Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 798
Filter
1.
Fungal Biol ; 128(4): 1859-1867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876538

ABSTRACT

Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.


Subject(s)
Agaricales , Gas Chromatography-Mass Spectrometry , Mycelium , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Mycelium/growth & development , Mycelium/drug effects , Mycelium/chemistry , Agaricales/chemistry , Agaricales/growth & development , Agaricales/drug effects , Agaricales/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Biological Control Agents/pharmacology , Biological Control Agents/chemistry , Metschnikowia/growth & development , Metschnikowia/drug effects , Metschnikowia/metabolism , Antibiosis , Aureobasidium , Trichoderma/growth & development , Trichoderma/chemistry , Trichoderma/metabolism , Solid Phase Microextraction
2.
Food Microbiol ; 122: 104551, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839219

ABSTRACT

Brown rot, caused by Monilinia fructicola, is considered one of the devasting diseases of pre-harvest and post-harvest peach fruits, restricting the yield and quality of peach fruits and causing great economic losses to the peach industry every year. Presently, the management of the disease relies heavily on chemical control. In the study, we demonstrated that the volatile organic compounds (VOCs) of endophyte bacterial Pseudomonas protegens QNF1 inhibited the mycelial growth of M. fructicola by 95.35% compared to the control, thereby reducing the brown rot on postharvest fruits by 98.76%. Additionally, QNF1 VOCs severely damaged the mycelia of M. fructicola. RNA-seq analysis revealed that QNF1 VOCs significantly repressed the expressions of most of the genes related to pathogenesis (GO:0009405) and integral component of plasma membrane (GO:0005887), and further analysis revealed that QNF1 VOCs significantly altered the expressions of the genes involved in various metabolism pathways including Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism. The findings of the study indicated that QNF1 VOCs displayed substantial control efficacy by disrupting the mycelial morphology of M. fructicola, weakening its pathogenesis, and causing its metabolic disorders. The study provided a potential way and theoretical support for the management of the brown rot of peach fruits.


Subject(s)
Ascomycota , Fruit , Plant Diseases , Prunus persica , Pseudomonas , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Prunus persica/microbiology , Fruit/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pseudomonas/genetics , Pseudomonas/metabolism , Ascomycota/genetics , Ascomycota/drug effects , Ascomycota/growth & development , Ascomycota/metabolism , Mycelium/growth & development , Mycelium/drug effects , Mycelium/genetics , Endophytes/genetics , Endophytes/metabolism
3.
Pestic Biochem Physiol ; 202: 105910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879293

ABSTRACT

The extraordinary adaptability and dispersal abilities have allowed Hyphantria cunea to expand its range, posing a great threat to urban landscapes and natural ecosystems. Searching for safe, efficient, and low-cost control methods may provide new strategies for pest management in H. cunea spread areas. In this study, based on the attraction of insects by preferred hosts, it was found that the response rates of virgin H. cunea female adults to Salix matsudana, Juglans mandshurica and Ulmus pumila were 89.17%, 97.92% and 93.98%, respectively. It was further found that this significant preference was mainly related to the volatiles m-xylene, o-xylene, dodecane and tetradecane found in the three species. Even though all four compounds at 10 µL/mL and 100 µL/mL had significant attractive effects on the virgin H. cunea female adults, m-xylene and dodecane at 100 µL/mL elicited significant EAG responses and tending behaviors by stimulating the olfactory receptor neurons (ORN A) of females, with response rates of 83.13% and 84.17%, while also having significant attractive effects on virgin male adults with rates of 65.74% and 67.51%. Therefore, both m-xylene and dodecane which at concentrations of 100 µL/mL had strong attractions to adults, could be used as the first choice of attractants for both sexes of H. cunea. This has important practical significance in reducing the frequency of H. cunea generations, limiting their population, controlling their spread range, and improving the efficiency of pest management in epidemic areas.


Subject(s)
Volatile Organic Compounds , Animals , Female , Male , Volatile Organic Compounds/pharmacology , Juglans
4.
J Agric Food Chem ; 72(23): 13284-13296, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38808775

ABSTRACT

Benzyl nitrile from tea plants attacked by various pests displays a diurnal pattern, which may be closely regulated by the endogenous circadian clock. However, the molecular mechanism by the circadian clock of tea plants that regulates the biosynthesis and release of volatiles remains unclear. In this study, the circadian clock gene CsPCL1 can activate both the expression of the benzyl nitrile biosynthesis-related gene CsCYP79 and the jasmonic acid signaling-related transcription factor CsMYC2 involved in upregulating CsCYP79 gene, thereby resulting in the accumulation and release of benzyl nitrile. Therefore, the anti-insect function of benzyl nitrile was explored in the laboratory. The application of slow-release beads of benzyl nitrile in tea plantations significantly reduced the number of tea geometrids and had positive effects on the yield of fresh tea leaves. These findings reveal the potential utility of herbivore-induced plant volatiles for the green control of pests in tea plantations.


Subject(s)
Camellia sinensis , Circadian Clocks , Nitriles , Plant Proteins , Volatile Organic Compounds , Camellia sinensis/genetics , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/parasitology , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Circadian Clocks/genetics , Nitriles/pharmacology , Nitriles/chemistry , Nitriles/metabolism , Gene Expression Regulation, Plant , Moths/genetics , Moths/drug effects , Moths/metabolism , Insecticides/pharmacology , Insecticides/chemistry
5.
Bioresour Technol ; 403: 130832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754558

ABSTRACT

This study focused on optimizing the production of fermented Spirulina (FS) products using a bioactivity-guided strategy with Lactobacillus helveticus B-4526 and Kluyveromyces marxianus Y-329 in a 3-L bioreactor. Various operating conditions, including aeration rates and pH modes, were tested. While both microorganisms thrived under all conditions, the "cascade" mode, controlling dissolved oxygen, enhanced protein hydrolysis and antioxidant activity, as confirmed by SDS-PAGE and DPPH/TEAC assays, respectively. Screening revealed that "cascade" FS significantly decreased viability of colon cancer cells (HT-29) in a dose-dependent manner, with up to a 72 % reduction. Doses ≤ 500 µg mL-1 of "cascade" FS proved safe and effective in suppressing NO release without compromising cellular viability. Additionally, "cascade" FS exhibited diverse volatile organic compounds and reducing the characteristic "seaweed" aroma. These findings highlight "cascade" FS as a promising alternative food source with improved bioactive properties, urging further exploration of its bioactive compounds, particularly bioactive peptides.


Subject(s)
Bioreactors , Fermentation , Kluyveromyces , Lactobacillus helveticus , Spirulina , Kluyveromyces/metabolism , Lactobacillus helveticus/metabolism , Spirulina/metabolism , Humans , Cell Survival/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , HT29 Cells , Hydrogen-Ion Concentration , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology
6.
Toxicon ; 243: 107749, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38710308

ABSTRACT

Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.


Subject(s)
Antifungal Agents , Aspergillus flavus , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Aspergillus flavus/drug effects , Aspergillus flavus/metabolism , Antifungal Agents/pharmacology , Lactobacillales/metabolism
7.
Sci Rep ; 14(1): 11228, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755187

ABSTRACT

Antimicrobial resistance in fungal pathogens (both human and plant) is increasing alarmingly, leading to massive economic crises. The existing anti-fungal agents are becoming ineffective, and the situation worsens on a logarithmic scale. Novel antifungals from unique natural sources are highly sought to cope sustainably with the situation. Metabolites from endophytic microbes are the best-fitted alternatives in this case. Endophytes are the untapped sources of 'plants' internal microbial population' and are promising sources of effective bio-therapeutic agents. Fungal endophytes were isolated from Tropaeolum majus and checked for antifungal activity against selected plant and human pathogens. Bioactive metabolites were identified through chromatographic techniques. The mode of action of those metabolites was evaluated through various spectroscopic techniques. The production of antifungal metabolite was optimized also. In particular VOCs (volatile organic compounds) of TML9 were tested in vitro for their anti-phytopathogenic activity. Ethyl acetate (EA) extract of cell-free culture components of Colletotrichum aenigma TML3 exhibited broad-spectrum antifungal activity against four species of Candida and the major constituents reported were 6-pentyl-2H-pyran-2-one, 2-Nonanone, 1 propanol 2-amino. The volatile metabolites, trans-ocimene, geraniol, and 4-terpinyl acetate, produced from Curvularia lunata TML9, inhibited the growth of some selected phyto pathogens. EA extract hampered the biofilm formation, minimised the haemolytic effect, and blocked the transformation of Candida albicans (MTCC 4748) from yeast to hyphal form with a Minimum Fungicidal Concentration (MFC) of 200-600 µg mL-1. Central carbohydrate metabolism, ergosterol synthesis, and membrane permeability were adversely affected and caused the lethal leakage of necessary macromolecules of C. albicans. Volatile metabolites inhibited the growth of phytopathogens i.e., Rhizoctonia solani, Alternaria alternata, Botrytis cinerea, Cercospora beticola, Penicillium digitatum, Aspergillus fumigatus, Ceratocystis ulmi, Pythium ultimum up to 89% with an IC50 value of 21.3-69.6 µL 50 mL-1 and caused leakage of soluble proteins and other intracellular molecules. Citrusy sweet odor volatiles of TML9 cultured in wheat-husk minimised the infections of Penicillium digitatum (green mold), in VOC-exposed sweet oranges (Citrus sinensis). Volatile and non-volatile antifungal metabolites of these two T. majus endophytes hold agricultural and pharmaceutical interests. Metabolites of TML3 have strong anti-Candida activity and require further assessment for therapeutic applications. Also, volatile metabolites of TML9 can be further studied as a source of antifungals. The present investigational outcomes bio-prospects the efficacy of fungal endophytes of Garden Nasturtium.


Subject(s)
Antifungal Agents , Endophytes , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Endophytes/metabolism , Endophytes/chemistry , Microbial Sensitivity Tests , Colletotrichum/drug effects , Fungi/drug effects , Alternaria/drug effects , Rhizoctonia/drug effects , Humans , Candida/drug effects
8.
Mar Drugs ; 22(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786624

ABSTRACT

The deep-sea bacterium Spongiibacter nanhainus CSC3.9 has significant inhibitory effects on agricultural pathogenic fungi and human pathogenic bacteria, especially Pseudomonas aeruginosa, the notorious multidrug-resistant pathogen affecting human public health. We demonstrate that the corresponding antibacterial agents against P. aeruginosa PAO1 are volatile organic compounds (VOCs, namely VOC-3.9). Our findings show that VOC-3.9 leads to the abnormal cell division of P. aeruginosa PAO1 by disordering the expression of several essential division proteins associated with septal peptidoglycan synthesis. VOC-3.9 hinders the biofilm formation process and promotes the biofilm dispersion process of P. aeruginosa PAO1 by affecting its quorum sensing systems. VOC-3.9 also weakens the iron uptake capability of P. aeruginosa PAO1, leading to reduced enzymatic activity associated with key metabolic processes, such as reactive oxygen species (ROS) scavenging. Overall, our study paves the way to developing antimicrobial compounds against drug-resistant bacteria by using volatile organic compounds.


Subject(s)
Anti-Bacterial Agents , Biofilms , Pseudomonas aeruginosa , Quorum Sensing , Volatile Organic Compounds , Pseudomonas aeruginosa/drug effects , Volatile Organic Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Quorum Sensing/drug effects , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Humans
9.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791403

ABSTRACT

Nowadays, there is an increasing interest in the study of medicinal and aromatic plants, due to their therapeutic properties that correlate with the presence of different active compounds. Agastache species (sp.) are aromatic plants that belong to the Lamiaceae family, originating from North America and East Asia. The present study aimed to evaluate the composition of essential oils (EOs) obtained from different Romanian cultivated Agastache sp. and to investigate their antibacterial and cytotoxic activities. The gas chromatography-mass spectrometry (GC-MS) screening revealed that menthone was the dominant constituent of A. foeniculum (31.58%), A. rugosa (39.60%) and A. rugosa 'After Eight' (39.76%) EOs, while estragole was the major constituent of A. foeniculum "Aromat de Buzau" (63.27%) and A. mexicana (41.66%) EOs. The investigation of the antiproliferative effect showed that A. rugosa and A. foeniculum "Aromat de Buzau" EOs had significant cytotoxic activity on MDA-MB-231 and HEPG2 tumour cell lines, with the most promising effect on the MDA-MB-231 breast cancer cell line for A. foeniculum "Aromat de Buzau" EO (IC50 = 203.70 ± 0.24 µg/mL). Regarding the antibacterial activity, A. rugosa EO was most active against E. coli (8.91 ± 3.27 µL/mL) and S. aureus (10.80 ± 0.00 µL/mL). To the best of our knowledge, this is the first report on the cytotoxic effect of Agastache sp. EOs on MDA-MB-231, HCT116 and HEPG2 tumour cell lines. The results of our study provide new and promising information for the subsequent in vivo study of the pharmacological properties of Agastache sp. essential oils.


Subject(s)
Agastache , Anti-Bacterial Agents , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gas Chromatography-Mass Spectrometry/methods , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Agastache/chemistry , Cell Line, Tumor , Hep G2 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Microbial Sensitivity Tests , Cell Proliferation/drug effects , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
10.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38733636

ABSTRACT

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Subject(s)
Aspergillus flavus , Tea Tree Oil , Terpenes , Triticum , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Tea Tree Oil/pharmacology , Terpenes/pharmacology , Triticum/microbiology , Antifungal Agents/pharmacology , Volatile Organic Compounds/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Edible Grain/microbiology , Food Preservation/methods
11.
J Agric Food Chem ; 72(18): 10282-10294, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657235

ABSTRACT

This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.


Subject(s)
Bacillus , Basidiomycota , Coptis , Plant Diseases , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Bacillus/chemistry , Bacillus/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Basidiomycota/chemistry , Basidiomycota/metabolism , Coptis/chemistry , Coptis/microbiology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Gas Chromatography-Mass Spectrometry , Mycelium/chemistry , Mycelium/growth & development , Mycelium/drug effects
12.
J Econ Entomol ; 117(3): 876-886, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38648180

ABSTRACT

The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is a crop pest of global economic importance because of its wide range of hosts and its invasiveness capacities. To develop a novel integrated and sustainable crop protection, we have investigated the insecticidal properties of different varieties of kava (Piper methysticum [Frost]) extracted by two methods and the attractive effects of six plant volatiles identified from B. tryoni host plants to female, mated or not. We did not identify any significant insecticidal effect of the traditional Pacific kava plant at the tested concentrations. Among mated females, ethyl acetate compared to the no odor control elicited the highest attraction (87%, of which 60% for this odor), while ethyl butyrate was preferred compared with ethyl acetate in dual choice assays. Flies' preferences for specific odors depended on their mating status and the odor landscape they were confronted with. Combination with the commercial ingestion insecticide (Success 4: spinosad, 480 g/l, Dow AgroSciences, Valbonne, France) with the plant volatiles were tested to detect an increase in mortality related to the addition of an attractant. The 2-heptanone slightly showed a tend to increase the attractiveness of mated females within 4-6 h to the food bait, but the results were not statistically significant after 8 h. Further tests should be performed with other concentrations or mixtures of the identified host plant volatiles to develop a strong lure and kill strategy.


Subject(s)
Drug Combinations , Insecticides , Macrolides , Tephritidae , Animals , Tephritidae/drug effects , Female , Insecticides/pharmacology , Macrolides/pharmacology , Insect Control , Male , Volatile Organic Compounds/pharmacology , Kava , Pheromones/pharmacology
13.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675631

ABSTRACT

Interest in natural remedies has grown recently due to a variety of public health concerns such as microbial antibiotic resistance. This global health concern necessitates innovative approaches to combat bacterial infections. Building upon established therapeutic uses of essential oils, this research focused on the volatile constituents of essential oils. The volatile antimicrobial activity of these constituents was studied by employing a derivative of a modified disk diffusion assay for quantitative comparisons. This study emphasizes the significance and value of exploring natural compounds as alternatives to traditional antibiotics and provides insights into their mechanisms and applications in contending with bacterial pathogens.


Subject(s)
Microbial Sensitivity Tests , Oils, Volatile , Volatile Organic Compounds , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects
14.
Int J Food Microbiol ; 417: 110692, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38640817

ABSTRACT

Previous investigations proved the potential of Saccharomyces cerevisiae MBELGA62 and Pichia kudriavzevii MBELGA61 as suitable biocontrolling agents against Aspergillus sp. through the production of soluble and volatile bioactive antifungal compounds. The present study delves into those finding by means of the identification of the volatile compounds produced by brewer's strains that demonstrated fungistatic and fungicidal effects against Aspergillus flavus and A. parasiticus when cultured in brewer's wort agar plates. Traditional brewer's yeasts such as S. cerevisiae MBELGA62 and Saccharomyces pastorianus SAFS235 synthetize volatiles that fully inhibited mycelial development for up to 9 days at 30 °C. The non-conventional brewer's strains P. kudriavzevii MBELGA61 and Meyerozyma guilliermondii MUS122 increased the lag phase by >100% and significantly reduced the fungal growth rate by 27.5-43.0% and 15.4-31.4%, respectively. In this context, 2-phenylethanol, 2-phenylethyl acetate and benzyl alcohol were identified as the main antifungal agents involved in Aspergillus sp.'s inhibition.


Subject(s)
Antifungal Agents , Aspergillus , Fermentation , Saccharomyces cerevisiae , Volatile Organic Compounds , Aspergillus/drug effects , Aspergillus/metabolism , Aspergillus/growth & development , Antifungal Agents/pharmacology , Volatile Organic Compounds/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Pichia/metabolism , Pichia/drug effects , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/metabolism
15.
J Food Sci ; 89(5): 3094-3109, 2024 May.
Article in English | MEDLINE | ID: mdl-38634238

ABSTRACT

As a nutritious plant with valuable potential, the Moringa oleifera Lam. (MOL) leaf addition on Fuzhuan brick tea (FBT) for the co-fermentation (MOL-FBT) was an industry innovation and a new route to make full use of MOL leaf. After optimization of the extraction conditions, the best conditions for the polyphenols extraction method from MOL-FBT (MFP) were 60°C for 40 min (1:80, V/W) using response surface methodology. A total of 30 phenolics were identified and quantified. Most of the polyphenols were increased after adding MOL leaf for co-fermentation compared to FBT polyphenols. In particular, caffeic acids were found only in MFP. Moreover, the MFP received high value in taste, aroma, and color. In total, 62 volatile flavor compounds, consisting of 3 acids, 5 alcohols, 15 aldehydes, 4 esters, 20 hydrocarbons, 10 ketones, and 5 others, were identified in MFP. In addition, MFP inhibited 3T3-L1 preadipocyte differentiation in a dose-dependent manner and decreased lipid accumulation via the peroxisome proliferator-activated receptor gamma (PPARγ)/CCAAT/enhancer binding protein alpha (CEBPα)/cluster of differentiation 36 (CD36) axis and induced a brown adipocyte-like phenotype. In vivo experiments were further conducted to confirm the in vitro results. MFP regulated lipid accumulation, glucose/insulin tolerance, improved liver and kidney function, and inhibited the secretion of pro-inflammatory factors by the PPARγ/CEBPα/CD36 axis and alleviated inflammation in high fat and high fructose diet-induced obese mice. In summary, MFP possesses high-quality properties and anti-obesity effects, as well as the great potential to be used as a novel functional food product.


Subject(s)
3T3-L1 Cells , Anti-Obesity Agents , Fermentation , Moringa oleifera , Obesity , Phenols , Plant Leaves , Tea , Volatile Organic Compounds , Animals , Mice , Moringa oleifera/chemistry , Plant Leaves/chemistry , Phenols/analysis , Phenols/pharmacology , Anti-Obesity Agents/pharmacology , Tea/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacology , Male , Plant Extracts/pharmacology , Mice, Inbred C57BL , Polyphenols/pharmacology , Polyphenols/analysis , PPAR gamma/metabolism
16.
Acta Trop ; 255: 107228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670443

ABSTRACT

Aggregation is a spatial distribution pattern where individuals can be grouped through interaction with particular signals or cues [e.g., chemical substances]. Numerous triatomine species exhibit attraction and aggregation around both conspecific and heterospecific feces. It remains unclear whether compounds released by feces function as signals (pheromones or synomones) or cues. Employing a bioassay that mimics field conditions, we investigated the response of Triatoma pallidipennis bugs to volatiles present in its feces and blends of these compounds. Our findings indicate that short-chain aldehydes, namely nonanal, octanal, heptanal, and hexanal, attract fifth-instar nymphs. Furthermore, insects responded to individual compounds as well as secondary, ternary, and quaternary blends. The most attractive blend consisted of all four aldehydes. Additionally, quaternary blends at various compound ratios attracted fifth-instar nymphs of T. phyllosoma and T. longipennis. We discuss the potential roles of these compounds as signals or cues and explore their application as bait in control programs.


Subject(s)
Nymph , Triatoma , Animals , Triatoma/drug effects , Triatoma/growth & development , Triatoma/physiology , Nymph/drug effects , Feces/chemistry , Pheromones/pharmacology , Insect Control/methods , Aldehydes/pharmacology , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/chemistry
17.
Plant Cell Environ ; 47(6): 2228-2239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483021

ABSTRACT

The selection of oviposition sites by female moths is crucial in shaping their progeny performance and survival, and consequently in determining insect fitness. Selecting suitable plants that promote the performance of the progeny is referred to as the Preference-Performance hypothesis (or 'mother-knows-best'). While root infestation generally reduces the performance of leaf herbivores, little is known about its impact on female oviposition. We investigated whether maize root infestation by the Western corn rootworm (WCR) affects the oviposition preference and larval performance of the European corn borer (ECB). ECB females used leaf volatiles to select healthy plants over WCR-infested plants. Undecane, a compound absent from the volatile bouquet of healthy plants, was the sole compound to be upregulated upon root infestation and acted as a repellent for first oviposition. ECB larvae yet performed better on plants infested below-ground than on healthy plants, suggesting an example of 'bad motherhood'. The increased ECB performance on WCR-infested plants was mirrored by an increased leaf consumption, and no changes in the plant primary or secondary metabolism were detected. Understanding plant-mediated interactions between above- and below-ground herbivores may help to predict oviposition decisions, and ultimately, to manage pest outbreaks in the field.


Subject(s)
Larva , Moths , Oviposition , Plant Leaves , Plant Roots , Volatile Organic Compounds , Zea mays , Animals , Oviposition/drug effects , Zea mays/physiology , Zea mays/parasitology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology , Moths/physiology , Female , Larva/physiology , Plant Roots/parasitology , Plant Roots/physiology , Plant Leaves/physiology , Herbivory
18.
J Invertebr Pathol ; 203: 108077, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38402946

ABSTRACT

The European truffle beetle, Leiodes cinnamomeus, is the most important pest in black truffle (Tuber melanosporum) plantations. Entomopathogenic nematodes (EPNs) are a promising biological control agents against L. cinnamomeus. EPNs may employ multiple sensory cues while seeking for hosts, such as volatile organic compounds (VOCs) and CO2 gradients. We report for the first time the attraction of EPNs to truffle fruitbodies, and identified some VOCs potentially playing a key role in this interaction. We conducted olfactometer assays to investigate the attraction behavior of Steinernema feltiae and Steinernema carpocapsae towards both T. melanosporum fruitbodies and larvae of L. cinnamomeus. Subsequently, a chemotaxis assay using agar plates was performed to determine which of the 14 of the main VOCs emitted by the fruitbodies attracted S. feltiae at low (0.1 %) and high (mg/100 g truffle) concentrations. Both EPN species were attracted to mature fruitbodies of T. melanosporum, which may enhance the likelihood of encountering L. cinnamomeus during field applications. L. cinnamomeus larvae in the presence of truffles did not significantly affect the behavior of EPNs 24 h after application, underscoring the importance of the chemical compounds emitted by truffles themselves. Chemotaxis assays showed that four long-chain alcohol compounds emitted by T. melanosporum fruitbodies attracted S. feltiae, especially at low concentration, providing a first hint in the chemical ecology of a little-studied ecological system of great economical value. Further studies should be conducted to gain a finer understanding of the tritrophic interactions between T. melanosporum, EPNs, and L. cinnamomeus, as this knowledge may have practical implications for the efficacy of EPNs in the biological control of this pest.


Subject(s)
Ascomycota , Coleoptera , Rhabditida , Volatile Organic Compounds , Animals , Volatile Organic Compounds/pharmacology , Larva
19.
Pest Manag Sci ; 80(6): 3010-3021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38318950

ABSTRACT

BACKGROUND: Valsa canker caused by Valsa pyri is one of the most destructive diseases of pear, leading to severe yield and economic losses. Volatile organic compounds (VOCs) from endophytes have important roles in the regulation of plant disease. In this study, we investigated the biocontrol activity of the endophytic fungus Aspergillus niger strain La2 and its antagonistic VOCs against pear Valsa canker. RESULTS: Strain La2 exhibited an obvious inhibitory effect against V. pyri. A colonization assay suggested that strain La2 could complete its life cycle on pear twigs. The symptoms of pear Valsa canker were weakened on detached pear twigs after treatment with strain La2. In addition, VOCs from strain La2 also significantly suppressed mycelial growth in V. pyri. Based on the results of headspace solid-phase microextraction/gas chromatography-mass spectrometry analysis, six possible VOCs produced by strain La2 were detected, of which 2,4-di-tert-butylphenol and 4-methyl-1-pentanol were the main antagonistic VOCs in terms of their effect on pear Valsa canker in vitro and in vivo. Further results showed that 4-methyl-1-pentanol could destroy the V. pyri hyphal structure and cell membrane integrity. Importantly, the activities of pear defense-related enzymes (polyphenol oxidase, phenylalanine ammonia lyase and superoxide dismutase) were enhanced after 4-methyl-1-pentanol treatment in pear twigs, suggesting that 4-methyl-1-pentanol might induce a plant disease resistance response. CONCLUSION: Aspergillus niger strain La2 and its VOCs 2,4-di-tert-butylphenol and 4-methyl-1-pentanol have potential as novel biocontrol agents of pear Valsa canker. © 2024 Society of Chemical Industry.


Subject(s)
Aspergillus niger , Plant Diseases , Pyrus , Volatile Organic Compounds , Pyrus/microbiology , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Endophytes/physiology , Biological Control Agents/pharmacology
20.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338986

ABSTRACT

Root knot nematodes cause serious damage to global agricultural production annually. Given that traditional chemical fumigant nematicides are harmful to non-target organisms and the environment, the development of biocontrol strategies has attracted significant attention in recent years. In this study, it was found that the Bacillus thuringiensis Berliner strain NBIN-863 exhibits strong fumigant nematicidal activity and has a high attraction effect on Meloidogyne incognita (Kofoid and White) Chitwood. Four volatile organic compounds (VOCs) produced by NBIN-863 were identified using solid-phase microextraction and gas chromatography-mass spectrometry. The nematicidal activity of four VOCs, namely, N-methylformamide, propenamide, 3-(methylthio)propionic acid, and phenylmalonic acid, was detected. Among these compounds, 3-(methylthio)propionic acid exhibited the highest direct contact nematicidal activity against M. incognita, with an LC50 value of 6.27 µg/mL at 24 h. In the fumigant bioassay, the mortality rate of M. incognita treated with 1 mg/mL of 3-(methylthio)propionic acid for 24 h increased to 69.93%. Furthermore, 3-(methylthio)propionic acid also exhibited an inhibitory effect on the egg-hatching of M. incognita. Using chemotaxis assays, it was determined that 3-(methylthio)propionic acid was highly attractive to M. incognita. In pot experiments, the application of 3-(methylthio)propionic acid resulted in a reduction in gall numbers, decreasing the number of galls per gram of tomato root from 97.58 to 6.97. Additionally, the root length and plant height of the treated plants showed significant increases in comparison with the control group. The current study suggests that 3-(methylthio)propionic acid is a novel nematicidal virulence factor of B. thuringiensis. Our research provides evidence for the potential use of NBIN-863 or its VOCs in biocontrol against root knot nematodes.


Subject(s)
Bacillus thuringiensis , Pesticides , Propionates , Tylenchoidea , Volatile Organic Compounds , Animals , Antinematodal Agents/pharmacology , Pesticides/pharmacology , Volatile Organic Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...