Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 372
Filter
1.
Nat Commun ; 15(1): 4966, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862522

ABSTRACT

Viviparity evolved ~115 times across squamate reptiles, facilitating the colonization of cold habitats, where oviparous species are scarce or absent. Whether the ecological opportunity furnished by such colonization reconfigures phenotypic diversity and accelerates evolution is unclear. We investigated the association between viviparity and patterns and rates of body size evolution in female Liolaemus lizards, the most species-rich tetrapod genus from temperate regions. Here, we discover that viviparous species evolve ~20% larger optimal body sizes than their oviparous relatives, but exhibit similar rates of body size evolution. Through a causal modeling approach, we find that viviparity indirectly influences body size evolution through shifts in thermal environment. Accordingly, the colonization of cold habitats favors larger body sizes in viviparous species, reconfiguring body size diversity in Liolaemus. The catalyzing influence of viviparity on phenotypic evolution arises because it unlocks access to otherwise inaccessible sources of ecological opportunity, an outcome potentially repeated across the tree of life.


Subject(s)
Biological Evolution , Body Size , Ecosystem , Lizards , Viviparity, Nonmammalian , Animals , Lizards/physiology , Female , Viviparity, Nonmammalian/physiology , Phylogeny , Phenotype , Oviparity
2.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791320

ABSTRACT

Nuclear speckles are compartments enriched in splicing factors present in the nucleoplasm of eucaryote cells. Speckles have been studied in mammalian culture and tissue cells, as well as in some non-mammalian vertebrate cells and invertebrate oocytes. In mammals, their morphology is linked to the transcriptional and splicing activities of the cell through a recruitment mechanism. In rats, speckle morphology depends on the hormonal cycle. In the present work, we explore whether a similar situation is also present in non-mammalian cells during the reproductive cycle. We studied the speckled pattern in several tissues of a viviparous reptile, the lizard Sceloporus torquatus, during two different stages of reproduction. We used immunofluorescence staining against splicing factors in hepatocytes and oviduct epithelium cells and fluorescence and confocal microscopy, as well as ultrastructural immunolocalization and EDTA contrast in Transmission Electron Microscopy. The distribution of splicing factors in the nucleoplasm of oviductal cells and hepatocytes coincides with the nuclear-speckled pattern described in mammals. Ultrastructurally, those cell types display Interchromatin Granule Clusters and Perichromatin Fibers. In addition, the morphology of speckles varies in oviduct cells at the two stages of the reproductive cycle analyzed, paralleling the phenomenon observed in the rat. The results show that the morphology of speckles in reptile cells depends upon the reproductive stage as it occurs in mammals.


Subject(s)
Cell Nucleus , Hepatocytes , Lizards , Animals , Female , Lizards/anatomy & histology , Lizards/physiology , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Hepatocytes/cytology , Viviparity, Nonmammalian/physiology , Oviducts/metabolism , Oviducts/ultrastructure , Oviducts/cytology
3.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38572957

ABSTRACT

The ovarian microenvironment plays a crucial role in ensuring the reproductive success of viviparous teleosts. However, the molecular mechanism underlying the interaction between spermatozoa and the ovarian microenvironment has remained elusive. This study aimed to contribute to a better understanding of this process in black rockfish (Sebastes schlegelii) using integrated multi-omics approaches. The results demonstrated significant upregulation of ovarian complement-related proteins and pattern recognition receptors, along with remodeling of glycans on the surface of spermatozoa at the early spermatozoa-storage stage (1 month after mating). As spermatozoa were stored over time, ovarian complement proteins were progressively repressed by tryptophan and hippurate, indicating a remarkable adaptation of spermatozoa to the ovarian microenvironment. Before fertilization, a notable upregulation of cellular junction proteins was observed. The study revealed that spermatozoa bind to ZPB2a protein through GSTM3 and that ZPB2a promotes spermatozoa survival and movement in a GSTM3-dependent manner. These findings shed light on a key mechanism that influences the dynamics of spermatozoa in the female reproductive tract, providing valuable insights into the molecular networks regulating spermatozoa adaptation and survival in species with internal fertilization.


Subject(s)
Ovary , Spermatozoa , Animals , Male , Female , Spermatozoa/metabolism , Ovary/metabolism , Fertilization , Viviparity, Nonmammalian , Proteomics , Fish Proteins/metabolism , Fish Proteins/genetics , Fishes/metabolism , Cellular Microenvironment , Multiomics
4.
Genome Biol Evol ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38619022

ABSTRACT

New World mabuyine skinks are a diverse radiation of morphologically cryptic lizards with unique reproductive biologies. Recent studies examining population-level data (morphological, ecological, and genomic) have uncovered novel biodiversity and phenotypes, including the description of dozens of new species and insights into the evolution of their highly complex placental structures. Beyond the potential for this diverse group to serve as a model for the evolution of viviparity in lizards, much of the taxonomic diversity is concentrated in regions experiencing increasing environmental instability from climate and anthropogenic change. Consequently, a better understanding of genome structure and diversity will be an important tool in the adaptive management and conservation of this group. Skinks endemic to Caribbean islands are particularly vulnerable to global change with several species already considered likely extinct and several remaining species either endangered or threatened. Combining PacBio long-read sequencing, Hi-C, and RNAseq data, here we present the first genomic resources for this group by describing new chromosome-level reference genomes for the Puerto Rican Skink Spondylurus nitidus and the Culebra Skink S. culebrae. Results indicate two high quality genomes, both ∼1.4 Gb, assembled nearly telomere to telomere with complete mitochondrion assembly and annotation.


Subject(s)
Genome , Lizards , Lizards/genetics , Animals , Chromosomes/genetics , Viviparity, Nonmammalian/genetics , Female , Caribbean Region
5.
Biol Rev Camb Philos Soc ; 99(4): 1314-1356, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38562006

ABSTRACT

The reproductive diversity of extant cartilaginous fishes (class Chondrichthyes) is extraordinarily broad, reflecting more than 400 million years of evolutionary history. Among their many notable reproductive specialisations are viviparity (live-bearing reproduction) and matrotrophy (maternal provision of nutrients during gestation). However, attempts to understand the evolution of these traits have yielded highly discrepant conclusions. Here, we compile and analyse the current knowledge on the evolution of reproductive diversity in Chondrichthyes with particular foci on the frequency, phylogenetic distribution, and directionality of evolutionary changes in their modes of reproduction. To characterise the evolutionary transformations, we amassed the largest empirical data set of reproductive parameters to date covering nearly 800 extant species and analysed it via a comprehensive molecular-based phylogeny. Our phylogenetic reconstructions indicated that the ancestral pattern for Chondrichthyes is 'short single oviparity' (as found in extant holocephalans) in which females lay successive clutches (broods) of one or two eggs. Viviparity has originated at least 12 times, with 10 origins among sharks, one in batoids, and (based on published evidence) another potential origin in a fossil holocephalan. Substantial matrotrophy has evolved at least six times, including one origin of placentotrophy, three separate origins of oophagy (egg ingestion), and two origins of histotrophy (uptake of uterine secretions). In two clades, placentation was replaced by histotrophy. Unlike past reconstructions, our analysis reveals no evidence that viviparity has ever reverted to oviparity in this group. Both viviparity and matrotrophy have arisen by a variety of evolutionary sequences. In addition, the ancestral pattern of oviparity has given rise to three distinct egg-laying patterns that increased clutch (brood) size and/or involved deposition of eggs at advanced stages of development. Geologically, the ancestral oviparous pattern arose in the Paleozoic. Most origins of viviparity and matrotrophy date to the Mesozoic, while a few that are represented at low taxonomic levels are of Cenozoic origin. Coupled with other recent work, this review points the way towards an emerging consensus on reproductive evolution in chondrichthyans while offering a basis for future functional and evolutionary analyses. This review also contributes to conservation efforts by highlighting taxa whose reproductive specialisations reflect distinctive evolutionary trajectories and that deserve special protection and further investigation.


Subject(s)
Phylogeny , Viviparity, Nonmammalian , Animals , Female , Viviparity, Nonmammalian/physiology , Reproduction/physiology , Biological Evolution
6.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R461-R471, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38557151

ABSTRACT

Nutrient absorption is essential for animal survival and development. Our previous study on zebrafish reported that nutrient absorption in lysosome-rich enterocytes (LREs) is promoted by the voltage-sensing phosphatase (VSP), which regulates phosphoinositide (PIP) homeostasis via electrical signaling in biological membranes. However, it remains unknown whether this VSP function is shared by different absorptive tissues in other species. Here, we focused on the function of VSP in a viviparous teleost Xenotoca eiseni, whose intraovarian embryos absorb nutrients from the maternal ovarian fluid through a specialized hindgut-derived pseudoplacental structure called trophotaenia. Xenotoca eiseni VSP (Xe-VSP) is expressed in trophotaenia epithelium, an absorptive tissue functionally similar to zebrafish LREs. Notably, the apical distribution of Xe-VSP in trophotaenia epithelial cells closely resembles zebrafish VSP (Dr-VSP) distribution in zebrafish LREs, suggesting a shared role for VSP in absorptive tissues between the two species. Electrophysiological analysis using a heterologous expression system revealed that Xe-VSP preserves functional voltage sensors and phosphatase activity with the leftward shifted voltage sensitivity compared with zebrafish VSP (Dr-VSP). We also identified a single amino acid variation in the S4 helix of Xe-VSP as one of the factors contributing to the leftward shifted voltage sensitivity. This study highlights the biological variation and significance of VSP in various animal species, as well as hinting at the potential role of VSP in nutrient absorption in X. eiseni trophotaenia.NEW & NOTEWORTHY We investigate the voltage-sensing phosphatase (VSP) in Xenotoca eiseni, a viviparous fish whose intraovarian embryos utilize trophotaenia for nutrient absorption. Although X. eiseni VSP (Xe-VSP) shares key features with known VSPs, its distinct voltage sensitivity arises from species-specific amino acid variation. Xe-VSP in trophotaenia epithelium suggests its involvement in nutrient absorption, similar to VSP in zebrafish enterocytes and potentially in species with similar absorptive cells. Our findings highlight the potential role of VSP across species.


Subject(s)
Phosphoric Monoester Hydrolases , Viviparity, Nonmammalian , Animals , Female , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Fish Proteins/metabolism , Fish Proteins/genetics , Enterocytes/metabolism , Enterocytes/enzymology , Electric Fish/physiology , Electric Fish/metabolism , Zebrafish , Membrane Potentials
7.
BMC Biol ; 22(1): 34, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331819

ABSTRACT

BACKGROUND: Viviparity-live birth-is a complex and innovative mode of reproduction that has evolved repeatedly across the vertebrate Tree of Life. Viviparous species exhibit remarkable levels of reproductive diversity, both in the amount of care provided by the parent during gestation, and the ways in which that care is delivered. The genetic basis of viviparity has garnered increasing interest over recent years; however, such studies are often undertaken on small evolutionary timelines, and thus are not able to address changes occurring on a broader scale. Using whole genome data, we investigated the molecular basis of this innovation across the diversity of vertebrates to answer a long held question in evolutionary biology: is the evolution of convergent traits driven by convergent genomic changes? RESULTS: We reveal convergent changes in protein family sizes, protein-coding regions, introns, and untranslated regions (UTRs) in a number of distantly related viviparous lineages. Specifically, we identify 15 protein families showing evidence of contraction or expansion associated with viviparity. We additionally identify elevated substitution rates in both coding and noncoding sequences in several viviparous lineages. However, we did not find any convergent changes-be it at the nucleotide or protein level-common to all viviparous lineages. CONCLUSIONS: Our results highlight the value of macroevolutionary comparative genomics in determining the genomic basis of complex evolutionary transitions. While we identify a number of convergent genomic changes that may be associated with the evolution of viviparity in vertebrates, there does not appear to be a convergent molecular signature shared by all viviparous vertebrates. Ultimately, our findings indicate that a complex trait such as viviparity likely evolves with changes occurring in multiple different pathways.


Subject(s)
Biological Evolution , Lizards , Animals , Viviparity, Nonmammalian/genetics , Oviparity/genetics , Lizards/genetics , Genomics
8.
Science ; 383(6678): 114-119, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38175895

ABSTRACT

Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer-specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer-specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step.


Subject(s)
Biological Evolution , Reproduction , Snails , Viviparity, Nonmammalian , Animals , Haplotypes , Phylogeny , Reproduction/genetics , Selection, Genetic , Snails/genetics , Snails/physiology , Viviparity, Nonmammalian/genetics , Viviparity, Nonmammalian/physiology
9.
BMC Ecol Evol ; 23(1): 69, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38053023

ABSTRACT

BACKGROUND: Evidence of correlation between genome size, the nuclear haploid DNA content of a cell, environmental factors and life-history traits have been reported in many animal species. Genome size, however, spans over three orders of magnitude across taxa and such a correlation does not seem to follow a universal pattern. In squamate reptiles, the second most species-rich order of vertebrates, there are currently no studies investigating drivers of genome size variability. We run a series of phylogenetic generalized least-squares models on 227 species of squamates to test for possible relationships between genome size and ecological factors including latitudinal distribution, bioclimatic variables and microhabitat use. We also tested whether genome size variation can be associated with parity mode, a highly variable life history trait in this order of reptiles. RESULTS: The best-fitting model showed that the interaction between microhabitat use and parity mode mainly accounted for genome size variation. Larger genome sizes were found in live-bearing species that live in rock/sand ecosystems and in egg-laying arboreal taxa. On the other hand, smaller genomes were found in fossorial live-bearing species. CONCLUSIONS: Environmental factors and species parity mode appear to be among the main parameters explaining genome size variation in squamates. Our results suggest that genome size may favour adaptation of some species to certain environments or could otherwise result from the interaction between environmental factors and parity mode. Integration of genome size and genome sequencing data could help understand the role of differential genome content in the evolutionary process of genome size variation in squamates.


Subject(s)
Lizards , Animals , Phylogeny , Genome Size , Lizards/genetics , Snakes/genetics , Ecosystem , Viviparity, Nonmammalian/genetics , Oviparity
10.
Mol Biol Evol ; 40(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37789509

ABSTRACT

The transition from oviparity to viviparity has occurred independently over 150 times across vertebrates, presenting one of the most compelling cases of phenotypic convergence. However, whether the repeated, independent evolution of viviparity is driven by redeployment of similar genetic mechanisms and whether these leave a common signature in genomic divergence remains largely unknown. Although recent investigations into the evolution of viviparity have demonstrated striking similarity among the genes and molecular pathways involved across disparate vertebrate groups, quantitative tests for genome-wide convergent have provided ambivalent answers. Here, we investigate the potential role of molecular convergence during independent transitions to viviparity across an order of ray-finned freshwater fish (Cyprinodontiformes). We assembled de novo genomes and utilized publicly available genomes of viviparous and oviparous species to test for molecular convergence across both coding and noncoding regions. We found no evidence for an excess of molecular convergence in amino acid substitutions and in rates of sequence divergence, implying independent genetic changes are associated with these transitions. However, both statistical power and biological confounds could constrain our ability to detect significant correlated evolution. We therefore identified candidate genes with potential signatures of molecular convergence in viviparous Cyprinodontiformes lineages. Motif enrichment and gene ontology analyses suggest transcriptional changes associated with early morphogenesis, brain development, and immunity occurred alongside the evolution of viviparity. Overall, however, our findings indicate that independent transitions to viviparity in these fish are not strongly associated with an excess of molecular convergence, but a few genes show convincing evidence of convergent evolution.


Subject(s)
Cyprinodontiformes , Lizards , Animals , Phylogeny , Viviparity, Nonmammalian/genetics , Lizards/genetics , Genomics , Cyprinodontiformes/genetics , Biological Evolution
11.
Nat Ecol Evol ; 7(7): 1131-1140, 2023 07.
Article in English | MEDLINE | ID: mdl-37308704

ABSTRACT

The amniotic egg with its complex fetal membranes was a key innovation in vertebrate evolution that enabled the great diversification of reptiles, birds and mammals. It is debated whether these fetal membranes evolved in eggs on land as an adaptation to the terrestrial environment or to control antagonistic fetal-maternal interaction in association with extended embryo retention (EER). Here we report an oviparous choristodere from the Lower Cretaceous period of northeast China. The ossification sequence of the embryo confirms that choristoderes are basal archosauromorphs. The discovery of oviparity in this assumed viviparous extinct clade, together with existing evidence, suggests that EER was the primitive reproductive mode in basal archosauromorphs. Phylogenetic comparative analyses on extant and extinct amniotes suggest that the first amniote displayed EER (including viviparity).


Subject(s)
Lizards , Animals , Phylogeny , Viviparity, Nonmammalian , Reproduction , Mammals
12.
J Morphol ; 284(3): e21563, 2023 03.
Article in English | MEDLINE | ID: mdl-36719277

ABSTRACT

Viviparity is the reproductive pattern in which females gestate eggs within their reproductive tract to complete their development and give birth to live offspring. Within extant sauropsids, only the Squamata (e.g., snakes, lizards, and amphisbaenians) evolved viviparity, representing 20% of the existing species. The genus Plestiodon is represented by 43 species and is one of the most widely distributed genera of the Scincidae in Mexico. The goal of this research has been to determine the placental morphology and ontogeny during gestation in the lizard Plestiodon brevirostris. Specimens were dissected to obtain the embryonic chambers and the embryos were categorized to carry out the correlation between the development stage and the placenta development. The embryonic chambers were processed using the conventional histological technique for light microscopy. The identified embryonic stages were 4, 29, 34, 36, and 39. A thin eggshell surrounds the egg in early developmental stages; however, this structure is already absent in the embryonic hemisphere during the developmental stage 29. The results revealed that P. brevirostris is a lecithotrophic species, but a close maternal-fetal relationship is established by tissue apposition. Ontogenically, the placental types that form in the embryonic hemisphere are the chorioplacenta, choriovitelline placenta, and chorioallantoic placenta; whereas the omphaloplacenta is formed in the abembryonic hemisphere. The structure of the chorioallantoic placenta in P. brevirostris suggests that it may play a role during gas exchange between the mother and the embryo, due to the characteristics of the epithelia that comprise it. The structure of embryonic and maternal epithelia of the omphaloplacenta suggests a role in the absorption of the eggshell during gestation and possibly in the transport or diffusion of some nutrients. In general, it is evident that ontogeny and placental characteristics of P. brevirostris match those of other species of viviparous lecithotrophic scincids.


Subject(s)
Lizards , Placentation , Female , Animals , Pregnancy , Placenta/anatomy & histology , Lizards/anatomy & histology , Mexico , Snakes , Viviparity, Nonmammalian
13.
Naturwissenschaften ; 109(6): 56, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36333469

ABSTRACT

Viviparity is a widespread reproductive trait in snakes, although fossil evidence bearing on its evolution is extremely sparse. Here, we report an exceptional specimen of the minute booid snake Messelophis variatus recovered in the paleolake of the Messel Formation (early-middle Eocene, Germany). This gravid female contains at least two embryos located in the posterior third of the trunk region. The morphology, size, and degree of ossification of the cranial and postcranial remains indicate they correspond with late embryos. This specimen documents the first occurrence of viviparity in a fossil snake and extends the temporal distribution of this reproductive strategy in booid snakes by over 47 Ma. The evolution of viviparity in squamates has traditionally been associated with cold climates, but its presence at the dawn of the evolution of booids during early Palaeogene thermal peaks indicates that viviparity may have evolved under different selective pressures in this clade.


Subject(s)
Live Birth , Snakes , Animals , Female , Pregnancy , Snakes/anatomy & histology , Fossils , Skull/anatomy & histology , Phenotype , Biological Evolution , Viviparity, Nonmammalian , Phylogeny
14.
Biol Lett ; 18(10): 20220173, 2022 10.
Article in English | MEDLINE | ID: mdl-36196554

ABSTRACT

The causes and consequences of the evolution of placentotrophy (post-fertilization nutrition of developing embryos of viviparous organisms by means of a maternal placenta) in non-mammalian vertebrates are still not fully understood. In particular, in the fish family Poeciliidae there is an evolutionary link between placentotrophy and superfetation (ability of females to simultaneously bear embryos at distinct developmental stages), with no conclusive evidence for which of these two traits facilitates the evolution of more advanced degrees of the other. Using a robust phylogenetic comparative method based on Ornstein-Uhlenbeck models of adaptive evolution and data from 36 poeciliid species, we detected a clear causality pattern. The evolution of extensive placentotrophy has been facilitated by the preceding evolution of more simultaneous broods. Therefore, placentas became increasingly complex as an adaptive response to evolutionary increases in the degree of superfetation. This finding represents a substantial contribution to our knowledge of the factors that have shaped placental evolution in poeciliid fishes.


Subject(s)
Cyprinodontiformes , Superfetation , Animals , Biological Evolution , Cyprinodontiformes/physiology , Female , Phylogeny , Placenta , Pregnancy , Superfetation/physiology , Viviparity, Nonmammalian/physiology
15.
J Evol Biol ; 35(11): 1568-1575, 2022 11.
Article in English | MEDLINE | ID: mdl-36129910

ABSTRACT

Thickness reduction or loss of the calcareous eggshell is one of major phenotypic changes in the transition from oviparity to viviparity. Whether the reduction of eggshells in viviparous squamates is associated with specific gene losses is unknown. Taking advantage of a newly generated high-quality genome of the viviparous Chinese crocodile lizard (Shinisaurus crocodilurus), we found that ovocleidin-17 gene (OC-17), which encodes an eggshell matrix protein that is essential for calcium deposition in eggshells, is not intact in the crocodile lizard genome. Only OC-17 transcript fragments were found in the oviduct transcriptome, and no OC-17 peptides were identified in the eggshell proteome of crocodile lizards. In contrast, OC-17 was present in the eggshells of the oviparous Mongolia racerunner (Eremias argus). Although the loss of OC-17 is not common in viviparous species, viviparous squamates show fewer intact eggshell-specific proteins than oviparous squamates. Our study implies that functional loss of eggshell-matrix protein genes may be involved in the reduction of eggshells during the transition from oviparity to viviparity in the crocodile lizard.


Subject(s)
Alligators and Crocodiles , Lizards , Animals , Viviparity, Nonmammalian , Egg Shell , Oviparity , Lizards/genetics , China
16.
Nat Commun ; 13(1): 2881, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610218

ABSTRACT

Viviparity, an innovation enhancing maternal control over developing embryos, has evolved >150 times in vertebrates, and has been proposed as an adaptation to inhabit cold habitats. Yet, the behavioral, physiological, morphological, and life history features associated with live-bearing remain unclear. Here, we capitalize on repeated origins of viviparity in phrynosomatid lizards to tease apart the phenotypic patterns associated with this innovation. Using data from 125 species and phylogenetic approaches, we find that viviparous phrynosomatids repeatedly evolved a more cool-adjusted thermal physiology than their oviparous relatives. Through precise thermoregulatory behavior viviparous phrynosomatids are cool-adjusted even in warm environments, and oviparous phrynosomatids warm-adjusted even in cool environments. Convergent behavioral shifts in viviparous species reduce energetic demand during activity, which may help offset the costs of protracted gestation. Whereas dam and offspring body size are similar among both parity modes, annual fecundity repeatedly decreases in viviparous lineages. Thus, viviparity is associated with a lower energetic allocation into production. Together, our results indicate that oviparity and viviparity are on opposing ends of the fast-slow life history continuum in both warm and cool environments. In this sense, the 'cold climate hypothesis' fits into a broader range of energetic/life history trade-offs that influence transitions to viviparity.


Subject(s)
Lizards , Animals , Biological Evolution , Female , Live Birth , Lizards/physiology , Oviparity/physiology , Phylogeny , Pregnancy , Viviparity, Nonmammalian/physiology
17.
Mol Biol Evol ; 39(4)2022 04 10.
Article in English | MEDLINE | ID: mdl-35388432

ABSTRACT

The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Biological Evolution , Female , Genomics , Lizards/genetics , Mammals/physiology , Placenta , Pregnancy , Viviparity, Nonmammalian/genetics
18.
J Evol Biol ; 35(5): 708-718, 2022 05.
Article in English | MEDLINE | ID: mdl-35384114

ABSTRACT

Blood oxygen-carrying capacity is shaped both by the ambient oxygen availability as well as species-specific oxygen demand. Erythrocytes are a critical part of oxygen transport and both their size and shape can change in relation to species-specific life-history, behavioural or ecological conditions. Here, we test whether components of the environment (altitude), life history (reproductive mode, body temperature) and behaviour (diving, foraging mode) drive erythrocyte size variation in the Lepidosauria (lizards, snakes and rhynchocephalians). We collected data on erythrocyte size (area) and shape (L/W: elongation ratio) from Lepidosauria across the globe (N = 235 species). Our analyses show the importance of oxygen requirements as a driver of erythrocyte size. Smaller erythrocytes were associated with the need for faster delivery (active foragers, high-altitude species, warmer body temperatures), whereas species with greater oxygen demands (diving species, viviparous species) had larger erythrocytes. Erythrocyte size shows considerable cross-species variation, with a range of factors linked to the oxygen delivery requirements being major drivers of these differences. A key future aspect for study would include within-individual plasticity and how changing states, for example, pregnancy, perhaps alter the size and shape of erythrocytes in Lepidosaurs.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Erythrocytes , Oviparity , Oxygen , Snakes
19.
Biol Rev Camb Philos Soc ; 97(3): 1179-1192, 2022 06.
Article in English | MEDLINE | ID: mdl-35098647

ABSTRACT

How innovations such as vision, flight and pregnancy evolve is a central question in evolutionary biology. Examination of transitional (intermediate) forms of these traits can help address this question, but these intermediate phenotypes are very rare in extant species. Here we explore the biology and evolution of transitional forms of pregnancy that are midway between the ancestral state of oviparity (egg-laying) and the derived state, viviparity (live birth). Transitional forms of pregnancy occur in only three vertebrates, all of which are lizard species that also display intraspecific variation in reproductive phenotype. In these lizards (Lerista bougainvillii, Saiphos equalis, and Zootoca vivipara), geographic variation of three reproductive forms occurs within a single species: oviparity, viviparity, and a transitional form of pregnancy. This phenomenon offers the valuable prospect of watching 'evolution in action'. In these species, it is possible to conduct comparative research using different reproductive forms that are not confounded by speciation, and are of relatively recent origin. We identify major proximate and ultimate questions that can be addressed in these species, and the genetic and genomic tools that can help us understand how transitional forms of pregnancy are produced, despite predicted fitness costs. We argue that these taxa represent an excellent prospect for understanding the major evolutionary shift between egg-laying and live birth, which is a fundamental innovation in the history of animals.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Biological Evolution , Lizards/genetics , Oviparity/genetics , Reproduction/genetics , Snakes , Viviparity, Nonmammalian/genetics
20.
Mol Phylogenet Evol ; 167: 107347, 2022 02.
Article in English | MEDLINE | ID: mdl-34763070

ABSTRACT

The ability to bear live offspring, viviparity, has evolved multiple times across the tree of life and is a remarkable adaptation with profound life-history and ecological implications. Within amphibians the ancestral reproductive mode is oviparity followed by a larval life stage, but viviparity has evolved independently in all three amphibian orders. Two types of viviparous reproduction can be distinguished in amphibians; larviparity and pueriparity. Larviparous amphibians deliver larvae into nearby ponds and streams, while pueriparous amphibians deliver fully developed juveniles and thus do not require waterbodies for reproduction. Among amphibians, the salamander genus Salamandra is remarkable as it exhibits both inter- and intraspecific variation in the occurrence of larviparity and pueriparity. While the evolutionary relationships among Salamandra lineages have been the focus of several recent studies, our understanding of how often and when transitions between modes occurred is still incomplete. Furthermore, in species with intraspecific variation, the reproductive mode of a given population can only be confirmed by direct observation of births and thus the prevalence of pueriparous populations is also incompletely documented. We used sequence capture to obtain 1,326 loci from 94 individuals from across the geographic range of the genus, focusing on potential reproductive mode transition zones. We also report additional direct observations of pueriparous births for 20 new locations and multiple lineages. We identify at least five independent transitions from the ancestral mode of larviparity to pueriparity among and within species, occurring at different evolutionary timescales ranging from the Pliocene to the Holocene. Four of these transitions occurred within species. Based on a distinct set of markers and analyses, we also confirm previous findings of introgression between species and the need for taxonomic revisions in the genus. We discuss the implications of our findings with respect to the evolution of this complex trait, and the potential of using five independent convergent transitions for further studies on the ecological context in which pueriparity evolves and the genetic architecture of this specialized reproductive mode.


Subject(s)
Salamandra , Animals , Biological Evolution , Humans , Oviparity/genetics , Phylogeny , Urodela/genetics , Viviparity, Nonmammalian/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...