Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.395
Filter
1.
Food Res Int ; 188: 114480, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823868

ABSTRACT

The wine sector is working to add value, enhance sustainability and reduce waste, yet often creating new products with unknown consumer acceptance. Verjuice, juice made from discarded unripe thinned grapes, is an example. Whilst verjuice has various culinary uses, its versatility in beverages continues to expand. However, its sensory drivers of liking when consumed as a drink, and their potential impact on its application remain unclear. Chemical drivers of sensory characteristics are also unknown representing a critical knowledge gap needed to guide product innovation. This study aimed to provide new knowledge regarding consumer acceptability of verjuice by identifying its sensory drivers of liking as a beverage, evaluating its potential use in different applications and identifying chemical drivers of its sensory characteristics. New Zealand consumers (n = 93) evaluated 13 verjuice samples from different countries. Furthermore, verjuice familiarity and its influence on emotional response was investigated to determine likely future consumer engagement. Sweetness was the most positive driver of liking in verjuice overall, followed by fruity and floral notes, smoothness, and to a lesser extent citrus flavour. Consumers expressed varied preferences for verjuice's sensory profile, with fruity, floral, and honey flavours driving beverage application, whilst winey and green apple notes were more associated with culinary scenarios. Some association between chemical parameters and sensory attributes were evident (e.g. sugars were highly associated with perceived sweetness, fruity, and floral attributes; these attributes also shared proximity with 1-hexanol and cyclohexanol). The general idea of verjuice elicited positive valence emotions, but consumers who were 'not familiar' felt more curious, and those 'familiar' felt happier and more satisfied. Findings highlight the potential to tailor verjuice for specific applications by understanding desired sensory profiles and related chemical parameters. Recognising the interplay between familiarity level and emotional response is crucial for positioning the product in the marketplace and fostering consumer engagement. Marketing initiatives are needed to increase verjuice familiarity and support product innovation, leading to increased product appeal.


Subject(s)
Consumer Behavior , Food Preferences , Taste , Humans , Female , Adult , Male , Young Adult , Middle Aged , New Zealand , Vitis/chemistry , Adolescent , Aged , Fruit and Vegetable Juices/analysis
2.
Environ Microbiol ; 26(6): e16660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822592

ABSTRACT

Over 6 years, we conducted an extensive survey of spontaneous grape fermentations, examining 3105 fungal microbiomes across 14 distinct grape-growing regions. Our investigation into the biodiversity of these fermentations revealed that a small number of highly abundant genera form the core of the initial grape juice microbiome. Consistent with previous studies, we found that the region of origin had the most significant impact on microbial diversity patterns. We also discovered that certain taxa were consistently associated with specific geographical locations and grape varieties, although these taxa represented only a minor portion of the overall diversity in our dataset. Through unsupervised clustering and dimensionality reduction analysis, we identified three unique community types, each exhibiting variations in the abundance of key genera. When we projected these genera onto global branches, it suggested that microbiomes transition between these three broad community types. We further investigated the microbial community composition throughout the fermentation process. Our observations indicated that the initial microbial community composition could predict the diversity during the early stages of fermentation. Notably, Hanseniaspora uvarum emerged as the primary non-Saccharomyces species within this large collection of samples.


Subject(s)
Biodiversity , Fermentation , Fungi , Mycobiome , Vitis , Vitis/microbiology , Fungi/classification , Fungi/genetics , Fungi/metabolism , Fungi/isolation & purification , Microbiota
3.
BMC Oral Health ; 24(1): 662, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840232

ABSTRACT

OBJECTIVE: To provide an overview of the available scientific evidence from in vitro studies regarding the effect induced by the flavonoids contained in grape seed extracts (GSE) and cranberry on the microbiological activity of Streptococcus mutans (S. mutans). METHODS: This systematic review was performed following the parameters of the PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Electronic and manual searches were conducted using PubMed, ScienceDirect, Web of Science, EBSCO, and Cochrane databases. Reference lists of selected articles were reviewed to identify relevant studies. The search was not limited by year and was conducted solely in English. Eligible studies comprised publications describing in vitro studies that evaluated the effect of flavonoids derived from GSE and cranberry extracts on the microbiological activity of S. mutans. Common variables were identified to consolidate the data. Authors of this review independently screened search results, extracted data, and assessed the risk of bias. RESULTS: Of the 420 studies identified from the different databases, 22 publications were finally selected for review. The risk of bias was low in 13 articles and moderate in 9. The studies analyzed in this review revealed that cranberry extract has an inhibitory effect on the bacterial growth of S. mutans in ranges from 0.5 mg/mL to 25 mg/mL, and GSE exerts a similar effect from 0.5 mg/mL to 250 mg/mL. Additionally, the extracts or their fractions showed reduced biofilm formation capacity, decreased polymicrobial biofilm biomass, deregulation of glycosyltransferases (Gtf) B and C expression, and buffering of pH drop. In addition to adequate antioxidant activity related to polyphenol content. CONCLUSIONS: The overall results showed that the extracts of cranberry and grape seed were effective in reducing the virulence factors of the oral pathogen. According to the data, proanthocyanidins are the active components in cranberry and grape seed that effectively resist S. mutans. They can inhibit the formation of insoluble polysaccharides in the extracellular matrix and prevent glycan-mediated adhesion, cohesion, and aggregation of the proteins in S. mutans. This suggests that these natural extracts could play an important role in the prevention of cariogenic bacterial colonization, as well as induce a decrease in their microbiological activity.


Subject(s)
Flavonoids , Grape Seed Extract , Plant Extracts , Streptococcus mutans , Vaccinium macrocarpon , Streptococcus mutans/drug effects , Vaccinium macrocarpon/chemistry , Plant Extracts/pharmacology , Flavonoids/pharmacology , Grape Seed Extract/pharmacology , Biofilms/drug effects , Humans , Vitis , Proanthocyanidins/pharmacology
4.
BMC Plant Biol ; 24(1): 504, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38840239

ABSTRACT

The domestication process in grapevines has facilitated the fixation of desired traits. Nowadays, vegetative propagation through cuttings enables easier preservation of these genotypes compared to sexual reproduction. Nonetheless, even with vegetative propagation, various phenotypes are often present within the same vineyard due to the accumulation of somatic mutations. These mutations are not the sole factors influencing phenotype. Alongside somatic variations, epigenetic variation has been proposed as a pivotal player in regulating phenotypic variability acquired during domestication. The emergence of these epialleles might have significantly influenced grapevine domestication over time. This study aims to investigate the impact of domestication on methylation patterns in cultivated grapevines. Reduced-representation bisulfite sequencing was conducted on 18 cultivated and wild accessions. Results revealed that cultivated grapevines exhibited higher methylation levels than their wild counterparts. Differential Methylation Analysis between wild and cultivated grapevines identified a total of 9955 differentially methylated cytosines, of which 78% were hypermethylated in cultivated grapevines. Functional analysis shows that core methylated genes (consistently methylated in both wild and cultivated accessions) are associated with stress response and terpenoid/isoprenoid metabolic processes. Meanwhile, genes with differential methylation are linked to protein targeting to the peroxisome, ethylene regulation, histone modifications, and defense response. Collectively, our results highlight the significant roles that epialleles may have played throughout the domestication history of grapevines.


Subject(s)
Crops, Agricultural , DNA Methylation , Domestication , Epigenesis, Genetic , Vitis , Vitis/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Phenotype
5.
Food Res Int ; 186: 114332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729715

ABSTRACT

The protein instability with haze formation represents one of the main faults occurring in white and rosé wines. Among the various solutions industrially proposed, aspergillopepsin I (AP-I) supplementation coupled with must heating (60-75 °C) has been recently approved by OIV and the European Commission for ensuring protein stability of wines. This study investigates the impact of AP-I either applied independently or in combination with flash pasteurization on the chemical composition of grape must and wines derived from Sauvignon Blanc and Gewürztraminer. The efficacy on protein stability of a complete treatment combining heat (70 °C) and AP-I (HP) was confirmed through heat test and bentonite requirement, although no differences were observed between must heating and HP treatments. However, high-performance liquid chromatography analysis of unstable pathogenesis-related proteins revealed that AP-I supplementation reduced chitinases and thaumatin-like proteins compared to the non-enzymed samples, with and without must heating. Amino acid increase was reported only in HP musts, particularly in Sauvignon Blanc. The concentration of yeast-derived aroma compounds in Gewürztraminer wines was increased by must heating; compared to controls, flash pasteurization rose the overall acetate esters content of 85 % and HP of 43 %, mostly due to isoamyl acetate. However, heat treatments -with or without AP-I- reduced terpenes up to 68 %. Despite the different aroma profiles, no differences were observed for any descriptor for both varieties in wine tasting, and only a slight decrease trend was observed for the floral intensity and the typicality descriptors in heated wines.


Subject(s)
Hot Temperature , Odorants , Pasteurization , Vitis , Wine , Wine/analysis , Pasteurization/methods , Vitis/chemistry , Odorants/analysis , Food Handling/methods , Protein Stability
6.
Sci Rep ; 14(1): 10124, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698114

ABSTRACT

Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.


Subject(s)
Copper , Fermentation , Hydrogen Sulfide , Metallothionein , Odorants , Saccharomyces cerevisiae , Vitis , Wine , Wine/analysis , Copper/metabolism , Vitis/microbiology , Saccharomyces cerevisiae/metabolism , Hydrogen Sulfide/metabolism , Odorants/analysis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sulfites/pharmacology , Pest Control/methods
7.
Proc Natl Acad Sci U S A ; 121(23): e2403750121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805269

ABSTRACT

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous Vitis vinifera cultivars by combining high-fidelity long-read sequencing and high-throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar. The deletions/insertions, inversions, translocations, and duplications provide insight into the evolutionary history and parental relationship among grape varieties. Integration of de novo single long-read sequencing of full-length transcript isoforms (Iso-Seq) yielded a highly improved genome annotation. Given its higher contiguity, and the robustness of the IsoSeq-based annotation, the Chasselas assembly meets the standard to become the annotated reference genome for V. vinifera. Building on these resources, we developed VitExpress, an open interactive transcriptomic platform, that provides a genome browser and integrated web tools for expression profiling, and a set of statistical tools (StatTools) for the identification of highly correlated genes. Implementation of the correlation finder tool for MybA1, a major regulator of the anthocyanin pathway, identified candidate genes associated with anthocyanin metabolism, whose expression patterns were experimentally validated as discriminating between black and white grapes. These resources and innovative tools for mining genome-related data are anticipated to foster advances in several areas of grapevine research.


Subject(s)
Genome, Plant , Haplotypes , Transcriptome , Vitis , Vitis/genetics , Haplotypes/genetics , Transcriptome/genetics , Molecular Sequence Annotation/methods , Gene Expression Profiling/methods , Software
8.
Funct Plant Biol ; 512024 05.
Article in English | MEDLINE | ID: mdl-38743838

ABSTRACT

Soil salinisation is an important abiotic stress faced in grape cultivating, leading to weakened plant vigour and reduced fruit quality. Melatonin as a novel hormone has shown positive exogenous application value. Therefore, this study used wine grape (Vitis vinifera ) 'Pinot Noir' as a test material to investigate the changes of foliar spraying with different concentrations of melatonin on the physiology and fruit quality of wine grapes in a field under simulated salt stress (200mmolL-1 NaCl). The results showed that foliar spraying of melatonin significantly increased the intercellular CO2 concentration, maximum photochemical quantum yield of PSII, relative chlorophyll and ascorbic acid content of the leaves, as well as the single spike weight, 100-grain weight, transverse and longitudinal diameters, malic acid, α-amino nitrogen and ammonia content of fruits, and decreased the initial fluorescence value of leaves, ascorbate peroxidase activity, glutathione content, fruit transverse to longitudinal ratio and tartaric acid content of plants under salt stress. Results of the comprehensive evaluation of the affiliation function indicated that 100µmolL-1 melatonin treatment had the best effect on reducing salt stress in grapes. In summary, melatonin application could enhance the salt tolerance of grapes by improving the photosynthetic capacity of grape plants under salt stress and promoting fruit development and quality formation, and these results provide new insights into the involvement of melatonin in the improvement of salt tolerance in crop, as well as some theoretical basis for the development and industrialisation of stress-resistant cultivation techniques for wine grapes.


Subject(s)
Fruit , Melatonin , Photosynthesis , Plant Leaves , Salt Stress , Vitis , Vitis/drug effects , Vitis/physiology , Vitis/growth & development , Melatonin/pharmacology , Melatonin/administration & dosage , Fruit/drug effects , Fruit/growth & development , Salt Stress/drug effects , Plant Leaves/drug effects , Photosynthesis/drug effects , Chlorophyll/metabolism , Ascorbic Acid/pharmacology , Wine
9.
Food Res Int ; 183: 114195, 2024 May.
Article in English | MEDLINE | ID: mdl-38760130

ABSTRACT

Anthocyanins are polyphenolic compounds that provide pigmentation in plants as reflected by pH-dependent structural transformations between the red flavylium cation, purple quinonoidal base, blue quinonoidal anion, colourless hemiketal, and pale yellow chalcone species. Thermodynamically stable conditions of hydrated plant cell vacuoles in vivo correspond to the colourless hemiketal, yet anthocyanin colour expression appears in an important variety of hues within plant organs such as flowers and fruit. Moreover, anthocyanin colour from grape berries is significant in red winemaking processes as it plays a crucial role in determining red wine quality. Here, nonlinear ordinary differential equations were developed to represent the evolution in concentration of various anthocyanin species in both monomeric (chemically reactive) and self-associated (temporally stable) forms for the first time, and simulations were verified experimentally. Results indicated that under hydrating conditions, anthocyanin pigmentation is preserved by self-association interactions, based on pigmented monomeric anthocyanins experiencing colour loss whereas colour-stable self-associated anthocyanins increase in concentration nonlinearly over time. In particular, self-association of the flavylium cation and the quinonoidal base was shown to influence colour expression and stability within Geranium sylvaticum flower petals and Vitis vinifera grape skins. This study ultimately characterises fundamental mechanisms of anthocyanin stabilisation and generates a quantitative framework for anthocyanin-containing systems.


Subject(s)
Anthocyanins , Color , Vitis , Anthocyanins/metabolism , Vitis/chemistry , Kinetics , Wine/analysis , Fruit/chemistry , Hydrogen-Ion Concentration , Nonlinear Dynamics
10.
J Agric Food Chem ; 72(20): 11617-11628, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728580

ABSTRACT

When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.


Subject(s)
Fruit , Gas Chromatography-Mass Spectrometry , Glycoside Hydrolases , Glycosides , Phenols , Smoke , Vitis , Hydrolysis , Glycosides/chemistry , Glycosides/metabolism , Glycosides/analysis , Smoke/analysis , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Phenols/chemistry , Phenols/metabolism , Vitis/chemistry , Fruit/chemistry , Fruit/enzymology , Wine/analysis , Wildfires , Biocatalysis
11.
Food Chem ; 451: 139503, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38714111

ABSTRACT

Whereas bitterness perception can modify the taste balance of white wines, its molecular origin remains largely unclear. This work aimed at determining the influence of a selection of the most cited bitter compounds on the bitterness of commercial dry white wines. Forty-two wines were sensorially characterized by a trained panel and divided into two statistically different groups depending on their bitterness. Twenty-seven bitter compounds were selected and five quantitation methods were developed and validated. The methods were used to measure the levels of all the 27 compounds in dry wine, 25 of them in sweet wine and 22 of them in grape juice. The detected concentrations were generally below the taste detection thresholds. No significant positive correlation between the bitterness intensity of the tasted samples and the concentration of the assayed bitter compounds was observed, suggesting the existence of other markers of bitterness in white wines.


Subject(s)
Taste , Wine , Wine/analysis , Humans , Mass Spectrometry , Vitis/chemistry , Adult , Male , Female , Chromatography, High Pressure Liquid
12.
Food Chem ; 451: 139526, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38729041

ABSTRACT

In order to valorise winemaking grape stalks, subcritical water extraction at 160 and 180 °C has been carried out to obtain phenolic-rich extracts useful for developing active food packaging materials. Red (R) and white (W) varieties (from Requena, Spain) were used, and thus, four kinds of extracts were obtained. These were characterised as to their composition, thermal stability and antioxidant and antibacterial activity. The extracts were incorporated at 6 wt% into polylactic acid (PLA) films and their effect on the optical and barrier properties of the films and their protective effect against sunflower oil oxidation was analysed. Carbohydrates were the major compounds (25-38%) in the extracts that contained 3.5-6.6% of phenolic compounds, the R extracts being the richest, with higher radical scavenging capacity. Every extract exhibited antibacterial effect against Escherichia coli and Listeria innocua, while PLA films with extracts preserved sunflower oil against oxidation.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Escherichia coli , Food Packaging , Listeria , Plant Extracts , Vitis , Food Packaging/instrumentation , Vitis/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Listeria/drug effects , Listeria/growth & development
13.
Sci Rep ; 14(1): 12392, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811676

ABSTRACT

Research efforts on genomic structure and ecology of wild populations of Vitis vinifera L. offer insights on grape domestication processes and on the assortment evolution of the cultivated forms. Attention is also paid to the origin of traditional, long-cultivated varieties, often producing renowned and valuable wines. The genetic relationships between 283 Vitis vinifera cultivated varieties (subsp. sativa) and 65 individuals from 9 populations of the sylvestris subspecies mainly from northern Italy were explored by means of molecular markers (27 nuclear and 4 chloroplastic microsatellites). Several episodes of contamination of the wild germplasm by the pollen of specific grape cultivars were detected, implying concern for maintaining the purity of the wild form. At the same time, events of introgression from the wild subspecies resulted playing a crucial role in the emergence of several cultivated varieties with a clear admixed genome ancestry sativa-sylvestris. These included Lambruscos originated from the flat areas crossed by the Po and Adige rivers in northern Italy, while other cultivars still called Lambrusco but typical of hilly areas did not show the same admixed genome. Historical and ecological evidences suggesting an adaptative recent post-domestication process in the origin of several Italian Lambruscos are discussed.


Subject(s)
Microsatellite Repeats , Vitis , Vitis/genetics , Italy , Microsatellite Repeats/genetics , Genetic Variation , Genome, Plant , Phylogeny , Domestication , Genetic Introgression
14.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791373

ABSTRACT

Climate change will pose a challenge for the winemaking sector worldwide, bringing progressively drier and warmer conditions and increasing the frequency and intensity of weather extremes. The short-term adaptation strategy of applying biostimulants through foliar application serves as a crucial measure in mitigating the detrimental effects of environmental stresses on grapevine yield and berry quality. The aim of this study was to evaluate the effect of foliar application of a seaweed-based biostimulant (A. nodosum-ANE) and glycine betaine (GB) on berry quality, phenolic compounds, and antioxidant activity and to elucidate their action on the secondary metabolism. A trial was installed in a commercial vineyard (cv. "Touriga Franca") in the Cima Corgo (Upper Corgo) sub-region of the Douro Demarcated Region, Portugal. A total of four foliar sprayings were performed during the growing season: at flowering, pea size, bunch closer, and veraison. There was a positive effect of GB in the berry quality traits. Both ANE and GB increased the synthesis of anthocyanins and other phenolics in berries and influenced the expression of genes related to the synthesis and transport of anthocyanins (CHS, F3H, UFGT, and GST). So, they have the potential to act as elicitors of the secondary metabolism, leading to improved grape quality, and also to set the foundation for sustainable agricultural practices in the long run.


Subject(s)
Antioxidants , Betaine , Fruit , Gene Expression Regulation, Plant , Phenols , Seaweed , Vitis , Vitis/drug effects , Vitis/genetics , Vitis/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Betaine/pharmacology , Fruit/drug effects , Fruit/metabolism , Fruit/chemistry , Fruit/genetics , Phenols/metabolism , Gene Expression Regulation, Plant/drug effects , Seaweed/metabolism , Anthocyanins/biosynthesis
15.
Food Chem ; 452: 139573, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718454

ABSTRACT

Grapes were packaged by different Poly (L-lactic acid)-based packaging films (PLTL-PLEL) and stored at 5 °C for 35 days to investigate the effects of equilibrium modified atmosphere packaging on the quality of "Kyoho" grapes during storage. Changes in physiochemical quality, antioxidant content and senescence of grapes were studied. Furthermore, UPLC-Q-TOF-MS/MS was used to observe and identify key factors influencing the variation of grape anthocyanins under different atmosphere conditions. Alterations in gas components and enzyme activities significantly impacted anthocyanin levels, highlighting oxygen concentration as the primary influence on total anthocyanin levels. The PLTL-PLEL50 packaging resulted in an approximate 5.7% lower weight loss and increased soluble solids by approximately 14.4%, vitamin C, total phenols and flavonoids reaching 60.2 mg/100 g, 8.4 mg/100 g and 7.2 mg/100 g, respectively. This packaging also preserved higher anthocyanin levels, with malvidin-3-glucoside and peonidin-3-glucoside at 0.55 µg/mL and 1.62 µg/mL, respectively, on the 35th day of storage.


Subject(s)
Anthocyanins , Food Packaging , Polyesters , Vitis , Anthocyanins/chemistry , Anthocyanins/analysis , Food Packaging/instrumentation , Vitis/chemistry , Polyesters/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Fruit/chemistry , Antioxidants/chemistry , Tandem Mass Spectrometry
16.
Curr Microbiol ; 81(6): 161, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700667

ABSTRACT

In the wake of rapid industrialization and burgeoning transportation networks, the escalating demand for fossil fuels has accelerated the depletion of finite energy reservoirs, necessitating urgent exploration of sustainable alternatives. To address this, current research is focusing on renewable fuels like second-generation bioethanol from agricultural waste such as sugarcane bagasse. This approach not only circumvents the contentious issue of food-fuel conflicts associated with biofuels but also tackles agricultural waste management. In the present study indigenous yeast strain, Clavispora lusitaniae QG1 (MN592676), was isolated from rotten grapes to ferment xylose sugars present in the hemicellulose content of sugarcane bagasse. To liberate the xylose sugars, dilute acid pretreatment was performed. The highest reducing sugars yield was 1.2% obtained at a temperature of 121 °C for 15 min, a solid-to-liquid ratio of 1:25 (% w/v), and an acid concentration of 1% dilute acid H2SO4 that was significantly higher (P < 0.001) yield obtained under similar conditions at 100 °C for 1 h. The isolated strain was statistically optimized for fermentation process by Plackett-Burman design to achieve the highest ethanol yield. Liberated xylose sugars were completely utilized by Clavispora lusitaniae QG1 (MN592676) and gave 100% ethanol yield. This study optimizes both fermentation process and pretreatment of sugarcane bagasse to maximize bioethanol yield and demonstrates the ability of isolated strain to effectively utilize xylose as a carbon source. The desirable characteristics depicted by strain Clavispora lusitaniae shows its promising utilization in management of industrial waste like sugarcane bagasse by its conversion into renewable biofuels like bioethanol.


Subject(s)
Biofuels , Cellulose , Ethanol , Fermentation , Saccharum , Saccharum/metabolism , Ethanol/metabolism , Cellulose/metabolism , Waste Management/methods , Agriculture , Xylose/metabolism , Vitis/microbiology , Hypocreales/metabolism
17.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731917

ABSTRACT

Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications are generally confined by spectral congestion caused by numerous biological metabolites contained within the limited proton frequency range. Herein, we propose a pure-shift-based 1H localized MRS method as a proof of concept for high-resolution studies of biological samples. Benefitting from the spectral simplification from multiplets to singlet peaks, this method addresses the challenge of spectral congestion encountered in conventional MRS experiments and facilitates metabolite analysis from crowded NMR resonances. The performance of the proposed pure-shift 1H MRS method is demonstrated on different kinds of samples, including brain metabolite phantom and in vitro biological samples of intact pig brain tissue and grape tissue, using a 7.0 T animal MRI scanner. This proposed MRS method is readily implemented in common commercial NMR/MRI instruments because of its generally adopted pulse-sequence modules. Therefore, this study takes a meaningful step for MRS studies toward potential applications in metabolite analysis and disease diagnosis.


Subject(s)
Brain , Proton Magnetic Resonance Spectroscopy , Animals , Swine , Proton Magnetic Resonance Spectroscopy/methods , Brain/metabolism , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Vitis/chemistry , Phantoms, Imaging
18.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732066

ABSTRACT

We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 µg GAE/µL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.


Subject(s)
Antioxidants , Cell Survival , Fruit , Plant Extracts , Humans , Caco-2 Cells , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Fragaria/chemistry , Polyphenols/pharmacology , Vitis/chemistry
19.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732247

ABSTRACT

To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Photosynthesis , Plant Proteins , Sugars , Vitis , Vitis/genetics , Vitis/metabolism , Vitis/radiation effects , Fruit/genetics , Fruit/metabolism , Fruit/radiation effects , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sugars/metabolism , Light
20.
Sensors (Basel) ; 24(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38733058

ABSTRACT

Based on the current research on the wine grape variety recognition task, it has been found that traditional deep learning models relying only on a single feature (e.g., fruit or leaf) for classification can face great challenges, especially when there is a high degree of similarity between varieties. In order to effectively distinguish these similar varieties, this study proposes a multisource information fusion method, which is centered on the SynthDiscrim algorithm, aiming to achieve a more comprehensive and accurate wine grape variety recognition. First, this study optimizes and improves the YOLOV7 model and proposes a novel target detection and recognition model called WineYOLO-RAFusion, which significantly improves the fruit localization precision and recognition compared with YOLOV5, YOLOX, and YOLOV7, which are traditional deep learning models. Secondly, building upon the WineYOLO-RAFusion model, this study incorporated the method of multisource information fusion into the model, ultimately forming the MultiFuseYOLO model. Experiments demonstrated that MultiFuseYOLO significantly outperformed other commonly used models in terms of precision, recall, and F1 score, reaching 0.854, 0.815, and 0.833, respectively. Moreover, the method improved the precision of the hard to distinguish Chardonnay and Sauvignon Blanc varieties, which increased the precision from 0.512 to 0.813 for Chardonnay and from 0.533 to 0.775 for Sauvignon Blanc. In conclusion, the MultiFuseYOLO model offers a reliable and comprehensive solution to the task of wine grape variety identification, especially in terms of distinguishing visually similar varieties and realizing high-precision identifications.


Subject(s)
Algorithms , Vitis , Wine , Vitis/classification , Wine/analysis , Wine/classification , Deep Learning , Fruit/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...