Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.001
Filter
1.
Bull Environ Contam Toxicol ; 112(6): 81, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822856

ABSTRACT

The growing production of urban solid waste is a structural problem faced by most cities around the world. The proliferation of mini-open dumps (MOD; small spontaneous open-air waste dumps formed in urban and peri-urban areas) on the banks of the Paraná River is particularly evident. During the historical drought (June-December 2021), we carried out sampling campaigns identifying MODs of the Santa Fe River, a secondary channel of the Paraná River. MOD were geolocated, measured, described and classified by origin. The distance to the river and other sensitive places was considered (houses-schools-health facilities). Our results suggested a serious environmental issue associated with poor waste management. MOD were extremely abundant in the study area, being mostly composed of domestic litter. Plastics clearly dominated the MOD composition. Burning was frequently observed as a method to reduce the volume of MOD. We concluded that the proliferation of MOD is a multi-causal problem associated with a failure of public policies and a lack of environmental education.


Subject(s)
Environmental Monitoring , Rivers , Rivers/chemistry , Environmental Monitoring/methods , Waste Disposal Facilities , Brazil , Waste Management/methods , Cities , Refuse Disposal , Water Pollutants, Chemical/analysis , Solid Waste/analysis
3.
Braz J Biol ; 84: e282386, 2024.
Article in English | MEDLINE | ID: mdl-38695424

ABSTRACT

Due to the need to achieve the principles of sustainable development and to understand the processes of formation of phytocenoses in areas that were adversely affected by the industrial impact, this study assessed the condition of the Grachevsky uranium mine (Kazakhstan), which underwent conservation procedures about 25 years ago. The purpose is to determine the level of water quality and phytocenosis of the shores of the reservoir accumulating natural effluents from reclaimed dumps and anthropogenic sites of a uranium mine, as well as quality indicators and toxicology. The assessment included a qualitative research method (analysis of documents) to determine agro-climatic conditions and empirical methods of collecting information. The authors studied the intensity of ionizing radiation of the gamma background of the water surface of the reservoir (and sections of the shoreline and territories adjacent to the reservoir), and hydrochemical parameters of the waters of the reservoir, and performed a description of the botanical diversity. The vegetation cover of the sections of the reservoir shore is at different stages of syngenesis and is represented by pioneer groupings, group thicket communities, and diffuse communities. Favorable ecological conditions for the settlement and development of plants develop within the shores of the reservoir. The intensity levels of ionizing radiation do not exceed the maximum permissible levels and practically do not affect the formation of phytocenoses. An anthropogenically modified dry meadow with the participation of plants typical of the steppe zone has been formed on the floodplain terrace. Concerning the indicators of quality and toxicology of this reservoir, the water can be used for household and drinking purposes under the condition of prior water treatment. It can be concluded that a high level of natural purification of the reservoir waters occurred within twenty years after the reclamation of the uranium mine.


Subject(s)
Mining , Uranium , Water Quality , Uranium/analysis , Biodiversity , Industrial Waste/analysis , Kazakhstan , Environmental Monitoring/methods , Plants/chemistry , Plants/classification , Water Pollutants, Radioactive/analysis , Waste Disposal Facilities
4.
PLoS One ; 19(5): e0303272, 2024.
Article in English | MEDLINE | ID: mdl-38758824

ABSTRACT

This study presents an analysis of soil contamination caused by Ni, Zn, Cd, Cu, and Pb at municipal solid waste (MSW) landfills, with a focus on ecological risk assessment. The approach aims to assess how different landfill practices and environmental conditions affect soil contamination with potentially toxic elements (PTEs) and associated environmental risks. Soil samples were collected from MSW landfills in Poland and the Czech Republic. The research included a comprehensive assessment of PTEs in soils in the context of global environmental regulations. The degree of soil contamination by PTEs was assessed using indices: Geoaccumulation Index (Igeo), Single Pollution Index (Pi), Nemerow Pollution Index (PN), and Load Capacity of a Pollutant (PLI). The ecological risk was determined using the Risk of PTEs (ERi) and Sum of Individual Potential Risk Factors (ERI). The maximum values of the indicators observed for the Radiowo landfill were as follows: Igeo = 4.04 for Cd, Pi = 24.80 for Cd, PN = 18.22 for Cd, PLI = 2.66, ERi = 744 for Cd, ERI = 771.80. The maximum values of the indicators observed for the Zdounky landfill were as follows: Igeo = 1.04 for Cu, Pi = 3.10 for Cu, PN = 2.52 for Cu, PLI = 0.27, ERi = 25 for Cd, ERI = 41.86. The soils of the tested landfills were considered to be non-saline, with electrical conductivity (EC) values less than 2,000 µS/cm. Varying levels of PTEs were observed, and geostatistical analysis highlighted hotspots indicating pollution sources. Elevated concentrations of Cd in the soil indicated potential ecological risks. Concentrations of Cu and lead Pb were well below the thresholds set by the environmental legislation in several countries. In addition, Ni concentrations in the soils of both landfills indicated that the average levels were within acceptable limits. Principal Component Analysis (PCA) revealed common sources of PTEs. The identification of specific risk points at the Radiowo and Zdounky sites contributes to a better understanding of potential hazards in landfill environments. By establishing buffer zones and implementing regular maintenance programs, emerging environmental problems can be addressed in a timely manner.


Subject(s)
Soil Pollutants , Waste Disposal Facilities , Soil Pollutants/analysis , Soil Pollutants/toxicity , Risk Assessment , Czech Republic , Poland , Environmental Monitoring/methods , Metals, Heavy/analysis , Metals, Heavy/toxicity , Refuse Disposal , Soil/chemistry , Solid Waste/analysis
5.
Environ Monit Assess ; 196(6): 537, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730190

ABSTRACT

Selecting an optimal solid waste disposal site is one of the decisive waste management issues because unsuitable sites cause serious environmental and public health problems. In Kenitra province, northwest Morocco, sustainable disposal sites have become a major challenge due to rapid urbanization and population growth. In addition, the existing disposal sites are traditional and inappropriate. The objective of this study is to suggest potential suitable disposal sites using fuzzy logic and analytical hierarchy process (fuzzy-AHP) method integrated with geographic information system (GIS) techniques. For this purpose, thirteen factors affecting the selection process were involved. The results showed that 5% of the studied area is considered extremely suitable and scattered in the central-eastern parts, while 9% is considered almost unsuitable and distributed in the northern and southern parts. Thereafter, these results were validated using the area under the curve (AUC) of the receiver operating characteristics (ROC). The AUC found was 57.1%, which is a moderate prediction's accuracy because the existing sites used in the validation's process were randomly selected. These results can assist relevant authorities and stakeholders for setting new solid waste disposal sites in Kenitra province.


Subject(s)
Fuzzy Logic , Geographic Information Systems , Refuse Disposal , Morocco , Refuse Disposal/methods , Solid Waste/analysis , Environmental Monitoring/methods , Waste Disposal Facilities , Waste Management/methods
6.
Sci Total Environ ; 932: 172982, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705287

ABSTRACT

In recent decades, the presence of perfluoroalkyl acids (PFAAs) in municipal solid waste leachate has emerged as a growing concern. Research has focused on PFAA release and occurrence characteristics in landfill and waste-to-energy leachate, highlighting their significant impact when released into wastewater treatment plants. Given the extremely high loading rate faced by current on-site leachate treatment plants (LTPs), the objective of this study is to assess whether the current "anaerobic/aerobic (A/O) + membrane bioreactor (MBR) + nanofiltration (NF) + reverse osmosis (RO)" configuration is effective in PFAAs removal. Concentrations of raw and treated leachate in 10 on-site LTPs with same treatment configuration and varying landfill ages were measured, and a comprehensive mass flow analysis of each treatment process was conducted. The results indicate that A/O treatment has limited capacity for PFAA removal, while NF and RO processes reached 77.44 % and 94.30 % removal rates of ∑PFAAs concentration, respectively. Short-chain PFAAs (> 80 % detected frequency) primarily influenced the distribution and variations of PFAAs in leachate and tend to disperse in the water phase. Correlation analysis revealed the current on-site LTPs exhibit a more efficient removal capacity for long-chain PFAAs.


Subject(s)
Fluorocarbons , Waste Disposal Facilities , Waste Disposal, Fluid , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Bioreactors
7.
J Econ Entomol ; 117(3): 918-927, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38742850

ABSTRACT

As large cities begin to overrun their landfill capacities, they begin to look for alternative locations to handle the waste stream. Seeing an opportunity to bring in revenue, rural communities offer to handle municipal waste in their landfills. However, many rural communities are also places of agricultural production, which are vulnerable to attacks by invasive insect species, which could be present in green yard waste, the component of municipal waste most likely to contain agriculturally harmful insect species. We used environmental DNA (eDNA) to determine whether green yard waste could be a pathway for invasive insect species to enter and establish in the landfill-receiving agricultural community. We identified several target species that could be in green yard waste coming from Vancouver, BC, Canada, to Central Washington State, USA. We sampled green yard waste from 3 sites every 2 weeks from June to October in 2019 and 2020. DNA was extracted from the nearly 400 samples and subjected to amplification with COI barcoding primers followed by sequencing to identify target insects in the samples. Sequence analyses identified 3 species from the target list: 2 species that are pests of deciduous tree fruits and a generalist root-feeding crop pest. This eDNA technique was useful in identifying potential invasive species in green yard waste and may prove to be an important tool informing policy on the movement of biological material across borders and stemming the spread of invasive species.


Subject(s)
DNA, Environmental , Introduced Species , Animals , DNA, Environmental/analysis , Washington , Insecta/genetics , British Columbia , Waste Disposal Facilities , DNA Barcoding, Taxonomic
8.
Chemosphere ; 360: 142409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782135

ABSTRACT

This study explored the effect stage number and plant type have on ammonia-nitrogen (NH3-N) removal kinetics in a two-stage pilot-scale vertical flow constructed wetland (VFCW) system treating landfill leachate. Half of the VFCW columns were planted with Typha latifolia and the other half Scirpus californicus, and half of the columns were loaded with municipal solid waste landfill leachate (diluted to 1 part leachate to 2 parts total) with the effluent from these columns was collected in two separate barrels. The remaining columns were loaded with the effluent collected from the first columns, creating a two-stage VFCW system with four unique pairs to be tested. The leachate used here experienced no prior pre-treatment, and average influent concentrations of NH3-N for the first- and second-stage VFCWs were 508 and 321 mg L-1, respectively- much higher than many other VFCW treatment systems. Some reduction in chemical oxygen demand was observed, as well as generation of nitrate and nitrite, evidence of nitrification. No apparent correlation between aboveground biomass and removal of NH3-N was observed. Overall removal efficiency of NH3-N through two stages of VFCWs was 53.7% for columns planted with T. latifolia and 58.3% for those planted with S. Californicus. Average NH3-N removal efficiencies for the first stage VFCWs were 32.7% and 34.3%, while those in the second stage were 31.3% and 36.5%; no significant difference was observed between the first and second stage, suggesting that stage number does not have a significant effect on the removal efficiency of NH3-N in the primary treatment of landfill leachate via VFCWs. However, average mass removal rates of NH3-N in the first stage were 166 and 175 mg L-1 d-1; the second stage was significantly lower at 99.4 and 112 mg L-1 d-1, indicating that the first stage removed more pollutants overall.


Subject(s)
Ammonia , Nitrogen , Water Pollutants, Chemical , Wetlands , Ammonia/chemistry , Kinetics , Waste Disposal, Fluid/methods , Pilot Projects , Biodegradation, Environmental , Typhaceae/metabolism , Cyperaceae/metabolism , Biological Oxygen Demand Analysis , Nitrification , Waste Disposal Facilities , Biomass
9.
Rev Bras Epidemiol ; 27: e240017, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-38716959

ABSTRACT

OBJECTIVE: To detect spatial and spatiotemporal clusters of urban arboviruses and to investigate whether the social development index (SDI) and irregular waste disposal are related to the coefficient of urban arboviruses detection in São Luís, state of Maranhão, Brazil. METHODS: The confirmed cases of Dengue, Zika and Chikungunya in São Luís, from 2015 to 2019, were georeferenced to the census tract of residence. The Bayesian Conditional Autoregressive regression model was used to identify the association between SDI and irregular waste disposal sites and the coefficient of urban arboviruses detection. RESULTS: The spatial pattern of arboviruses pointed to the predominance of a low-incidence cluster, except 2016. For the years 2015, 2016, 2017, and 2019, an increase of one unit of waste disposal site increased the coefficient of arboviruses detection in 1.25, 1.09, 1.23, and 1.13 cases of arboviruses per 100 thousand inhabitants, respectively. The SDI was not associated with the coefficient of arboviruses detection. CONCLUSION: In São Luís, spatiotemporal risk clusters for the occurrence of arboviruses and a positive association between the coefficient of arbovirus detection and sites of irregular waste disposal were identified.


Subject(s)
Arboviruses , Chikungunya Fever , Dengue , Brazil/epidemiology , Humans , Dengue/epidemiology , Chikungunya Fever/epidemiology , Arbovirus Infections/epidemiology , Bayes Theorem , Zika Virus Infection/epidemiology , Spatio-Temporal Analysis , Socioeconomic Factors , Waste Disposal Facilities , Incidence
10.
Waste Manag ; 183: 260-270, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776828

ABSTRACT

The landfill is one of the most important sources of microplastics (MPs). The pretreatment method is a precondition of microplastics study for the presence of complex substances in landfills. Therefore, it is essential to examine the impact of different pretreatment methods on the microplastics detection. A literature review and a comparison experiment on digestion solutions were performed to establish a comprehensive identification method for MPs in landfills. When exposed to of 30 % H2O2, minimal mass reduction of PE, PP and PET were 4.00 %, 3.00 % and 3.00 % respectively, and the least surface damage was observed in MPs, while exhibiting the most optimal peak value for infrared spectral characteristics. It is demonstrated that the effect of 30 % H2O2 dissolution was superior compared to 10 % KOH and 65 % HNO3. The method was subsequently utilized to investigate the distribution of MPs in a landfill. The dominant MPs were polyethylene (PE, 18.56-23.91 %), polyethylene terephthalate (PET, 8.80-18.66 %), polystyrene (PS, 10.31-18.09 %), and polypropylene (PP, 11.60-14.91 %). The comprehensive identification method of "NaCl density separation + 30 % H2O2 digestion + NaI density separation + sampling microscope + Mirco-FTIR" is suitable for the detection of MPs in landfills.


Subject(s)
Solid Waste , Waste Disposal Facilities , Refuse Disposal/methods , Polyethylene/analysis , Polyethylene Terephthalates/analysis , Polystyrenes/analysis , Polypropylenes/analysis
11.
Chemosphere ; 359: 142248, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710412

ABSTRACT

PAHs is the group of emerging micro-pollutants present in most environmental matrices that has the tendency to bioaccumulate and cause carcinogenic effects to human health. The present research involved the quantification and treatment of leachate produced from secured landfill, to eliminate the PAHS. Electro-Fenton process, a class of advanced oxidation process, is adopted to degrade the PAHs using titanium electrodes as both anode and cathode. Artificial intelligence based statistical tool "Central Composite Design" a module of JMP -19 software was used to design the experiments and optimize the critical parameters involved in the research. It was observed that the value of P is significant (P < 0.05) for all the independent variables evidencing the significant correlation between experimental values and predicted values of the software. The value of R2 obtained was 0.96 and 0.97 for COD and PAHs respectively. The maximum removal efficiency of COD and PAH was found to be 84.24% and 90.78% respectively. The optimized conditions obtained from the central composite design were: pH = 5; Fe2+ = 0.1 g/L; H2O2 = 2 g/L; reaction time = 60 min; and electric intensity = 0.2 A. Additionally, optimized experimental conditions were used to study the removal efficiencies of individual 16 PAHs and are also reported. From the close proximity of experimental and predicted results of the software it can be proved that central composite design is efficient enough to be used as a statistical tool in design and analysis for treatment of landfill leachate.


Subject(s)
Environmental Restoration and Remediation , Hydrogen Peroxide , Iron , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Hydrogen Peroxide/chemistry , Environmental Restoration and Remediation/methods , Iron/chemistry , Oxidation-Reduction , Carcinogens/chemistry , Carcinogens/analysis , Waste Disposal Facilities , Electrodes , Hydrogen-Ion Concentration
12.
J Environ Manage ; 360: 121181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761628

ABSTRACT

Landfills are a major source of many emerging pollutants, including microplastics (MPs). This makes them a potential threat to human and environmental health and calls for a more detailed analysis of their hazard potential. India is a developing country with multiple unscientific waste dumping sites. In spite of their hazardous nature, detailed studies on the abundance of microplastics in landfills in India are scanty. Current work investigates the abundance and diversity of MPs in two landfills of India, Uruli Devachi in Pune (S1) and Deonar in Mumbai (S2). MPs collected from landfill leachate using multiple filters were analyzed using an optical microscope and categorized on the basis of shape, color and size to give information on their distribution. MP abundance in S1 was 1473 ± 273.01 items/L while 2067 ± 593.75 items/L were found in leachate from S2. Film and fragment were the dominant shape and black was the dominant color of MP found in both the landfills. Maximum number of MPs were in the size range below 100 µm in both the landfills necessitating the study of small sized particles. Chemical characterization revealed the prevalence of four types of MPs (polyethylene terephthalate, polypropylene, cellulose acetate and polyvinyl chloride). This study sheds light on the prevalence, characteristics, abundance and distribution of MPs in landfill leachate in Western India, sparking more research into the processes followed for capturing the factual small sized microplastic abundance data. This study is vital for a detailed management of landfill leachate enabling a sustainable waste management and targeted actions for ecosystem preservation.


Subject(s)
Environmental Monitoring , Microplastics , Waste Disposal Facilities , Water Pollutants, Chemical , Microplastics/analysis , India , Water Pollutants, Chemical/analysis
13.
J Environ Manage ; 360: 121201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796870

ABSTRACT

The explosive growth of China's express delivery industry has greatly increased plastic waste, with low-value plastics not effectively utilized, such as PE packaging bags, which are often not recycled and end up in landfills or incinerators, causing significant resource waste and severe plastic pollution. A gate -to- grave life cycle assessment was adopted to assess the impacts of express delivery plastic waste (EDPW) management models (S1, landfill; S2, incineration; S3, mechanical pelletization), with Suzhou, China as a case. Results showed that mechanical pelletization, was the most environmentally advantageous, exhibiting a comprehensive environmental impact potential of -215.54 Pt, significantly lower than that of landfill (S1, 78.45 Pt) and incineration (S2, -121.77 Pt). The analysis identified that the end-of-life disposal and sorting stages were the principal contributors to environmental impacts in all three models, with transportation and transfer stages of residual waste having minimal effects. In terms of all environmental impact categories, human carcinogenic toxicity (HTc) emerged as the most significant contributor in all three scenarios. Specifically, S1 exhibited the most detrimental effect on human health, while S2 and S3 showed positive environmental impacts. Based on these findings, it is recommended that the application and innovation in mechanical recycling technologies be enhanced, the promotion of the eco-friendly transformation of packaging materials be pursued, and a sustainable express delivery packaging recycling management system be established. These strategies are essential for achieving more eco-friendly management of EDPW, reducing its environmental pollution, and moving towards more sustainable express delivery management practices.


Subject(s)
Incineration , Plastics , Recycling , Waste Disposal Facilities , Waste Management , China , Waste Management/methods , Refuse Disposal/methods , Humans
14.
Waste Manag ; 183: 101-111, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38735093

ABSTRACT

The permeability of municipal solid wastes (MSWs) is important for the design and operation of landfills. This study presented the experimental investigation of the permeability of low food content- (LF-) and high food content- (HF-) MSWs prepared in laboratory-scale bioreactors for up to 5 years. The permeability of MSWs with diverse degrees of decomposition (DOBs), void ratios, and permeation liquids was measured (288 tests). The measured permeability was compared to that predicted from the (modified) Kozeny-Carman (K-C) equations in four different forms. The results indicated that the permeability of both LF- and HF-MSWs decreased significantly (p < 0.05) with decomposition under a given void ratio. The predicted permeability using the original K-C equation fitted well with that of fresh MSWs. The permeability of decomposed MSWs was closer to the predicted results using the modified K-C equation with the effective void ratio. This can be attributed to the increase in the fine fractions due to degradation. The reduction in the effective voids was more significant with HF-MSWs. The parameters required in the (modified) K-C equations showed a good correlation with DOB and effective particle size (d10). The predicted permeability based on the relationship between DOB (or d10) and equation parameters was within 3 times the difference compared to the measured values. The above results indicated that the modified K-C equation can be adopted to predict the permeability of fresh and degraded MSWs while more field-scale experiments should be conducted to further evaluate its feasibility.


Subject(s)
Permeability , Refuse Disposal , Solid Waste , Solid Waste/analysis , Refuse Disposal/methods , Food , Bioreactors , Waste Disposal Facilities
15.
Waste Manag ; 184: 20-27, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788499

ABSTRACT

Municipal solid waste (MSW) landfill sites have been identified as a significant source of pharmaceuticals in the environment because unused or expired pharmaceuticals are discarded into MSW, which eventually percolate into leachates. However, the contamination of pharmaceuticals in landfill leachate in China is not comprehensively understood. Previous research into factors influencing pharmaceutical concentrations focused on a limited number and type of target pollutants or restricted study area. In the present study, 66 pharmaceuticals were analyzed (including 45 antibiotic and 21 non-antibiotic pharmaceuticals, also categorized as 59 prescription and 7 non-prescription pharmaceuticals) in leachate samples from landfill sites with various characteristics in different regions of China. The results indicated that non-antibiotic pollutants were present at significantly higher concentrations than antibiotic pollutants, with median concentrations of 1.74 µg/L and 527 ng/L, respectively. Non-antibiotic pollutants also presented a higher environmental risk than antibiotic pollutants, by 2 to 4 orders of magnitude, highlighting that non-antibiotic pharmaceuticals should not be overlooked during the assessment of landfill leachate. Pharmaceutical concentrations in landfill leachate samples exhibited regional differences; the population size served by the landfills was the dominant factor contributing to the observed differences. In addition, landfill characteristics such as the solid waste composition and MSW loading can also affect pharmaceutical concentrations in landfill leachate. Despite the implementation of the classification and disposal policy of MSW in Shanghai, China since July 2019, specifying that unused or expired pharmaceuticals should be discarded as hazardous waste, high levels of pharmaceutical contaminations were detected in leachate from the main components of classified MSW (i.e., residual and food waste). These findings emphasize the importance of pharmaceutical management in solid waste systems.


Subject(s)
Environmental Monitoring , Waste Disposal Facilities , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , China , Pharmaceutical Preparations/analysis , Refuse Disposal , Solid Waste/analysis
16.
Waste Manag ; 184: 101-108, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38810395

ABSTRACT

Simulated landfill bioreactors were established and operated for 635 days to investigate the dynamic release of seven siloxanes in landfill biogas (denoted by octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6)). In total, 259.45, 252.73, 233.30, 80.40, 4.35, 1.67 and 1.10 mg of D5, D3, D4, D6, L4, L5 and L3 were discharged from 57 kg of municipal solid waste (MSW). More than 70 % of the siloxanes were released before day 119, indicating that the peak period of siloxane discharge occurred during the hydrolysis and acid production stage. The cyclosiloxanes (D3, D4, D5 and D6) were the dominant siloxane species in the biogas. The mass load of discharged cyclosiloxanes was more than 98 % of that of the total siloxanes. In addition to the variation in the concentration distribution profiles of the different siloxane species in the MSW, transformations among species may have an important effect on the release of siloxanes. The main transformation products were D3 and D4 with high release rates (>20 %) and high measured contents of trimethylsilanol (TMSOH) and functional microorganisms (Pseudomonas) were observed during landfilling. These results suggested that MSW degradation and transformation of siloxanes both drive the dynamic release of siloxanes during long-term landfilling.


Subject(s)
Biofuels , Bioreactors , Refuse Disposal , Siloxanes , Solid Waste , Waste Disposal Facilities , Siloxanes/analysis , Biofuels/analysis , Solid Waste/analysis , Refuse Disposal/methods
17.
Waste Manag ; 184: 109-119, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38810396

ABSTRACT

In recent years, construction and demolition waste (CDW) landfills landslide accidents have occurred globally, with consequences varying due to surrounding environmental factors. Risk monitoring is crucial to mitigate these risks effectively. Existing studies mainly focus on improving risk assessment accuracy for individual landfills, lacking the ability to rapidly assess multiple landfills at a regional scale. This study proposes an innovative approach utilizing deep learning models to quickly locate suspected landfills and develop risk assessment models based on surrounding environmental factors. Shenzhen, China, with significant CDW disposal pressure, is chosen as the empirical research area. Empirical findings from this study include: (1) the identification of 52 suspected CDW landfills predominantly located at the administrative boundaries within Shenzhen, specifically in the Longgang, Guangming, and Bao'an districts; (2) landfills at the lower risk of landslides are typically found near the northern borders adjacent to cities like Huizhou and Dongguan; (3) landfills situated at the internal administrative junctions generally exhibit higher landslide risks; (4) about 70 % of these landfills are high-risk, mostly located in densely populated areas with substantial rainfall and complex topographies. This study advances landfill landslide risk assessments by integrating computer vision and environmental analysis, providing a robust method for governments to rapidly evaluate risks at CDW landfills regionally. The adaptable models can be customized for various urban and broadened to general landfills by adjusting specific indicators, enhancing environmental safety protocols and risk management strategies effectively.


Subject(s)
Landslides , Waste Disposal Facilities , China , Risk Assessment/methods , Refuse Disposal/methods , Waste Management/methods , Environmental Monitoring/methods
18.
Environ Toxicol Pharmacol ; 108: 104460, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705363

ABSTRACT

Leachates from municipal landfills introduce toxic heavy metals into water, causing bioaccumulation. This study assesses metal levels and potential human health risks associated with consuming Anabas testudineus and Channa striata. Inductively coupled plasma mass spectrometry detected Cd, Cu, Cr, Ni, Pb, and Zn in both fish species. Leachate metal concentrations meet international discharge standards, Cd, Cr, and Pb in the fish exceed the international accepted values. Gastrointestinal tract+liver samples show significant variation between species, particularly in Cd and Pb. EDI, THQ/HI, and TR for the both species fall below TDIs, lower than the limit of 1, and within the acceptable range of the US-EPA permissible limit, respectively. Fish consumption appears safe regarding carcinogenic risk, but exceeding metal limits could impact heavy metals accumulation in the local food chain. Raising public awareness is crucial, and governmental agencies and environmental organizations should enhance waste treatment technologies and enact relevant health legislation.


Subject(s)
Fishes , Metals, Heavy , Waste Disposal Facilities , Water Pollutants, Chemical , Metals, Heavy/analysis , Metals, Heavy/toxicity , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Risk Assessment , Humans , Laos , Environmental Monitoring , Food Contamination/analysis
19.
Environ Pollut ; 352: 124124, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723706

ABSTRACT

High levels of bioaerosols may exist in the air of municipal solid waste (MSW) management facilities, constituting a significant occupational hazard for workers. In this study, we investigated the potential association between exposure to bioaerosols and inflammatory biomarkers among municipal solid waste workers (MSWWs) at both the landfill site and the municipal solid waste transfer station (MSWTS), in comparison to a control group without exposure. Air sampling was conducted at six points around the landfill, two points at the MSWTS, and one point in a public park (as a control area) during the spring and summer of 2019. The results of our study revealed that airborne pathogens were highly prevalent at the sampling points, especially in the active zone and leachate collection pond. Aspergillus species were the predominant fungal species detected in this study, with the highest occurrence observed for Aspergillus flavus (83.3%), Aspergillus niger, and Aspergillus fumigatus (75.0%). Furthermore, Staphylococcus species accounted for over 75% of the total bacterial bioaerosols detected across all study areas. The blood test results of workers revealed a significant increase in platelets (PLT), immunoglobulin G (IgG), white blood cells (WBC), neutrophils, basophils, and high-sensitivity C-reactive protein (hs-CRP) compared to the control group. Conversely, platelet distribution width (PDW), mean platelet volume (MPV), and platelet-large cell ratio (P-LCR) in the exposed subjects exhibited a decreasing trend compared to the control group. These findings suggest a potential association between exposure to bioaerosols, particularly in the vicinity of open dumpsites, and elevated levels of hematologic and inflammatory markers in circulation. Furthermore, the influence of smoking status and confounding factors appears to be significant in both the control and exposure groups.


Subject(s)
Aerosols , Air Pollutants, Occupational , Air Pollution , Occupational Exposure , Aerosols/analysis , Air Pollutants, Occupational/analysis , Air Pollution/statistics & numerical data , Waste Disposal Facilities , Occupational Groups/statistics & numerical data , Humans , Biomarkers/metabolism , C-Reactive Protein/metabolism , Occupational Exposure/statistics & numerical data , Environmental Monitoring , Male , Female , Adult , Adolescent , Young Adult , Middle Aged
20.
Environ Pollut ; 352: 124147, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735463

ABSTRACT

Continuous release and migration of heavy metals from coal-based solid waste (CSW) dumpsites often results in significant encroachment on ecological lands and pollution of natural environments. As a result, there is an urgent need for long-term and rapid monitoring, analysis, and assessment to control environmental risks associated with large CSW dumpsites. We constructed a new composite model (PLS-FL) that uses partial least squares regression (PLSR) and fuzzy logic inference (FLI) to accurately predict heavy metal concentrations in soils and assess pollution risk levels. The potential application of the PLS-FL was tested through a gully type CSW case study. We compared 20 modeling strategies using the PLS-FL: five types heavy metals (Cd, Zn, Pb, Cr and As) * four spectral transformation methods (first derivative (FD), second derivative (SD), reverse logarithm (RL), and continuum removal (CR)) * one variable selection method (competitive adaptive reweighted sampling (CARS)). The results showed that the combination of derivative transformation and CARS was recommended for estimation, with R2C > 0.80 and R2P > 0.50. When comparing the PLSR model with four traditional machine learning methods (Support Vector Machines (SVM), Random Forests (RF), Extreme Learning Machines (ELM), and KNN), the PLSR model demonstrated the highest average prediction accuracy. Additionally, the FLI process no longer relies on human perception and expert opinion, enhancing the model's objectivity and reliability. The evaluation results revealed that the heavy metal contamination areas of the CSW dumpsite are concentrated at the bottom of the gully, with more severe contamination in the north. Furthermore, a high-risk zone exists in the interim storage area for CSW to the east of the dump. These findings align with the initial detections at the sampling sites and highlight the need for targeted monitoring and control in these areas. The application of the model will empower regulators to quickly assess the overall situation of large-scale heavy metal pollution and provide scientific program and data support for continuous large-scale pollution risk monitoring and sustainable risk management.


Subject(s)
Coal , Environmental Monitoring , Fuzzy Logic , Metals, Heavy , Soil Pollutants , Soil Pollutants/analysis , Metals, Heavy/analysis , Risk Assessment , Least-Squares Analysis , Environmental Monitoring/methods , Solid Waste/analysis , Waste Disposal Facilities , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...