Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 604
Filter
1.
BMC Med Genomics ; 17(1): 104, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659011

ABSTRACT

BACKGROUND: Waardenburg syndrome type 2 (WS2) has been reported to be a rare hereditary disorder, which is distinguished by vivid blue eyes, varying degrees of hearing impairment, and abnormal pigment deposition in the skin and hair. Variants in the sex-determining region Y-box containing gene 10 (SOXl0) gene may cause congenital deafness and have been demonstrated to be important during the development of WS2. METHODS: Complete clinical data of the proband and her family members (her parents and 2 sisters) was collected and physical examinations were performed in the hospital. The laboratory examination including hemoglobin, Coomb's test, urine protein, ENA, autoimmune hepatitis-related autoantibodies and ultrasonography were all conducted. We obtained the peripheral blood samples from all the participants and performed whole exome sequencing and sanger sequencing validation. RESULTS: The present study identified a family of 5 members, and only the proband exhibited typical WS2. Beyond the characteristics of WS2, the proband also manifested absence of puberty. The proband and her younger sister manifested systemic lupus erythematosus (SLE). Whole exome sequencing revealed a de novo variant in the SOX10 gene. The variant c.175 C > T was located in exon 2 of the SOX10 gene, which is anticipated to result in early termination of protein translation. CONCLUSION: The present study is the first to report a case of both WS2 and SLE, and the present findings may provide a new insight into WS2.


Subject(s)
Pedigree , SOXE Transcription Factors , Waardenburg Syndrome , Humans , Waardenburg Syndrome/genetics , SOXE Transcription Factors/genetics , Female , Male , Adult , Exome Sequencing , Mutation
2.
Mol Biol Rep ; 51(1): 536, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642155

ABSTRACT

OBJECTIVES: This study aimed to identify the causative variants in a patient with Waardenburg syndrome (WS) type 2 using whole exome sequencing (WES). METHODS: The clinical features of the patient were collected. WES was performed on the patient and his parents to screen causative genetic variants and Sanger sequencing was performed to validate the candidate mutation. The AlphaFold2 software was used to predict the changes in the 3D structure of the mutant protein. Western blotting and immunocytochemistry were used to determine the SOX10 mutant in vitro. RESULTS: A de novo variant of SOX10 gene, NM_006941.4: c.707_714del (p. H236Pfs*42), was identified, and it was predicted to disrupt the wild-type DIM/HMG conformation in SOX10. In-vitro analysis showed an increased level of expression of the mutant compared to the wild-type. CONCLUSIONS: Our findings helped to understand the genotype-phenotype association in WS2 cases with SOX10 mutations.


Subject(s)
SOXE Transcription Factors , Waardenburg Syndrome , Child , Humans , China , Mutation/genetics , Pedigree , SOXE Transcription Factors/genetics , Waardenburg Syndrome/genetics , East Asian People/genetics
3.
Mol Genet Genomic Med ; 12(3): e2296, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38419387

ABSTRACT

OBJECTIVE: To explore the molecular etiology of Waardenburg syndrome type II (WS2) in a family from Yunnan province, China. METHODS: A total of 406 genes related to hereditary hearing loss were sequenced using next-generation sequencing. DNA samples were isolated from the peripheral blood DNA of probands. Those pathogenic mutations detected by next-generation sequencing in probands and their parents were validated by Sanger sequencing. The conservatism of variation sites in genes was also analyzed. The protein expression was detected by flow cytometry. RESULTS: A heterozygous mutation c.178delG (p.D60fs*49) in the SOX10 gene was identified in the proband, which is a frameshift mutation and may cause protein loss of function and considered to be a pathogenic mutation. This was determined to be a de novo mutation because her family were demonstrated to be wild-type and symptom free. SOX10, FGFR3, SOX2, and PAX3 protein levels were reduced as determined by flow cytometry. CONCLUSION: A novel frameshift mutation in SOX10 gene was identified in this study, which may be the cause of WS2 in proband. In addition, FGFR3, SOX2, and PAX3 might also participate in promoting the progression of WS2.


Subject(s)
Frameshift Mutation , Waardenburg Syndrome , Humans , Female , Waardenburg Syndrome/genetics , Waardenburg Syndrome/pathology , China , Pedigree , DNA , SOXE Transcription Factors/genetics
5.
Sci Rep ; 14(1): 2210, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278860

ABSTRACT

Cochlear melanocytes are intermediate cells in the stria vascularis that generate endocochlear potentials required for auditory function. Human PAX3 mutations cause Waardenburg syndrome and abnormalities of skin and retinal melanocytes, manifested as congenital hearing loss (~ 70%) and hypopigmentation of skin, hair and eyes. However, the underlying mechanism of hearing loss remains unclear. Cochlear melanocytes in the stria vascularis originated from Pax3-traced melanoblasts and Plp1-traced Schwann cell precursors, both of which derive from neural crest cells. Here, using a Pax3-Cre knock-in mouse that allows lineage tracing of Pax3-expressing cells and disruption of Pax3, we found that Pax3 deficiency causes foreshortened cochlea, malformed vestibular apparatus, and neural tube defects. Lineage tracing and in situ hybridization show that Pax3+ derivatives contribute to S100+, Kir4.1+ and Dct+ melanocytes (intermediate cells) in the developing stria vascularis, all of which are significantly diminished in Pax3 mutant animals. Taken together, these results suggest that Pax3 is required for the development of neural crest cell-derived cochlear melanocytes, whose absence may contribute to congenital hearing loss of Waardenburg syndrome in humans.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Waardenburg Syndrome , Mice , Animals , Humans , Waardenburg Syndrome/genetics , Cochlea , Stria Vascularis , Hearing Loss, Sensorineural/genetics , Melanocytes , PAX3 Transcription Factor/genetics
6.
Biochem Biophys Res Commun ; 698: 149510, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38278051

ABSTRACT

Waardenburg syndrome type 1 (WS1) is a hereditary disease mainly characterized by sensorineural hearing loss, dystopia canthorum, and pigmentary defects. To elucidate molecular mechanisms underlying PAX3-associated hearing loss, we developed inner ear organoids model using induced pluripotent stem cells (iPSCs) derived from WS1 patient and healthy individual. Our results revealed a significant reduction in the size of inner ear organoids, accompanied by an increased level of apoptosis in organoids derived from WS1 patient-iPSCs carrying PAX3 c.214A > G. Transcriptome profiling analysis by RNA-seq indicated that inner ear organoids from WS1 patients were associated with suppression of inner ear development and WNT signaling pathway. Furthermore, the upregulation of the WNT1/ß-catenin pathway which was achieved through the correction of PAX3 isogenic mutant iPSCs using CRISPR/Cas9, contributed to an increased size of inner ear organoids and a reduction in apoptosis. Together, our results provide insight into the underlying mechanisms of hearing loss in WS.


Subject(s)
Deafness , Ear, Inner , Induced Pluripotent Stem Cells , Waardenburg Syndrome , Humans , Waardenburg Syndrome/genetics , PAX3 Transcription Factor/genetics , beta Catenin/genetics , Mutation , Wnt Signaling Pathway , Organoids , Apoptosis , Cell Proliferation
7.
Pigment Cell Melanoma Res ; 37(1): 21-35, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37559350

ABSTRACT

Waardenburg Syndrome (WS) is a rare genetic disorder that leads to congenital hearing loss and pigmentation defects. Microphthalmia-associated transcription factor (MITF) is one of its significant pathogenic genes. Despite the comprehensive investigation in animal models, the pathogenic mechanism is still poorly described in humans due to difficulties accessing embryonic tissues. In this work, we used induced pluripotent stem cells derived from a WS patient carrying a heterozygous mutation in the MITF gene c.626A>T (p.His209Leu), and differentiated toward melanocyte lineage, which is the most affected cell type involved in WS. Compared with the wild-type cell line, the MITFmut cell line showed a reduced expression of the characteristic melanocyte-related genes and a lesser proportion of mature, fully pigmented melanosomes. The transcriptome analysis also revealed widespread gene expression changes at the melanocyte stage in the MITFmut cell line. The differentially expressed genes were enriched in melanogenesis and cell proliferation-related pathways. Interestingly, ion transport-related genes also showed a significant difference in MITFmut -induced melanocytes, indicating that the MITF mutant may lead to the dysfunction of potassium channels and transporters produced by intermediate cells in the cochlea, further causing the associated phenotype of deafness. Altogether, our study provides valuable insights into how MITF mutation affects WS patients, which might result in defective melanocyte development and the related phenotype based on the patient-derived iPSC model.


Subject(s)
Pigmentation Disorders , Waardenburg Syndrome , Animals , Humans , Pigmentation Disorders/genetics , Pigmentation Disorders/metabolism , Waardenburg Syndrome/genetics , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Melanogenesis , Mutation/genetics , Melanocytes/metabolism
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1367-1372, 2023 Nov 10.
Article in Chinese | MEDLINE | ID: mdl-37906143

ABSTRACT

OBJECTIVE: To explore the genetic basis for a Chinese pedigree featuring congenital profound syndromic deafness and chronic constipation, and provide prenatal diagnosis for a high-risk fetus. METHODS: Whole-exome sequencing was carried out to analyze the sequences of genes associated with hereditary deafness, and multiplex ligation-dependent probe amplification (MLPA) was used to verify the candidate variant in the proband's parents and the fetus. RESULTS: The proband was found to have harbored a heterozygous deletion of SOX10, a pathogenic gene associated with Waardenburg syndrome type 4C (WS4C). The same deletion was found in her mother (with profound syndromic deafness and chronic constipation) and the fetus, but not in her father with normal hearing. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the SOX10 gene deletion was predicted to be a pathogenic variant (PVS1+PM2_Supporting+PP1+PP4). CONCLUSION: The pedigree was diagnosed with WS4C, which has conformed to an autosomal dominant inheritance. Deletion of the entire SOX10 gene, as a loss-of-function variant, probably underlay its pathogenesis. Above finding has facilitated genetic counseling and prenatal diagnosis for this family.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Waardenburg Syndrome , Humans , Female , Pregnancy , Pedigree , Waardenburg Syndrome/diagnosis , Waardenburg Syndrome/genetics , East Asian People , Genetic Testing , Prenatal Diagnosis , Hearing Loss, Sensorineural/genetics , Deafness/genetics , Mothers , Constipation/genetics , Mutation , SOXE Transcription Factors/genetics
9.
Am J Med Genet A ; 191(12): 2813-2818, 2023 12.
Article in English | MEDLINE | ID: mdl-37533297

ABSTRACT

Waardenburg syndrome (WS) is characterized by the association of sensorineural hearing loss and pigmentation abnormalities. Among the four types, WS Type 2 (WS2) is the only one without a remarkable distinguishing feature. Here, we report a patient initially diagnosed with WS2 who exhibits a 446 kb mosaic duplication in chromosome 22q13.1, encompassing SOX10, and detected using whole genome sequencing in a trio. The patient, a 46,XY boy, presents with profound bilateral sensorineural hearing loss, right heterochromia iridium, left bright blue iris, and skin-depigmented areas in the abdomen and limbs. Vestibular and imaging tests are normal, without inner ear or olfactory bulb malformations. Bilateral cochlear implantation did not prevent language and speech delays. Moderate congenital chronic constipation and neurodevelopmental difficulties were also present. Given the few genes included in this duplicated region (only one OMIM gene with dominant inheritance), this report provides further delineation of the phenotype related to duplications encompassing the entire SOX10 gene.


Subject(s)
Hearing Loss, Sensorineural , Vestibule, Labyrinth , Waardenburg Syndrome , Male , Humans , Mosaicism , Phenotype , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Waardenburg Syndrome/diagnosis , Waardenburg Syndrome/genetics , SOXE Transcription Factors/genetics , Mutation
10.
J Int Adv Otol ; 19(3): 255-259, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37272645

ABSTRACT

Waardenburg syndrome is an autosomal dominant inherited syndromic hereditary hearing loss characterized by varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. The aim of this study was to analyze the clinical phenotypes and genetic variants of a Chinese boy with Waardenburg syndrome type 2 and to explore the possible molecular pathogenesis of Waardenburg syndrome type 2. Clinical, audiological, and ophthalmologic evaluations were performed on the proband. Clinical data from the principal members in the proband's family were collected through questionnaires. Genetic analysis was conducted, including targeted next-generation sequencing of 144 known deafness genes, Sanger sequencing, and bioinformatic analysis. Waardenburg syndrome type 2was diagnosed in a 4-year-old boy according to the Waardenburg Syndrome Consortium Criteria. The novel missense mutation c.426G>T (p.Trp142Cys) was identified in SOX10 in the proband but was absent in his parents and the controls. A de novo missense mutation in SOX10 was the genetic cause of Waardenburg syndrome type 2 in the proband, which was useful for the molecular diagnosis of Waardenburg syndrome type 2.


Subject(s)
Hearing Loss, Sensorineural , SOXE Transcription Factors , Waardenburg Syndrome , Humans , East Asian People , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Mutation , Phenotype , SOXE Transcription Factors/genetics , Waardenburg Syndrome/diagnosis , Waardenburg Syndrome/genetics , Male , Child, Preschool
11.
BMC Med Genomics ; 16(1): 147, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365589

ABSTRACT

BACKGROUND: Waardenburg syndrome (WS) is a rare genetic disorder characterized by varying degrees of sensorineural hearing loss and accumulated pigmentation in the skin, hair and iris. The syndrome is classified into four types (WS1, WS2, WS3, and WS4), each with different clinical phenotypes and underlying genetic causes. The aim of this study was to identify the pathogenic variant in a Chinese family with Waardenburg syndrome type IV. METHODS: The patient and his parents underwent a thorough medical examination. We applied whole exome sequencing to identify the causal variant on the patient and other family members. RESULTS: The patient presented with iris pigmentary abnormality, congenital megacolon and sensorineural hearing loss. The clinical diagnosis of the patient was WS4. The whole exome sequencing (WES) revealed a novel variant (c.452_456dup) in the SOX10 gene, which could be responsible for the observed pathogenic of WS4 in this patient. Our analysis suggests that this variant produces a truncated protein that contributes to the development of the disease. The genetic test confirmed the diagnosis of WS4 in the patient from the studied pedigree. CONCLUSIONS: This present study demonstrated that genetic test based on WES, an effective alternative to regular clinical examinations, helps diagnose WS4. The newly identified SOX10 gene variant can expand the understanding of WS4.


Subject(s)
Hearing Loss, Sensorineural , Waardenburg Syndrome , Humans , Waardenburg Syndrome/genetics , Waardenburg Syndrome/diagnosis , Genetic Testing , Phenotype , Pedigree , Hearing Loss, Sensorineural/genetics , Mutation , SOXE Transcription Factors/genetics
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(6): 661-667, 2023 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-37211999

ABSTRACT

OBJECTIVE: To explore the genetic basis for four Chinese pedigrees affected with Waardenburg syndrome (WS). METHODS: Four WS probands and their pedigree members who had presented at the First Affiliated Hospital of Zhengzhou University between July 2021 and March 2022 were selected as the study subjects. Proband 1, a 2-year-and-11-month female, had blurred speech for over 2 years. Proband 2, a 10-year-old female, had bilateral hearing loss for 8 years. Proband 3, a 28-year-old male, had right side hearing loss for over 10 years. Proband 4, a 2-year-old male, had left side hearing loss for one year. Clinical data of the four probands and their pedigree members were collected, and auxiliary examinations were carried out. Genomic DNA was extracted from peripheral blood samples and subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing. RESULTS: Proband 1, with profound bilateral sensorineural hearing loss, blue iris and dystopia canthorum, was found to have harbored a heterozygous c.667C>T (p.Arg223Ter) nonsense variant of the PAX3 gene, which was inherited from her father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type I. Proband 2, with moderate sensorineural hearing loss on the right side and severe sensorineural hearing loss on the left side, has harbored a heterozygous frameshifting c.1018_1022del (p.Val340SerfsTer60) variant of the SOX10 gene. Neither of her parents has harbored the same variant. Based on the ACMG guidelines, it was classified as pathogenic (PVS1+PM2_Supporting+PP4+PM6), and the proband was diagnosed with WS type II. Proband 3, with profound sensorineural hearing loss on the right side, has harbored a heterozygous c.23delC (p.Ser8TrpfsTer5) frameshifting variant of the SOX10 gene. Based on the ACMG guidelines, it was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type II. Proband 4, with profound sensorineural hearing loss on the left side, has harbored a heterozygous c.7G>T (p.Glu3Ter) nonsense variant of the MITF gene which was inherited from his mother. Based on the ACMG guidelines, the variant was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type II. CONCLUSION: By genetic testing, the four probands were all diagnosed with WS. Above finding has facilitated molecular diagnosis and genetic counseling for their pedigrees.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Waardenburg Syndrome , Female , Humans , Male , East Asian People , Hearing Loss, Sensorineural/genetics , Mutation , Pedigree , Phenotype , Waardenburg Syndrome/genetics , Waardenburg Syndrome/diagnosis
13.
Anim Genet ; 54(4): 549-552, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37062854

ABSTRACT

A white calf, with minimal pigmented markings, was born to two registered Black Angus parents. Given the possibility of an unknown recessive or de novo dominant mutation, whole-genome sequencing was conducted on the trio of individuals. A 3-bp in-frame deletion in MITF was identified; this mutation was unique to the calf but identical to the delR217 variant reported in both humans and murine models of Waardenburg syndrome type 2A and Tietz syndrome. Given the coat color phenotype and identity of the mutation, our data support that this calf represents the first instance of this recurring MITF mutation in cattle.


Subject(s)
Cattle Diseases , Microphthalmia-Associated Transcription Factor , Animals , Cattle/genetics , Humans , Mice , Cattle Diseases/genetics , Deafness/genetics , Deafness/veterinary , Microphthalmia-Associated Transcription Factor/genetics , Mutation , Phenotype , Sequence Deletion , Waardenburg Syndrome/genetics , Waardenburg Syndrome/veterinary
14.
Stem Cell Res ; 69: 103074, 2023 06.
Article in English | MEDLINE | ID: mdl-36989619

ABSTRACT

Waardenburg syndrome type 1 (WS1), a rare genetic disease characterized by pigmentation defects and mild craniofacial anomalies often associated with congenital deafness is caused by heterozygous mutations in the PAX3 gene (2q36.1). We have generated two induced pluripotent stem cell lines (PCli029-A and PCli031-A) from two patients from the same family both carrying the same heterozygous deletion in PAX3 exon 1 (c.-70_85 + 366del). These cells are pluripotent as they can differentiate into ectoderm, mesoderm and endoderm. They also can activate the early neural crest marker SNAI2. These cells will be useful for studying the human neural crest-derived pigment cells.


Subject(s)
Induced Pluripotent Stem Cells , Waardenburg Syndrome , Humans , Waardenburg Syndrome/genetics , Neural Crest , PAX3 Transcription Factor/genetics , Mutation
15.
Article in Chinese | MEDLINE | ID: mdl-36756824

ABSTRACT

Objective:To analyze the molecular genetics and clinical characteristics of 3 children with syndromic deafness were analyzed to clarify their causative genes and genetic characteristics. Methods:The medical records of 3 children and their parents were collected and analyzed, including physical examination, hearing evaluation, temporal bone CT, and cranial MRI. Whole-exome sequencing(WES) was used to screen for pathogenic gene variants, and Sanger sequencing was used to verify the candidate positive variants in the probands and their parents. Results:All 3 patients were female with normal intelligence. Patient 1 and 3 had a family history of deafness, which conformed to the pattern of autosomal dominant inheritance. All three patients had bilateral profound sensorineural hearing impairment with bright-blue sclera. Other phenotypes included hypertelorism(patient 1), multiple dyschromatosis(patient 2), and yellowish hair(patient 2), blepharoptosis(patient 3). Patient 3 had bilateral vestibular enlargement, internal auditory canal enlargement, and bilateral inner ear malformations. Mother of patient 1 had only left mild hearing impairment; mother of patient 3 had bilateral hearing impairment with unilateral bright-blue sclera and yellowish hair. WES detected heterozygous variants, PAX3 c.811C>T, MITF c.632T>C, and SOX10 c.1359_1360 insGCCCCACA, in patient 1, 2, and 3, respectively. The variants in patient 1 and 3 were inherited from their mothers who had hearing impairment, and MITFvariant in patient 2 may be a spontaneous variation. The final diagnoses were that patient 1 with Waardenburg syndrome type 1(WS1), and the mother of patient 1, patient 2, patient 3, and the mother of patient 3 with WS2. Conclusion:WS is a syndromic deafness, and the main clinical features include autosomal dominant inheritance and scleral pigment abnormalities. However, the findings of this study show that there is still phenotypic heterogeneity in WS even caused by the same gene variant, so it depends on genetic tests to confirm the diagnosis; The gene variant of patient 1 and 2 was never been reported in other patients, which expands the pathogenic variant spectrum of WS.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Waardenburg Syndrome , Female , Humans , Deafness/genetics , Hearing Loss, Sensorineural/genetics , Molecular Biology , Mutation , Pedigree , Phenotype , Waardenburg Syndrome/genetics , Child
16.
Hum Genet ; 142(3): 419-430, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36576601

ABSTRACT

Waardenburg syndrome (WS) is a rare inherited autosomal dominant disorder caused by SOX10, PAX3, MITF, EDNRB, EDN3, and SNAI2. A large burden of pathogenic de novo variants is present in patients with WS, which may be derived from parental mosaicism. Previously, we retrospectively analyzed 90 WS probands with family information. And the frequency of de novo events and parental mosaicism was preliminary investigated in our previous study. In this study, we further explored the occurrence of low-level parental mosaicism in 33 WS families with de novo variants and introduced our procedure of quantifying low-level mosaicism. Mosaic single nucleotide polymorphisms (SNPs) were validated by amplicon-based next-generation sequencing (NGS); copy-number variants (CNVs) were validated by droplet-digital polymerase chain reaction (ddPCR). Molecular validation of low-level mosaicism of WS-causing variants was performed in four families (12.1%, 4/33). These four mosaic variants, comprising three SNVs and one CNV, were identified in SOX10. The rate of parental mosaicism was 25% (4/16) in WS families with de novo SOX10 variants. The lowest allele ratio of a mosaic variant was 2.0% in parental saliva. These de novo WS cases were explained by parental mosaicism conferring an elevated recurrence risk in subsequent pregnancies of parents. Considering its importance in genetic counseling, low-level parental mosaicism should be systematically investigated by personalized sensitive testing. Amplicon-based NGS and ddPCR are recommended to detect and precisely quantify the mosaicism for SNPs and CNVs.


Subject(s)
Mosaicism , Waardenburg Syndrome , Humans , Waardenburg Syndrome/diagnosis , Waardenburg Syndrome/genetics , Retrospective Studies , Parents , Exons , Mutation
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009305

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a Chinese pedigree featuring congenital profound syndromic deafness and chronic constipation, and provide prenatal diagnosis for a high-risk fetus.@*METHODS@#Whole-exome sequencing was carried out to analyze the sequences of genes associated with hereditary deafness, and multiplex ligation-dependent probe amplification (MLPA) was used to verify the candidate variant in the proband's parents and the fetus.@*RESULTS@#The proband was found to have harbored a heterozygous deletion of SOX10, a pathogenic gene associated with Waardenburg syndrome type 4C (WS4C). The same deletion was found in her mother (with profound syndromic deafness and chronic constipation) and the fetus, but not in her father with normal hearing. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the SOX10 gene deletion was predicted to be a pathogenic variant (PVS1+PM2_Supporting+PP1+PP4).@*CONCLUSION@#The pedigree was diagnosed with WS4C, which has conformed to an autosomal dominant inheritance. Deletion of the entire SOX10 gene, as a loss-of-function variant, probably underlay its pathogenesis. Above finding has facilitated genetic counseling and prenatal diagnosis for this family.


Subject(s)
Humans , Female , Pregnancy , Pedigree , Waardenburg Syndrome/genetics , East Asian People , Genetic Testing , Prenatal Diagnosis , Hearing Loss, Sensorineural/genetics , Deafness/genetics , Mothers , Constipation/genetics , Mutation , SOXE Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...