Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.662
Filter
1.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999785

ABSTRACT

Excessive vitamin A (VA) negatively impacts bone. Interactions between VA and vitamin D (VD) in bone health are not well-understood. This study used a traditional two-by-two factorial design. Pigs were weaned and randomized to four treatments (n = 13/group): -A-D, -A+D, +A-D, and +A+D for 3 and 5 wk. Serum, liver, kidney, adrenal glands, spleen, and lung were analyzed by ultra-performance LC. Growth was evaluated by weight measured weekly and BMD by DXA. Weights were higher in -A+D (18.1 ± 1.0 kg) and +A+D (18.2 ± 2.3 kg) at 5 wk than in -A-D (15.5 ± 2.1 kg) and +A-D (15.8 ± 1.5 kg). Serum retinol concentrations were 0.25 ± 0.023, 0.22 ± 0.10, 0.77 ± 0.12, and 0.84 ± 0.28 µmol/L; and liver VA concentrations were 0.016 ± 0.015, 0.0065 ± 0.0035, 2.97 ± 0.43, 3.05 ± 0.68 µmol/g in -A-D, -A+D, +A-D, and +A+D, respectively. Serum 25(OH)D3 concentrations were 1.5 ± 1.11, 1.8 ± 0.43, 27.7 ± 8.91, and 23.9 ± 6.67 ng/mL in -A-D, +A-D, -A+D, +A+D, respectively, indicating a deficiency in -D and adequacy in +D. BMD was highest in +D (p < 0.001). VA and the interaction had no effect on BMD. Dietary VD influenced weight gain, BMD, and health despite VA status.


Subject(s)
Bone Density , Vitamin A Deficiency , Vitamin A , Vitamin D , Animals , Bone Density/drug effects , Vitamin D/blood , Swine , Vitamin A/blood , Female , Male , Disease Models, Animal , Liver/metabolism , Liver/drug effects , Dietary Supplements
2.
Front Endocrinol (Lausanne) ; 15: 1417656, 2024.
Article in English | MEDLINE | ID: mdl-39006361

ABSTRACT

Introduction: Maternal nutritional and vitamin status during pregnancy may have long-term effects on offspring health and disease. The aim of this study was to examine the associations between maternal vitamin A and D status in pregnancy and offspring bone mineral content (BMC) at nine years of age. Methods: This is a post-hoc study of a randomized control trial including 855 pregnant women from two Norwegian cities; Trondheim and Stavanger. The women were randomized into an exercise intervention or standard antenatal care. Mother and child pairs for the present study were recruited from those still living in Trondheim after 8-10 years. Serum vitamin A (retinol) and vitamin D (25(OH)D) were measured in the 2nd and 3rd trimesters of pregnancy, and active vitamin D (1,25(OH)2D) in serum was measured in a subgroup. Spine BMC and trabecular bone score were measured in the children at nine years of age. Associations were analyzed with linear regression models. Results: A total of 119 mother and child pairs were included in the analyses. Vitamin A insufficiency (retinol< 1.05 µmol/L) and vitamin D deficiency (25(OH)D< 50 mmol/L) increased from ~7% to ~43% and from ~28% to ~33%, respectively, from the 2nd to the 3rd trimester. An increase in serum 1,25(OH)2D from the 2nd to the 3rd trimester was observed in the subgroup. There was a negative association between serum retinol in the 2nd trimester and spine BMC in the boys, but not in the girls, when adjusted for maternal and child confounders. No other associations between maternal serum vitamin A or D and BMC in the children were found. Conclusion: We observed a high prevalence of vitamin A insufficiency and vitamin D deficiency during pregnancy. A negative association between mid-pregnancy vitamin A status and spine BMC was observed in boys, but not girls, while no associations were found between maternal vitamin D status and child BMC. The implications of optimal vitamin A and D status in pregnancy for offspring bone health, remains a subject for further investigations.


Subject(s)
Bone Density , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Vitamin A , Vitamin D , Humans , Female , Pregnancy , Vitamin A/blood , Vitamin D/blood , Pregnancy Trimester, Third/blood , Male , Child , Adult , Pregnancy Trimester, Second/blood , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/blood , Vitamin A Deficiency/blood , Vitamin A Deficiency/epidemiology , Norway/epidemiology , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/epidemiology
3.
Ann N Y Acad Sci ; 1537(1): 98-112, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973341

ABSTRACT

To reduce micronutrient deficiencies, Senegal mandates the fortification of refined oil with vitamin A and wheat flour with iron and folic acid. Expanding Senegal's large-scale food fortification programs to include fortified bouillon could help fill the remaining gaps in dietary micronutrient requirements. Using 7-day household food consumption data collected between 2018 and 2019, we assessed the potential contributions of bouillon fortified with vitamin A (40-250 µg/g bouillon), folic acid (20-120 µg/g), vitamin B12 (0.2-2 µg/g), iron (0.6-5 mg/g), and zinc (0.6-5 mg/g) for meeting micronutrient requirements of women of reproductive age (WRA; 15-49 years old) and children (6-59 months old). Most households (90%) reported consuming bouillon, including poor and rural households. At modeled fortification levels, bouillon fortification reduced the national prevalence of inadequacy by up to ∼20 percentage points (pp) for vitamin A, 34 pp (WRA) and 20 pp (children) for folate, 20 pp for vitamin B12, 38 pp (WRA) and 30 pp (children) for zinc, and ∼8 pp for iron. Predicted reductions in inadequacy were generally larger among poor and rural populations, especially for vitamins A and B12. Our modeling suggests that bouillon fortification has the potential to substantially reduce dietary inadequacy of multiple micronutrients and could also help address inequities in dietary micronutrient inadequacies in Senegal.


Subject(s)
Food, Fortified , Micronutrients , Humans , Senegal , Female , Child, Preschool , Micronutrients/administration & dosage , Infant , Adolescent , Adult , Middle Aged , Young Adult , Male , Folic Acid/administration & dosage , Nutritional Requirements , Zinc/administration & dosage , Vitamin A/administration & dosage , Flour/analysis , Family Characteristics
4.
Invest Ophthalmol Vis Sci ; 65(8): 9, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958967

ABSTRACT

Purpose: Light detection destroys the visual pigment. Its regeneration, necessary for the recovery of light sensitivity, is accomplished through the visual cycle. Release of all-trans retinal by the light-activated visual pigment and its reduction to all-trans retinol comprise the first steps of the visual cycle. In this study, we determined the kinetics of all-trans retinol formation in human rod and cone photoreceptors. Methods: Single living rod and cone photoreceptors were isolated from the retinas of human cadaver eyes (ages 21 to 90 years). Formation of all-trans retinol was measured by imaging its outer segment fluorescence (excitation, 360 nm; emission, >420 nm). The extent of conversion of released all-trans retinal to all-trans retinol was determined by measuring the fluorescence excited by 340 and 380 nm. Measurements were repeated with photoreceptors isolated from Macaca fascicularis retinas. Experiments were carried out at 37°C. Results: We found that ∼80% to 90% of all-trans retinal released by the light-activated pigment is converted to all-trans retinol, with a rate constant of 0.24 to 0.55 min-1 in human rods and ∼1.8 min-1 in human cones. In M. fascicularis rods and cones, the rate constants were 0.38 ± 0.08 min-1 and 4.0 ± 1.1 min-1, respectively. These kinetics are several times faster than those measured in other vertebrates. Interphotoreceptor retinoid-binding protein facilitated the removal of all-trans retinol from human rods. Conclusions: The first steps of the visual cycle in human photoreceptors are several times faster than in other vertebrates and in line with the rapid recovery of light sensitivity exhibited by the human visual system.


Subject(s)
Macaca fascicularis , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Vitamin A , Humans , Retinal Cone Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/metabolism , Aged , Retinal Rod Photoreceptor Cells/physiology , Aged, 80 and over , Middle Aged , Adult , Vitamin A/metabolism , Animals , Young Adult , Male , Retinaldehyde/metabolism , Cadaver , Female , Vision, Ocular/physiology , Retinal Pigments/metabolism
5.
Reprod Domest Anim ; 59(7): e14660, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962998

ABSTRACT

The objectives of this experiment were to evaluate the effects of supplementation of Nellore (Bos indicus) cows with ß-carotene + vitamins A + D3 + E + biotin on body condition score (BCS), oestrus, pregnancy, and foetal morphometry. Lactating cows (n = 497) from two herds were balanced for BCS and calving period [early calving (EC); late calving (LC)] and were assigned randomly to: Control (n = 251)-supplementation with a mineral supplement; and SUP (n = 246)-supplementation with the mineral supplement fed to control + ß-carotene (150 mg/day) + vitamin A (40,000 IU/day) + vitamin D3 (5000 IU/day) + vitamin E (300 mg/day) + biotin (20 mg/day). Cows were supplemented from Days -30 to 30 (Day 0 = timed artificial insemination; TAI). Pregnancy was diagnosed 30 days after TAI and foetal crown-rump distance and thoracic diameter were measured at 30 and 77 days of gestation. Cows in the SUP treatment were more likely to have BCS ≥3.0 on Day 0 (63.0 ± 3.1 vs. 60.2 ± 3.1; p < .01) and were more likely to gain BCS from Days -30 to 30 (57.7 ± 3.3 vs. 44.1 ± 3.3%; p < .01). Fewer LC cows in the SUP treatment were detected in oestrus at the time of the first TAI (Control: LC: 75.4 ± 4.4 vs. SUP: LC: 64.0 ± 5.2 vs. Control: EC: 65.3 ± 4.0 vs. SUP: EC: 71.8 ± 3.7; p = .04). There was a tendency for the SUP treatment to increase pregnancy to the first TAI (64.2 ± 3.0 vs. 56.6 ± 3.1%; p = .08). A greater percentage of SUP cows was detected in oestrus at the time of the second TAI (70.1 ± 5.0 vs. 52.3 ± 4.8%; p = .01). The SUP treatment increased pregnancy to the second TAI among LC cows (SUP: LC: 75.9 ± 8.0% vs. Control: LC: 50.0 ± 8.3% vs. Control: EC: 52.0 ± 5.9% vs. SUP: EC: 41.4 ± 6.5%; p = .02). The SUP treatment increased foetal size (crown-rump; p = .04 and thoracic diameter; p < .01) at 30 days of gestation and, despite decreasing crow-rump length at 77 days after the first TAI among EC cows (p < .01), it increased the thoracic diameter at 77 days after the first TAI independent of calving season. Our results support that pregnancy establishment and foetal growth can be improved when grazing Nellore cows are supplemented with ß-carotene and vitamins A + D3 + E + biotin.


Subject(s)
Biotin , Dietary Supplements , Estrus , Vitamin A , Vitamin E , beta Carotene , Animals , Cattle , Female , Pregnancy , Vitamin A/administration & dosage , Vitamin A/pharmacology , beta Carotene/administration & dosage , beta Carotene/pharmacology , Vitamin E/administration & dosage , Vitamin E/pharmacology , Estrus/drug effects , Biotin/administration & dosage , Biotin/pharmacology , Cholecalciferol/pharmacology , Cholecalciferol/administration & dosage , Ovarian Follicle/drug effects , Diet/veterinary , Vitamins/administration & dosage , Vitamins/pharmacology , Animal Feed , Lactation , Fetus/drug effects
6.
Nat Commun ; 15(1): 5204, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890302

ABSTRACT

Faecal microbiota plays a critical role in human health, but its relationship with nutritional status among schoolchildren remains under-explored. Here, in a double-blinded cluster-randomized controlled trial on 380 Cambodian schoolchildren, we characterize the impact of six months consumption of two types of rice fortified with different levels of vitamins and minerals on pre-specified outcomes. We investigate the association between the faecal microbiota (16SrRNA sequencing) and age, sex, nutritional status (underweight, stunting), micronutrient status (iron, zinc and vitamin A deficiencies, anaemia, iron deficient anaemia, hemoglobinopathy), inflammation (systemic, gut), and parasitic infection. We show that the faecal microbiota is characterised by a surprisingly high proportion of Lactobacillaceae. We discover that deficiencies in specific micronutrients, such as iron and vitamin A, correlate with particular microbiota profiles, whereas zinc deficiency shows no such association. The nutritional intervention with the two rice treatments impacts both the composition and functions predicted from compositional analysis in different ways. (ClinicalTrials.gov (Identifier: NCT01706419)).


Subject(s)
Feces , Food, Fortified , Inflammation , Micronutrients , Nutritional Status , Oryza , Humans , Feces/microbiology , Female , Male , Double-Blind Method , Child , Gastrointestinal Microbiome/drug effects , Biomarkers/blood , Adolescent , Vitamin A/administration & dosage , Vitamin A/blood , Zinc/deficiency
7.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 85-91, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836676

ABSTRACT

Skin photoaging is a skin degenerative disease that causes patients to develop malignant tumors. The existing clinical treatment of photoaging has limitations. This greatly reduces the recovery rate of photoaging patients. Studies have confirmed that Ligusticum wallichii Franch (LWF) monomer tetramethylpyrazine (TMP) alleviates various skin diseases. The combination of traditional Chinese medicine and Western medicine helps with this process. Our research aimed to explore the specific treatment mode and molecular mechanism of TMP in treating skin photoaging. CCK-8 assays were used to evaluate the activity and toxicity of HaCaT cells. ß-galactosidase aging, Carbonyl compound and nitrosylated tyrosine assays were used to analyze the aging of HaCaT cells. ROS assays and ELISA were used to analyze the enrichment of ROS. The molecular docking experiment analyzed the binding of TMP and HIF-1α. qRT-PCR and Western blot were used to detect the activation of skin aging-related pathways. HE staining was used to analyze the thickness of the stratum corneum skin on the back skin of mice. 200µg/L LWF alleviates cellular photoaging and mouse skin photoaging by reducing ROS enrichment. Its monomer TMP plays an important role in this process. The combination of TMP and HIF-1α accelerates the degradation of ROS by activating the Nrf2/ARE signaling pathway. This process reduces the apoptosis of cells damaged by light. In addition, we also found that the combination of TMP and retinoic acid (RA) is more beneficial for the treatment of skin damage caused by light in mice. The combination therapy of TMP and RA alleviates skin oxidative stress response through overexpression of HIF-1α. This plan is beneficial for the treatment of skin photoaging.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Pyrazines , Reactive Oxygen Species , Signal Transduction , Skin Aging , Vitamin A , Pyrazines/pharmacology , Skin Aging/drug effects , Skin Aging/radiation effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Humans , Reactive Oxygen Species/metabolism , Mice , Signal Transduction/drug effects , Vitamin A/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology , Skin/radiation effects , HaCaT Cells , Molecular Docking Simulation
8.
Clin Chim Acta ; 561: 119822, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38908772

ABSTRACT

BACKGROUND: Establishing adequate reference intervals (RIs) for vitamins A and E is essential for diagnosing and preventing deficiencies. Due to the current boom in data mining and its easy applicability, more laboratories are establishing RIs using indirect methods. Our study aims to obtain RIs using four indirect data-mining procedures (Bhattacharya, Hoffmann, Kosmic, and RefineR) for vitamins A and E. MATERIAL AND METHODS: 8943 individuals were collected to establish the RIs. After using different data cleaning steps and checking whether these data should be divided according to age and gender based on multiple linear regression and variance component analyses, indirect RIs were calculated using specific Excel spreadsheets or R-packages software. RESULTS: A total of 2004 records were eligible. For vitamin A, the RIs obtained were (1.11 - 2.68) µmol/L, (1.13 - 2.70) µmol/L, (1.13 - 2.71) µmol/L, and (1.17 - 2.66) µmol/L using the Bhattacharya, Hoffmann, Kosmic and RefineR approaches, respectively. For vitamin E, these intervals were (17.3 - 49.9) µmol/L (Bhattacharya), (17.3 - 48.9) µmol/L (Hoffmann), (19.6 - 50.3) µmol/L (Kosmic), and (19.4 - 50.9) µmol/L (RefineR). In all cases, the RIs were comparable. CONCLUSIONS: Suitable RIs for vitamins A and E were calculated using four indirect methods that are suitable and adapted to our population's demographic characteristics.


Subject(s)
Data Mining , Vitamin A , alpha-Tocopherol , Humans , Vitamin A/blood , alpha-Tocopherol/blood , Male , Female , Adult , Middle Aged , Reference Values , Young Adult , Adolescent , Aged , Child , Child, Preschool , Aged, 80 and over
9.
Nutrients ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892696

ABSTRACT

BACKGROUND: There is increasing evidence suggesting that serum neurofilament light chain (sNfL) levels can be used as biomarkers for axonal injury. Retinol is recognized for its significant involvement in nervous system function, but the precise connection between dietary retinol and sNfL levels remains uncertain. OBJECTIVE: Our objective was to investigate the relationship between dietary retinol intake and sNfL, and to find an optimal retinol intake level for neurological health. METHODS: In the National Health and Nutrition Examination Survey (NHANES), conducted from 2013 to 2014, a cohort of 1684 participants who met the criteria were selected for the study. sNfL levels were measured from stored serum samples using a novel high-throughput immunoassay platform from Siemens Healthineers. Assessment of dietary retinol intake was performed by a uniformly trained interviewer through a 24 h dietary recall method. A generalized linear model was evaluated to assess the correlation between dietary retinol intake and sNfL concentrations. Furthermore, the nonlinear association between the two is further explored using restricted cubic spline (RCS) analysis. RESULTS: Upon adjusting for potential confounders, a 10% increase in dietary retinol intake was associated with a 3.47% increase in sNfL levels (95% CI: 0.54%, 6.49%) across all participants. This relationship was more pronounced in specific subgroups, including those under 60 years of age, non-obese, impaired estimated glomerular filtration rate (eGFR), and non-diabetic. In subgroup analysis, among those younger than 60 years of age (percent change: 3.80%; 95% CI: 0.43%, 7.28%), changes were found in non-obese participants (percent change: 6.28%; 95% CI: 2.66%, 10.02%), those with impaired eGFR (percent change: 6.90%; 95% CI: 1.44%, 12.65%), and non-diabetic patients (percentage change: 4.17%; 95% CI: 1.08%, 7.36%). RCS analysis showed a linear relationship between dietary retinol intake and sNfL levels. Furthermore, the positive correlation between the two was more significant after the inflection point, according to piecewise linear analysis. CONCLUSION: This current investigation uncovered a J-shaped relationship between dietary retinol and sNfL levels, suggesting that axonal damage can occur when dietary retinol intake increases more than a specific threshold. These findings need to be further confirmed in future prospective studies to determine the precise intake level that may trigger axonal injury.


Subject(s)
Biomarkers , Neurofilament Proteins , Nutrition Surveys , Vitamin A , Humans , Male , Female , Middle Aged , Neurofilament Proteins/blood , Vitamin A/blood , Vitamin A/administration & dosage , Adult , Biomarkers/blood , Diet/methods , Aged , United States , Cross-Sectional Studies
10.
Nutrients ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931221

ABSTRACT

Cardiovascular diseases (CVD) are the leading cause of death worldwide, influenced by the interaction of factors, including age, sex, genetic conditions, overweight/obesity, hypertension, an abnormal lipid profile, vitamin deficiencies, diabetes, and psychological factors. This study aimed to assess the relationships between psychosocial and nutritional factors in a group of 61 patients with CVD (i.e., atherosclerosis, hypertension, ischemic heart disease, and myocardial infarction) and their possible impact on the course of the disease. The plasma concentrations of vitamins A, E, D, and ß-carotene were determined using validated HPLC-MS/MS, while the lipid profile was analyzed enzymatically. Psychosocial factors and nutritional behaviors were assessed using author-designed questionnaires. Over 50% of patients had 25-OH-D3 and retinol deficiencies, while >85% of patients exhibited significant deficiencies in α-tocopherol and ß-carotene. The lipid profile showed no specific relationship with any particular CVD. Dietary behavior minimally impacted biochemical parameters except for higher ß-carotene concentrations in the group with higher fruit and vegetable intake. The negative impact of the CVD on selected parameters of quality of life was noticed. To increase the effectiveness of the prevention and treatment of CVD, the need for interdisciplinary cooperation observed between doctors, psychologists, and specialists in human nutrition seems to be justified.


Subject(s)
Cardiovascular Diseases , Vitamins , Humans , Female , Male , Middle Aged , Cardiovascular Diseases/blood , Cardiovascular Diseases/prevention & control , Aged , Vitamins/blood , Nutritional Status , beta Carotene/blood , Quality of Life , Adult , Vitamin A/blood , Feeding Behavior/psychology , Diet , Lipids/blood , Vitamin E/blood
11.
Nutrients ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931287

ABSTRACT

The relationship between vitamin A supplementation and myopia has been a topic of debate, with conflicting and inconclusive findings. We aimed to determine whether there is a causal relationship between vitamin A supplementation and the risk of myopia using Mendelian randomization (MR) and meta-analytical methods. Genetic variants from the UK Biobank and FinnGen studies associated with the response to vitamin A supplementation were employed as instrumental variables to evaluate the causal relationship between vitamin A supplementation and myopia. Fixed-effects meta-analysis was then used to combine MR estimates from multiple sources for each outcome. The meta-analysis of MR results found no convincing evidence to support a direct causal relationship between vitamin A supplementation and myopia risk (odds ratio (OR) = 0.99, 95% confidence interval (CI) = 0.82-1.20, I2 = 0%, p = 0.40). The analysis of three out of the four sets of MR analyses indicated no direction of causal effect, whereas the other set of results suggested that higher vitamin A supplementation was associated with a lower risk of myopia (OR = 0.002, 95% CI 1.17 × 10-6-3.099, p = 0.096). This comprehensive MR study and meta-analysis did not find valid evidence of a direct association between vitamin A supplementation and myopia. Vitamin A supplementation may not have an independent effect on myopia, but intraocular processes associated with vitamin A may indirectly contribute to its development.


Subject(s)
Dietary Supplements , Mendelian Randomization Analysis , Myopia , Vitamin A , Humans , Myopia/genetics , Myopia/epidemiology , Vitamin A/administration & dosage , Polymorphism, Single Nucleotide , Risk Factors , Odds Ratio
12.
J Clin Lab Anal ; 38(10): e25074, 2024 May.
Article in English | MEDLINE | ID: mdl-38847175

ABSTRACT

OBJECTIVE: To establish the reference range of serum concentration of vitamin A (VA) and vitamin E (VE) in Southern Sichuan area of China. METHODS: From August 1, 2021, to May 31, 2023, 9482 blood tablets were received for the screening of VA and VE. The information was divided into four different age groups: ≤1 year old, 1< to ≤6 years, 6< to ≤17 years, and 17< to ≤59 years. In each age group, the four seasons were further subdivided into spring, summer, autumn, and winter, as well as male and female genders. The serum concentration of VA and VE was detected by liquid chromatography-tandem mass spectrometry (HPLC-MS), and the reference range was established for verification. RESULTS: The concentration of VA and VE in 9482 cases showed skewed distribution. When comparing between different age groups, the serum concentration of VA and VE was statistically significant (p < 0.05). While comparing different seasons, the serum VA levels in different seasons were significantly different (p < 0.05) except in summer and autumn. There was statistical significance in VE level in different seasons (p < 0.05). And while comparing different genders, there was no statistical significance in VA concentration levels (p > 0.05). The VE concentration levels were statistically significant (p < 0.05). The established reference range was established and verified, and the results were in accordance with the standard. CONCLUSION: The reference range of VA and VE should be set according to different ages, different seasons, and different genders.


Subject(s)
Seasons , Vitamin A , Vitamin E , Humans , Male , Female , Reference Values , Middle Aged , China , Adult , Vitamin A/blood , Young Adult , Adolescent , Vitamin E/blood , Child, Preschool , Child , Infant , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid
13.
Ann N Y Acad Sci ; 1537(1): 82-97, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38922959

ABSTRACT

Micronutrient interventions can reduce child mortality. By applying Micronutrient Intervention Modeling methods in Senegal, Burkina Faso, and Nigeria, we estimated the impacts of bouillon fortification on apparent dietary adequacy of vitamin A and zinc among children and folate among women. We then used the Lives Saved Tool to predict the impacts of bouillon fortification with ranges of vitamin A, zinc, and folic acid concentrations on lives saved among children 6-59 months of age. Fortification at 250 µg vitamin A/g and 120 µg folic acid/g was predicted to substantially reduce vitamin A- and folate-attributable deaths: 65% for vitamin A and 92% for folate (Senegal), 36% for vitamin A and 74% for folate (Burkina Faso), and >95% for both (Nigeria). Zinc fortification at 5 mg/g would avert 48% (Senegal), 31% (Burkina Faso), and 63% (Nigeria) of zinc-attributable deaths. The addition of all three nutrients at 30% of Codex nutrient reference values in 2.5 g bouillon was predicted to save an annual average of 293 child lives in Senegal (3.5% of deaths from all causes among children 6-59 months of age), 933 (2.1%) in Burkina Faso, and 18,362 (3.7%) in Nigeria. These results, along with evidence on program feasibility and costs, can help inform fortification program design discussions.


Subject(s)
Child Mortality , Food, Fortified , Micronutrients , Zinc , Humans , Burkina Faso/epidemiology , Senegal/epidemiology , Infant , Nigeria/epidemiology , Micronutrients/administration & dosage , Child Mortality/trends , Child, Preschool , Female , Zinc/administration & dosage , Folic Acid/administration & dosage , Male , Vitamin A/administration & dosage
14.
Food Funct ; 15(13): 7032-7045, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38864191

ABSTRACT

Red palm oil, a natural repository abundant in tocotrienols, tocopherols and carotenoids, is frequently employed as a pigment and nutritional enhancer in food products. The principal aim of this study is to explore the disparities in vitamin A levels, fatty acid profiles and gut microbiota among healthy adults who consume carotenoid-enriched eggs compared to those who consume normal eggs. A total of 200 hens were randomly assigned to either the red palm oil group or the soybean oil group, with the objective of producing carotenoid-enriched eggs and normal eggs. Throughout a six-month, double-blinded, randomized controlled trial, participants were instructed to consume one carotenoid-enriched or normal egg daily at a fixed time. Fecal and blood samples were collected from the participants at the start and conclusion of the six-month intervention period for further analysis. Our findings indicated that there was no significant change in the vitamin A level for daily supplementation with one carotenoid-enriched egg, but there were significant changes in some indicators of fatty acid profiles and gut microbiota compared to the control group of the population. Nonetheless, the consumption of eggs, regardless of carotenoid-enriched eggs or normal eggs, positively influenced dietary habits by reducing the intake of saturated fatty acids and enhancing the intake of monounsaturated and polyunsaturated fatty acids of the population.


Subject(s)
Carotenoids , Chickens , Eggs , Gastrointestinal Microbiome , Vitamin A , Eggs/analysis , Carotenoids/metabolism , Humans , Female , Gastrointestinal Microbiome/drug effects , Animals , Adult , Double-Blind Method , Vitamin A/administration & dosage , Male , Fatty Acids/metabolism , Middle Aged , Feces/microbiology , Feces/chemistry , Food, Fortified , Palm Oil , Young Adult
15.
Food Chem ; 455: 139917, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838622

ABSTRACT

Crocus sativus L. is a both medicinal and food bulbous flower whose qualities are geographically characterized. However, identification involving different places of origin of such substances is currently limited to single-omics mediated content analysis. Integrated metabolomics and proteomics, 840 saffron samples from six countries (Spain, Greece, Iran, China, Japan, and India) were analyzed using the QuEChERS extraction method. A total of 77 differential metabolites and 14 differential proteins were identified. The limits of detection of the method were 1.33 to 8.33 µg kg-1, and the recoveries were 85.56% to 105.18%. Using homology modeling and molecular docking, the Gln84, Lys195, Val182 and Pro184 sites of Crocetin glucosyltransferase 2 were found to be the targets of crocetin binding. By multivariate statistical analysis (PCA and PLS-DA), different saffron samples were clearly distinguished. The results provided the basis for the selection and identification of high quality saffron from different producing areas.


Subject(s)
Carotenoids , Crocus , Molecular Docking Simulation , Vitamin A , Crocus/chemistry , Crocus/metabolism , Carotenoids/metabolism , Carotenoids/chemistry , Vitamin A/analogs & derivatives , Vitamin A/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/chemistry , Biotransformation , Plant Proteins/metabolism , Plant Proteins/chemistry , Flowers/chemistry , Flowers/metabolism
16.
Int J Pharm ; 659: 124279, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38806096

ABSTRACT

Controlled release drug delivery systems of eye drops are a promising ophthalmic therapy with advantages of good patient compliance and low irritation. However, the lack of a suitable drug carrier for ophthalmic use limits the development of the aforementioned system. Herein, the crosslinked cyclodextrin organic framework (COF) with a cubic porous structure and a uniform particle size was synthesized and applied to solidify vitamin A palmitate (VAP) by using the solvent-free method. The VAP@COF suspension eye drops were formulated by screening co-solvents, suspending agents, and stabilizing agents to achieve a homogeneous state and improve stability. According to the in vitro release study, the VAP@COF suspension exhibited a controlled release of VAP within 12 h. Both the ex vivo corneal contact angle and in vivo fluorescence tracking indicated that the VAP@COF suspension prolonged the VAP residence time on the ocular surface. This suspension accelerated the recovery of the dry eye disease (DED) model in New Zealand rabbits. Furthermore, the suspension was non-cytotoxic to human corneal epithelial cells and non-irritation to rabbit eyes. In summary, the particulate COF is an eye-acceptable novel carrier that sustains release and prolongs the VAP residence time on the ocular surface for DED treatment.


Subject(s)
Delayed-Action Preparations , Drug Carriers , Drug Liberation , Dry Eye Syndromes , Retinyl Esters , Vitamin A , Animals , Rabbits , Vitamin A/administration & dosage , Vitamin A/chemistry , Vitamin A/analogs & derivatives , Dry Eye Syndromes/drug therapy , Humans , Drug Carriers/chemistry , Cyclodextrins/chemistry , Ophthalmic Solutions/administration & dosage , Particle Size , Male , Cell Line , Cross-Linking Reagents/chemistry , Administration, Ophthalmic , Disease Models, Animal , Drug Delivery Systems/methods , Diterpenes
17.
ACS Appl Mater Interfaces ; 16(20): 25740-25756, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722759

ABSTRACT

Micro- and nano-plastics (NPs) are found in human milk, blood, tissues, and organs and associate with aberrant health outcomes including inflammation, genotoxicity, developmental disorders, onset of chronic diseases, and autoimmune disorders. Yet, interfacial interactions between plastics and biomolecular systems remain underexplored. Here, we have examined experimentally, in vitro, in vivo, and by computation, the impact of polystyrene (PS) NPs on a host of biomolecular systems and assemblies. Our results reveal that PS NPs essentially abolished the helix-content of the milk protein ß-lactoglobulin (BLG) in a dose-dependent manner. Helix loss is corelated with the near stoichiometric formation of ß-sheet elements in the protein. Structural alterations in BLG are also likely responsible for the nanoparticle-dependent attrition in binding affinity and weaker on-rate constant of retinol, its physiological ligand (compromising its nutritional role). PS NP-driven helix-to-sheet conversion was also observed in the amyloid-forming trajectory of hen egg-white lysozyme (accelerated fibril formation and reduced helical content in fibrils). Caenorhabditis elegans exposed to PS NPs exhibited a decrease in the fluorescence of green fluorescent protein-tagged dopaminergic neurons and locomotory deficits (akin to the neurotoxin paraquat exposure). Finally, in silico analyses revealed that the most favorable PS/BLG docking score and binding energies corresponded to a pose near the hydrophobic ligand binding pocket (calyx) of the protein where the NP fragment was found to make nonpolar contacts with side-chain residues via the hydrophobic effect and van der Waals forces, compromising side chain/retinol contacts. Binding energetics indicate that PS/BLG interactions destabilize the binding of retinol to the protein and can potentially displace retinol from the calyx region of BLG, thereby impairing its biological function. Collectively, the experimental and high-resolution in silico data provide new insights into the mechanism(s) by which PS NPs corrupt the bimolecular structure and function, induce amyloidosis and onset neuronal injury, and drive aberrant physiological and behavioral outcomes.


Subject(s)
Caenorhabditis elegans , Lactoglobulins , Muramidase , Animals , Muramidase/chemistry , Muramidase/metabolism , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Caenorhabditis elegans/metabolism , Polystyrenes/chemistry , Nanoparticles/chemistry , Vitamin A/chemistry , Vitamin A/metabolism , Humans , Homeostasis/drug effects , Plastics/chemistry
18.
Exp Dermatol ; 33(5): e15103, 2024 May.
Article in English | MEDLINE | ID: mdl-38794829

ABSTRACT

Erythrodermic psoriasis (EP) is a rare and life-threatening disease, the pathogenesis of which remains to be largely unknown. Metabolomics analysis can provide global information on disease pathophysiology, candidate biomarkers, and potential intervention strategies. To gain a better understanding of the mechanisms of EP and explore the serum metabolic signature of EP, we conducted an untargeted metabolomics analysis from 20 EP patients and 20 healthy controls. Furthermore, targeted metabolomics for focused metabolites were identified in the serum samples of 30 EP patients and 30 psoriasis vulgaris (PsV) patients. In the untargeted analysis, a total of 2992 molecular features were extracted from each sample, and the peak intensity of each feature was obtained. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed significant difference between groups. After screening, 98 metabolites were found to be significantly dysregulated in EP, including 67 down-regulated and 31 up-regulated. EP patients had lower levels of L-tryptophan, L-isoleucine, retinol, lysophosphatidylcholine (LPC), and higher levels of betaine and uric acid. KEGG analysis showed differential metabolites were enriched in amino acid metabolism and glycerophospholipid metabolism. The targeted metabolomics showed lower L-tryptophan in EP than PsV with significant difference and L-tryptophan levels were negatively correlated with the PASI scores. The serum metabolic signature of EP was discovered. Amino acid and glycerophospholipid metabolism were dysregulated in EP. The metabolite differences provide clues for pathogenesis of EP and they may provide insights for therapeutic interventions.


Subject(s)
Metabolomics , Principal Component Analysis , Psoriasis , Humans , Psoriasis/blood , Psoriasis/metabolism , Metabolomics/methods , Male , Female , Adult , Middle Aged , Chromatography, Liquid , Betaine/blood , Biomarkers/blood , Tryptophan/blood , Tryptophan/metabolism , Lysophosphatidylcholines/blood , Isoleucine/blood , Uric Acid/blood , Vitamin A/blood , Case-Control Studies , Mass Spectrometry , Dermatitis, Exfoliative/blood , Glycerophospholipids/blood , Discriminant Analysis , Down-Regulation , Least-Squares Analysis , Liquid Chromatography-Mass Spectrometry
19.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786093

ABSTRACT

Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.


Subject(s)
Retinoids , Animals , Humans , Retina/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinaldehyde/metabolism , Retinoids/metabolism , Vitamin A/metabolism
20.
Biomacromolecules ; 25(6): 3831-3839, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38728153

ABSTRACT

This study utilizes mechanochemistry to prepare retinol acetate (RA) solid dispersion (RA-sodium starch octenyl succinate (SSOS)), resulting in improved solubility, stability, and bioavailability compared with raw RA and commercial RA microcapsules. RA, poloxamer 188, SSOS, and milling beads (8 mm) were mixed in a ratio of 2:1:8:220 (w/w) and ball-milled at 100 rpm for 3 h. RA-SSOS exhibited a solubility of 1020.35 µL/mL and a 98.09% retention rate after aging at 30 °C. Rats fed with RA-SSOS showed an ∼30% increase in organ RA content. Characterization analysis attributed the solubility and stabilization of RA-SSOS to hydrogen bonding between RA and SSOS, along with an amorphous state. RA-SSOS offers significant advantages for the pharmaceutical and food industries, leveraging mechanochemistry to enhance solid dispersions for hydrophobic compounds and optimize drug delivery.


Subject(s)
Biological Availability , Retinyl Esters , Solubility , Vitamin A , Animals , Rats , Vitamin A/chemistry , Vitamin A/pharmacokinetics , Retinyl Esters/chemistry , Male , Rats, Sprague-Dawley , Drug Stability , Starch/chemistry , Diterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...