME analysis of crocetin proclaims how relatively non-toxic the chemical is. Also, crocetin displayed synergistic antibiofilm characteristics in combination with tobramycin. The presence of a polyene chain with carboxylic acid groups at its ends is hypothesized to contribute to the strong antibiofilm characteristics of crocetin. These findings suggest that using apocarotenoids, particularly crocetin might help curb the biofilm formation by S. aureus and S. epidermidis.


Subject(s)
Anti-Bacterial Agents , Biofilms , Carotenoids , Microbial Sensitivity Tests , Staphylococcus epidermidis , Vitamin A , Biofilms/drug effects , Carotenoids/pharmacology , Vitamin A/analogs & derivatives , Vitamin A/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus epidermidis/drug effects , Candida albicans/drug effects , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Staphylococcus/drug effects
12.
Cochrane Database Syst Rev ; 5: CD015306, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38738639

ABSTRACT

BACKGROUND: According to global prevalence analysis studies, acute upper respiratory tract infections (URTIs) are the most common acute infectious disease in children, especially in preschool children. Acute URTIs lead to an economic burden on families and society. Vitamin A refers to the fat-soluble compound all-trans-retinol and also represents retinol and its active metabolites. Vitamin A interacts with both the innate immune system and the adaptive immune system and improves the host's defences against infections. Correlation studies show that serum retinol deficiency was associated with a higher risk of respiratory tract infections. Therefore, vitamin A supplementation may be important in preventing acute URTIs. OBJECTIVES: To assess the effectiveness and safety of vitamin A supplements for preventing acute upper respiratory tract infections in children up to seven years of age. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, the Chinese Biomedical Literature Database, and two trial registration platforms to 8 June 2023. We also checked the reference lists of all primary studies and reviewed relevant systematic reviews and trials for additional references. We imposed no language or publication restrictions. SELECTION CRITERIA: We included randomised controlled trials (RCTs), which evaluated the role of vitamin A supplementation in the prevention of acute URTIs in children up to seven years of age. DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. MAIN RESULTS: We included six studies (27,351 participants). Four studies were RCTs and two were cluster-RCTs. The included studies were all conducted in lower-middle-income countries (two in India, two in South Africa, one in Ecuador, and one in Haiti). Three studies included healthy children who had no vitamin A deficiency, one study included children born to HIV-infected women, one study included low-birthweight neonates, and one study included children in areas with a high local prevalence of malnutrition and xerophthalmia. In two studies, vitamin E was a co-treatment administered in addition to vitamin A. We judged the included studies to be at either a high or unclear risk of bias for random sequence generation, incomplete outcome data, and blinding. Primary outcomes Six studies reported the incidence of acute URTIs during the study period. Five studies reported the number of acute URTIs over a period of time, but there was population heterogeneity and the results were presented in different forms, therefore only three studies were meta-analysed. We are uncertain of the effect of vitamin A supplementation on the number of acute URTIs over two weeks (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.92 to 1.09; I2 = 44%; 3 studies, 22,668 participants; low-certainty evidence). Two studies reported the proportion of participants with an acute URTI. We are uncertain of the effect of vitamin A supplementation on the proportion of participants with an acute URTI (2 studies, 15,535 participants; low-certainty evidence). Only one study (116 participants) reported adverse events. No infant in either the placebo or vitamin A group was found to have feeding difficulties (failure to feed or vomiting), a bulging fontanelle, or neurological signs before or after vitamin A administration (very low-certainty evidence). Secondary outcomes Two studies (296 participants) reported the severity of subjective symptoms, presented by the mean duration of acute URTI. Vitamin A may have little to no effect on the mean duration of acute URTI (very low-certainty evidence). AUTHORS' CONCLUSIONS: The evidence for the use of vitamin A supplementation to prevent acute URTI is uncertain, because population, dose and duration of interventions, and outcomes vary between studies. From generally very low- to low-certainty evidence, we found that there may be no benefit in the use of vitamin A supplementation to prevent acute URTI in children up to seven years of age. More RCTs are needed to strengthen the current evidence. Future research should report over longer time frames using validated tools and consistent reporting, and ensure adequate power calculations, to allow for easier synthesis of data. Finally, it is important to assess vitamin A supplementation for preschool children with vitamin A deficiency.


Subject(s)
Dietary Supplements , Randomized Controlled Trials as Topic , Respiratory Tract Infections , Vitamin A , Vitamins , Humans , Vitamin A/administration & dosage , Respiratory Tract Infections/prevention & control , Child, Preschool , Infant , Acute Disease , Child , Vitamins/administration & dosage , Vitamin A Deficiency/prevention & control , Administration, Oral , Bias
13.
Food Funct ; 15(10): 5510-5526, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38690968

ABSTRACT

This investigation assessed associations between dietary carotenoid intake and the odds of overweight/obesity, as well as inflammatory/oxidative stress biomarkers, in 851 participants with overweight/obesity (BMI ≥25 kg m-2) and 754 normal-weight controls. A 124-item food-frequency-questionnaire (FFQ) and food composition databases were employed to estimate carotenoid intake. Binary logistic regressions assessed the association of carotenoid intake with the odds of overweight/obesity, adjusting for several potential confounders. Multiple linear regression models revealed associations between carotenoid intake and biomarkers (anthropometrics, blood lipids, inflammation, antioxidant status). Logistic regression models adjusted for various confounders and fruits and vegetables showed protective associations for provitamin A carotenoids (i.e., ß-carotene + α-carotene + ß-cryptoxanthin; odds ratio (OR): 0.655, p = 0.041) and astaxanthin (OR: 0.859, p = 0.017). Similarly adjusted multiple linear regressions revealed significant associations between several carotenoids and lower levels of interleukin (IL)-6, IL-1ß, and TNF-α and increased IL-10 and total antioxidant capacity. Further analysis revealed that lycopene was significantly associated with increased odds of overweight/obesity (OR: 1.595, p = 0.032) in a model adjusted for various confounders and vegetables (i.e., unadjusted for fruits). A protective association between the sum of provitamin A carotenoid and astaxanthin dietary intake and the odds of having overweight/obesity was found. The findings that carotenoids other than lycopene were not or inversely associated with the odds of overweight/obesity may point toward differentiating effects of various carotenoids or their associations with different food groups. Provitamin A rich food items including fruits and vegetables appear to be a prudent strategy to reduce inflammation and the odds of having overweight/obesity.


Subject(s)
Biomarkers , Carotenoids , Inflammation , Obesity , Overweight , Oxidative Stress , Humans , Carotenoids/administration & dosage , Female , Oxidative Stress/drug effects , Male , Biomarkers/blood , Middle Aged , Case-Control Studies , Adult , Inflammation/blood , Vitamin A/administration & dosage , Vitamin A/blood , Provitamins/administration & dosage , beta Carotene/administration & dosage , Vegetables/chemistry , Diet , Fruit , Xanthophylls/administration & dosage , Xanthophylls/pharmacology , Beta-Cryptoxanthin/administration & dosage , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Interleukin-1beta/blood
14.
Nature ; 629(8013): 869-877, 2024 May.
Article in English | MEDLINE | ID: mdl-38693267

ABSTRACT

Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.


Subject(s)
Cell Plasticity , Epithelial Cells , Regeneration , Respiratory Mucosa , Stem Cells , Animals , Female , Humans , Male , Mice , Epithelial Cells/cytology , Epithelial Cells/pathology , Metaplasia/etiology , Metaplasia/pathology , Respiratory Mucosa/cytology , Respiratory Mucosa/injuries , Respiratory Mucosa/pathology , Stem Cells/cytology , Tretinoin/metabolism , Tretinoin/pharmacology , Vitamin A/metabolism , Vitamin A/pharmacology , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Mice, Inbred C57BL
15.
BMJ Open ; 14(5): e078053, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816049

ABSTRACT

OBJECTIVES: This systematic review with meta-analyses of randomised trials evaluated the preventive effects of vitamin A supplements versus placebo or no intervention on clinically important outcomes, in people of any age. METHODS: We searched different electronic databases and other resources for randomised clinical trials that had compared vitamin A supplements versus placebo or no intervention (last search 16 April 2024). We used Cochrane methodology. We used the random-effects model to calculate risk ratios (RRs), with 95% CIs. We analysed individually and cluster randomised trials separately. Our primary outcomes were mortality, adverse events and quality of life. We assessed risks of bias in the trials and used Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) to assess the certainty of the evidence. RESULTS: We included 120 randomised trials (1 671 672 participants); 105 trials allocated individuals and 15 allocated clusters. 92 trials included children (78 individually; 14 cluster randomised) and 28 adults (27 individually; 1 cluster randomised). 14/105 individually randomised trials (13%) and none of the cluster randomised trials were at overall low risk of bias. Vitamin A did not reduce mortality in individually randomised trials (RR 0.99, 95% CI 0.93 to 1.05; I²=32%; p=0.19; 105 trials; moderate certainty), and this effect was not affected by the risk of bias. In individually randomised trials, vitamin A had no effect on mortality in children (RR 0.96, 95% CI 0.88 to 1.04; I²=24%; p=0.28; 78 trials, 178 094 participants) nor in adults (RR 1.04, 95% CI 0.97 to 1.13; I²=24%; p=0.27; 27 trials, 61 880 participants). Vitamin A reduced mortality in the cluster randomised trials (0.84, 95% CI 0.76 to 0.93; I²=66%; p=0.0008; 15 trials, 14 in children and 1 in adults; 364 343 participants; very low certainty). No trial reported serious adverse events or quality of life. Vitamin A slightly increased bulging fontanelle of neonates and infants. We are uncertain whether vitamin A influences blindness under the conditions examined. CONCLUSIONS: Based on moderate certainty of evidence, vitamin A had no effect on mortality in the individually randomised trials. Very low certainty evidence obtained from cluster randomised trials suggested a beneficial effect of vitamin A on mortality. If preventive vitamin A programmes are to be continued, supporting evidence should come from randomised trials allocating individuals and assessing patient-meaningful outcomes. PROSPERO REGISTRATION NUMBER: CRD42018104347.


Subject(s)
Dietary Supplements , Randomized Controlled Trials as Topic , Vitamin A , Humans , Vitamin A/administration & dosage , Vitamin A/therapeutic use , Primary Prevention/methods , Secondary Prevention/methods , Quality of Life , Vitamins/therapeutic use , Vitamins/administration & dosage
16.
Front Immunol ; 15: 1397118, 2024.
Article in English | MEDLINE | ID: mdl-38812505

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes a highly contagious enteric disease with major economic losses to swine production worldwide. Due to the immaturity of the neonatal piglet immune system and given the high virulence of PEDV, improving passive lactogenic immunity is the best approach to protect suckling piglets against the lethal infection. We tested whether oral vitamin A (VA) supplementation and PEDV exposure of gestating and lactating VA-deficient (VAD) sows would enhance their primary immune responses and boost passive lactogenic protection against the PEDV challenge of their piglets. We demonstrated that PEDV inoculation of pregnant VAD sows in the third trimester provided higher levels of lactogenic protection of piglets as demonstrated by >87% survival rates of their litters compared with <10% in mock litters and that VA supplementation to VAD sows further improved the piglets' survival rates to >98%. We observed significantly elevated PEDV IgA and IgG antibody (Ab) titers and Ab-secreting cells (ASCs) in VA-sufficient (VAS)+PEDV and VAD+VA+PEDV sows, with the latter maintaining higher Ab titers in blood prior to parturition and in blood and milk throughout lactation. The litters of VAD+VA+PEDV sows also had the highest serum PEDV-neutralizing Ab titers at piglet post-challenge days (PCD) 0 and 7, coinciding with higher PEDV IgA ASCs and Ab titers in the blood and milk of their sows, suggesting an immunomodulatory role of VA in sows. Thus, sows that delivered sufficient lactogenic immunity to their piglets provided the highest passive protection against the PEDV challenge. Maternal immunization during pregnancy (± VA) and VA sufficiency enhanced the sow primary immune responses, expression of gut-mammary gland trafficking molecules, and passive protection of their offspring. Our findings are relevant to understanding the role of VA in the Ab responses to oral attenuated vaccines that are critical for successful maternal vaccination programs against enteric infections in infants and young animals.


Subject(s)
Adaptive Immunity , Antibodies, Viral , Coronavirus Infections , Immunity, Maternally-Acquired , Porcine epidemic diarrhea virus , Swine Diseases , Vitamin A , Animals , Porcine epidemic diarrhea virus/immunology , Female , Swine , Pregnancy , Vitamin A/administration & dosage , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/blood , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Animals, Newborn , Lactation/immunology , Dietary Supplements , Vitamin A Deficiency/immunology , Immunization
17.
Eur J Pharm Sci ; 198: 106784, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705422

ABSTRACT

To investigate the effect of retinoids, such as retinol (ROL), retinal (RAL), and retinyl palmitate (RP), on epidermal integrity, skin deposition, and bioconversion to retinoic acid (RA). 3-D human skin equivalent model (EpiDermFT™) was used. Epidermal cellular integrity measured by TEER values was significantly higher for a topical treatment of ROL and RAL than RP (p < 0.05). The skin deposition (µM) of ROL and RAL was approximately 269.54 ± 73.94 and 211.35 ± 20.96, respectively, greater than that of RP (63.70 ± 37.97) over 2 h incubation. Spectral changes were revealed that the CO maximum absorbance occurred between 1600∼1800 cm-1 and was greater from ROL than that from RAL and RP, indicating conjugation of R-OH to R-CHO or R-COOH could strongly occur after ROL treatment. Subsequently, a metabolite from the bioconversion of ROL and RAL was identified as RA, which has a product ion of m/z 283.06, by using liquid a chromatography-mass spectrometry (LC-MS) - total ion chromatogram (TIC). The amount of bioconversion from ROL and RAL to RA in artificial skin was 0.68 ± 0.13 and 0.70 ± 0.10 µM at 2 h and 0.60 ± 0.04 and 0.57 ± 0.06 µM at 24 h, respectively. RA was not detected in the skin and the receiver compartment after RP treatment. ROL could be a useful dermatological ingredient to maintain epidermal integrity more effectively, more stably deposit on the skin, and more steadily metabolize to RA than other retinoids such as RAL and RP.


Subject(s)
Retinaldehyde , Retinoids , Skin , Tretinoin , Humans , Tretinoin/metabolism , Skin/metabolism , Retinoids/metabolism , Retinaldehyde/metabolism , Kinetics , Retinyl Esters/metabolism , Vitamin A/analogs & derivatives , Vitamin A/metabolism , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Mass Spectrometry , Models, Biological , Epidermis/metabolism , Skin Absorption
18.
Food Chem ; 452: 139520, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723573

ABSTRACT

The current study addresses the growing demand for sustainable plant-based cheese alternatives by employing molecular docking and deep learning algorithms to optimize protein-ligand interactions. Focusing on key proteins (zein, soy, and almond protein) along with tocopherol and retinol, the goal was to improve texture, nutritional value, and flavor characteristics via dynamic simulations. The findings demonstrated that the docking analysis presented high accuracy in predicting conformational changes. Flexible docking algorithms provided insights into dynamic interactions, while analysis of energetics revealed variations in binding strengths. Tocopherol exhibited stronger affinity (-5.8Kcal/mol) to zein compared to retinol (-4.1Kcal/mol). Molecular dynamics simulations offered comprehensive insights into stability and behavior over time. The integration of machine learning algorithms improved the classification and the prediction accuracy, achieving a rate of 71.59%. This study underscores the significance of molecular understanding in driving innovation in the plant-based cheese industry, facilitating the development of sustainable alternatives to traditional dairy products.


Subject(s)
Cheese , Molecular Docking Simulation , Plant Proteins , Prunus dulcis , Tocopherols , Vitamin A , Zein , Plant Proteins/chemistry , Plant Proteins/metabolism , Cheese/analysis , Prunus dulcis/chemistry , Vitamin A/chemistry , Vitamin A/metabolism , Tocopherols/chemistry , Tocopherols/metabolism , Zein/chemistry , Zein/metabolism , Molecular Dynamics Simulation , Machine Learning , Glycine max/chemistry , Glycine max/metabolism , Support Vector Machine
19.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791104

ABSTRACT

The published data on the vitamin status of patients with phenylketonuria (PKU) is contradictory; therefore, this systematic review and meta-analysis evaluated the vitamin status of PKU patients. A comprehensive search of multiple databases (PubMed, Web of Sciences, Cochrane, and Scopus) was finished in March 2024. The included studies compared vitamin levels between individuals diagnosed with early-treated PKU and healthy controls while excluding pregnant and lactating women, untreated PKU or hyperphenylalaninemia cases, control groups receiving vitamin supplementation, PKU patients receiving tetrahydrobiopterin or pegvaliase, and conference abstracts. The risk of bias in the included studies was assessed by the Newcastle-Ottawa scale. The effect sizes were expressed as standardised mean differences. The calculation of effect sizes with 95% CI using fixed-effects models and random-effects models was performed. A p-value < 0.05 was considered statistically significant. The study protocol was registered in the PROSPERO database (CRD42024519589). Out of the initially identified 11,086 articles, 24 met the criteria. The total number of participants comprised 770 individuals with PKU and 2387 healthy controls. The meta-analyses of cross-sectional and case-control studies were conducted for vitamin B12, D, A, E, B6 and folate levels. PKU patients demonstrated significantly higher folate levels (random-effects model, SMD: 1.378, 95% CI: 0.436, 2.320, p = 0.004) and 1,25-dihydroxyvitamin D concentrations (random-effects model, SMD: 2.059, 95% CI: 0.250, 3.868, p = 0.026) compared to the controls. There were no significant differences in vitamin A, E, B6, B12 or 25-dihydroxyvitamin D levels. The main limitations of the evidence include a limited number of studies and their heterogeneity and variability in patients' compliance. Our findings suggest that individuals with PKU under nutritional guidance can achieve a vitamin status comparable to that of healthy subjects. Our study provides valuable insights into the nutritional status of PKU patients, but further research is required to confirm these findings and explore additional factors influencing vitamin status in PKU.


Subject(s)
Phenylketonurias , Vitamins , Phenylketonurias/blood , Humans , Vitamins/blood , Vitamin D/blood , Vitamin D/analogs & derivatives , Folic Acid/blood , Vitamin B 12/blood , Vitamin A/blood
20.
Clin Nutr ESPEN ; 61: 119-130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777423

ABSTRACT

BACKGROUND & AIMS: Serum retinol (ROH) is commonly used for population level assessment of vitamin A status. High-performance liquid chromatography (HPLC) is considered most accurate method for measuring ROH. However, with the technical difficulty of using HPLC for routine assays, serum retinol-binding protein (RBP) measured by immunological assays is expected to be a surrogate marker for ROH, with reports of a close correlation between serum RBP and ROH. Nevertheless, RBP is not commonly tested to assess vitamin A status with concerns over RBP alterations under various physiopathological conditions. Thus, we reappraised the extent to which RBP could be used as a surrogate marker in representative disorders that alter serum RBP levels. As a related marker, diagnostic utility of transthyretin (TTR) was also evaluated. METHODS: To evaluate the reliability of ROH and RBP assays, specimen stability was assessed in terms of (1) storage at 25, 4, -20, and -80 °C for 1-28 days, (2) five-cycle freeze-thawing, and (3) fluorescent light exposure for 1-14 days. Sources of variation (sex, age, body mass index [BMI], and drinking habits) and reference intervals for ROH, RBP, and TTR were determined in 617 well-defined healthy individuals. To investigate the influence of disorders that affect serum RBP, patients with five diagnostic groups were enrolled: 26 with chronic kidney disease (CKD); 13 with various malignancies in advanced stages (AdM), 12 with acute bacterial infections (ABI), 6 with liver cirrhosis (LC), and 26 with simple obesity (BMI ≥ 27 kg/m2). RESULTS: The stability of RBP and ROH in serum was confirmed under all conditions. In healthy individuals, serum ROH, RBP, and TTR were appreciably high in males with a slight increase in proportion to age and BMI. The major-axis regression line between RBP (x) and ROH (y) in healthy individuals was y = x, with a correlation coefficient of 0.986. In the LC, AdM, and ABI groups, similar strong correlations were observed; however, the regression lines were shifted slightly rightward from the healthy group line, indicating a positive bias in estimating ROH. Interestingly, the same analyses between TTR and ROH revealed similar strong linear relationships in all groups; however, the regression line of each group showed a leftward (opposite) shift from the healthy group line. Based on these observations, we developed a novel regression model composed of RBP and TTR, which gave much improved accuracy in estimating ROH, even under these pathological conditions. CONCLUSIONS: The perfect RBP-ROH correlation in healthy individuals indicates the utility of RPB as a surrogate marker for ROH. Nevertheless, under RBP-altered conditions, a slight overestimation of ROH is inevitable. However, when the TTR was tested together, the bias can be corrected almost perfectly using the novel ROH estimation formula comprising RBP and TTR.


Subject(s)
Biomarkers , Prealbumin , Retinol-Binding Proteins , Vitamin A , Humans , Biomarkers/blood , Male , Vitamin A/blood , Female , Middle Aged , Adult , Retinol-Binding Proteins/analysis , Retinol-Binding Proteins/metabolism , Prealbumin/analysis , Prealbumin/metabolism , Aged , Reproducibility of Results , Chromatography, High Pressure Liquid , Body Mass Index , Young Adult , Nutritional Status
SELECTION OF CITATIONS
SEARCH DETAIL
...