Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.599
Filter
1.
Ecol Evol Physiol ; 97(2): 118-128, 2024.
Article in English | MEDLINE | ID: mdl-38728691

ABSTRACT

AbstractCutaneous evaporative water loss (CEWL) makes up a significant portion of total evaporative water loss in many terrestrial vertebrates. CEWL changes on evolutionary and acclimatory timescales in response to temperature and humidity. However, the lability of CEWL on acute timescales is unknown. To examine this, we increased or decreased body temperatures of western fence lizards (Sceloporus occidentalis) over a 15-min period while continuously recording CEWL with a handheld evaporimeter. CEWL increased in response to heating and decreased in response to cooling on the order of seconds. However, CEWL was different between heating and cooling groups at a common body temperature. We observed the same positive relationship between CEWL and body temperature, as well as the difference in CEWL between treatments, for deceased lizards that we opportunistically measured. However, deceased lizards had more extreme CEWL values for any given body temperature and treatment. Overall, our results suggest that both structural traits and active physiological processes likely influence the rates and plasticity of CEWL.


Subject(s)
Lizards , Temperature , Water Loss, Insensible , Animals , Lizards/physiology , Water Loss, Insensible/physiology , Body Temperature/physiology , Male , Skin Physiological Phenomena
3.
Eur J Pharm Biopharm ; 199: 114303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657740

ABSTRACT

Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.


Subject(s)
Administration, Cutaneous , Hyaluronic Acid , Needles , Skin Absorption , Skin , Solubility , Animals , Swine , Skin/metabolism , Skin/drug effects , Skin Absorption/drug effects , Skin Absorption/physiology , Hyaluronic Acid/chemistry , Hyaluronic Acid/administration & dosage , Drug Delivery Systems/methods , Tomography, Optical Coherence/methods , Microinjections/methods , Water Loss, Insensible/drug effects , Water Loss, Insensible/physiology , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry
4.
Ital J Dermatol Venerol ; 159(3): 349-356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38635324

ABSTRACT

BACKGROUND: The pathophysiology of sensitive skin is largely unknown and no univocal data on the role of the epidermal barrier impairment have been identified. The aim of this study was to assess whether subjects with or without sensitive skin differ for some biophysical skin parameters, which reflect skin barrier integrity or skin hyperactivity. METHODS: This observational, cross-sectional study included adult volunteers not affected with chronic inflammatory skin diseases who attended the Unit of Dermatology and the Center of Cosmetology of the University of Ferrara, Ferrara, Italy, between March 2021 and November 2022. All subjects, subdivided into those with or without sensitive skin, based on either Lactic Acid Stinging Test (LAST) result or a questionnaire-based skin sensitivity score ≥4, were tested for transepidermal water loss (TEWL), skin elasticity and hydrations and dermographism. RESULTS: One hundred and eighty-seven subjects were included. No significant differences in terms of TEWL, elasticity and hydration levels were recorded between subjects with sensitive skin and those without, subdivided according to both the LAST result and the questionnaire score. Dermographism was elicited more in subjects with sensitive skin than in the others, although without statistical significance. CONCLUSIONS: The study failed to find significant biophysical differences between sensitive and non-sensitive skin. Therefore, the role of skin barrier impairment does not appear to be a necessary condition in determining an abnormal skin sensitivity to potentially unpleasant and irritating stimuli. These findings indirectly support the relevance of a peripheral sensory neural hyperactivity in the pathophysiology of sensitive skin.


Subject(s)
Epidermis , Water Loss, Insensible , Humans , Cross-Sectional Studies , Female , Male , Adult , Water Loss, Insensible/physiology , Middle Aged , Epidermis/physiopathology , Elasticity , Aged , Young Adult
5.
Skin Res Technol ; 30(3): e13655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481085

ABSTRACT

BACKGROUND: The stratum corneum (SC), the outermost layer of the skin epidermis, acts as an effective bi-directional barrier, preventing water loss (inside-outside barrier) and entry of foreign substances (outside-inside barrier). Although transepidermal water loss (TEWL) is a widely-used measure of barrier function, it represents only inside-outside protection. Therefore, we aimed to establish a non-invasive method for quantitative evaluation of the outside-inside barrier function and visually present a skin barrier model. MATERIALS AND METHODS: Skin barrier damage was induced by applying a closed patch of 1% sodium dodecyl sulfate to the forearms of eight participants; they were instructed to apply a barrier cream on a designated damaged area twice daily for 5 days. The SC barrier was evaluated by measuring TEWL and fluorescein sodium salt penetration rate before, immediately after, and 5 days after damage. The penetration rate was assessed using tape-stripping (TS) technique and fluorescence microscopy. RESULTS: The rates of fluorescein sodium salt penetration into the lower layers of SC differed significantly based on the degree of skin barrier damage. The correlation between penetration rate and TEWL was weak after two rounds of TS and became stronger after subsequent rounds. Five days after skin barrier damage, the penetration rate of all layers differed significantly between areas with and without the barrier cream application. CONCLUSION: Our findings demonstrated that the penetration rate was dependent on skin barrier conditions. The penetration rate and corresponding fluorescence images are suitable quantitative indicators that can visually represent skin barrier conditions.


Subject(s)
Skin Diseases , Water Loss, Insensible , Humans , Fluorescein/metabolism , Fluorescein/pharmacology , Epidermis/metabolism , Skin/metabolism , Skin Diseases/metabolism , Water/metabolism , Emollients/pharmacology
6.
Cont Lens Anterior Eye ; 47(3): 102154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523013

ABSTRACT

Dry eye disease is a progressive prevalent ocular surface disorder that arises from various factors and is characterized by insufficient quality and/or quantity of tears. The underlying pathophysiology is intricate and can progress to chronic, difficult-to-treat conditions. Multiple strategies and therapeutic approaches are utilized in its management that target one or more etiopathological components of dry eyes, which may include aqueous tear deficiency or evaporative dry eyes. The primary focus of this paper is on treatment alternatives that utilize lipids for the treatment of evaporative dry eyes. This may arise from either abnormal lipid production or inadequate lipid spreading caused by meibomian gland dysfunction. The hypothesis behind the development of these lipid-containing eye drops is that if they can imitate the lipid layer, they may be able to help in the management of the signs and symptoms of evaporative dry eyes. The lipids used in commercial formulations for dry eyes are mineral oil, castor oil, phospholipids, omega-3 fatty acid, and medium-chain triglycerides. The literature suggests the potential of lipid-containing eye drops to alleviate some of the signs and symptoms and enhance the quality of life for individuals suffering from evaporative dry eyes.


Subject(s)
Dry Eye Syndromes , Lipids , Ophthalmic Solutions , Tears , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/physiopathology , Humans , Tears/chemistry , Tears/metabolism , Water Loss, Insensible/drug effects
7.
Article in English | MEDLINE | ID: mdl-38452971

ABSTRACT

In terrestrial vertebrates, the outermost layer of the skin, the stratum corneum (SC), provides a durable and flexible interface with the environment and is comprised of corneocytes embedded in lipids. However, the morphology and lipid composition of the SC varies throughout evolutionary history. Because crocodilians and birds phylogenetically bracket the Archosaurian clade, lipid composition in crocodilian SC may be compared with that of birds and other vertebrates to make inferences about broader phylogenetic patterns within Archosaurs while highlighting adaptations in vertebrate skin. We identified and quantified lipid classes in the SC of the American Alligator (Alligator mississippiensis) from three skin regions varying in mobility. Our results find similarities in lipid composition between alligator and avian SC, including a high percentage of cerebrosides, a polar lipid previously found only in the SC of birds and bats. Furthermore, polar lipids were more abundant in the most mobile region of the SC. Because polar lipids bind with water to increase skin hydration and therefore its pliability under physical stress, we hypothesize that selection for lipids in Archosaurian SC was driven by the unique distribution of proteins in the SC of this clade, and cerebrosides may have served as pre-adaptations for flight.


Subject(s)
Alligators and Crocodiles , Chiroptera , Animals , Phylogeny , Lipids , Water Loss, Insensible/physiology , Epidermis/metabolism , Birds , Cerebrosides/metabolism
8.
Contact Dermatitis ; 90(6): 585-593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38417425

ABSTRACT

INTRODUCTION: Intensified hand hygiene measures were recommended for preventing the spread of SARS-CoV-2. However, these measures can lead to skin damage and the development of hand eczema, particularly among health professionals. OBJECTIVES: This pilot study aimed to evaluate the effects of repeated antiseptic use on healthy skin under controlled conditions and to assess the emollient use. METHODS: Twelve healthy volunteers (nine females, age = 22.3 ± 2.8 years (mean ± SD), Fitzpatrick phototypes II and III) with no skin diseases were recruited. Antiseptic was applied daily for 3 weeks on the volar sides of forearms. Emollient cream was also applied daily. Skin assessments were performed using non-invasive methods (transepidermal water loss-TEWL, skin hydration, erythema and melanin content). RESULTS: Prolonged antiseptic use increased TEWL, decreased hydration and elevated erythema and melanin levels. Emollient cream significantly reduced TEWL and improved hydration on antiseptic-treated sites, and also enhanced hydration on intact skin. CONCLUSIONS: Prolonged use of antiseptics can have adverse effects on the skin, including barrier disruption and inflammation. Emollient showed promise in improving skin hydration and reducing the damage caused by antiseptics. Further research with a larger sample is needed to confirm these findings and assess emollient efficacy during frequent antiseptic use.


Subject(s)
Anti-Infective Agents, Local , Emollients , Humans , Female , Pilot Projects , Anti-Infective Agents, Local/adverse effects , Male , Emollients/adverse effects , Young Adult , Adult , Erythema/chemically induced , Erythema/prevention & control , Water Loss, Insensible/drug effects , Skin/drug effects , Melanins , COVID-19/prevention & control
9.
J Cosmet Dermatol ; 23(6): 2109-2116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38366684

ABSTRACT

BACKGROUND: The protection for different skin types with impaired skin barrier in the market is insufficient. AIM: To evaluate the efficacy and safety of a panthenol-enriched mask (La Roche-Posay Mask Pro) in addressing various skin barrier impairment subgroups, including dry sensitive, oily sensitive, and oily acne skin. METHODS: A total of 177 participants were enrolled in the study and divided into three subgroups based on their skin type. Participants used the mask following the specified protocol, with measurements taken for skin hydration, transepidermal water loss (TEWL), sebum content, and skin redness-factors that are directly influenced by skin barrier function. Assessments were conducted at baseline and after 1 day (tested 15 min post-application), 7 days, and 14 days of application using Sebumeter, Tewameter, Corneometer, Mexameter, and VISIA. RESULTS: Results showed significant improvements in skin parameters across all subgroups. In the dry sensitive skin subgroup, the mask increased skin hydration, sebum content, and reduced redness. For the oily sensitive skin subgroup, the mask regulated sebum production and improved skin hydration. In the oily acne skin subgroup, the mask reduced sebum content, redness, TEWL, and post-inflammatory erythema and hyperpigmentation. Tolerance was excellent for all skin types, with no adverse reactions observed. CONCLUSIONS: This study highlights the efficacy and safety of the panthenol-enriched LRP Mask Pro for individuals with distinct skin barrier impairment subgroups. The mask's versatile formulation and proven efficacy make it a valuable skincare product for addressing various skin concerns and achieving healthier, more balanced skin.


Subject(s)
Acne Vulgaris , Pantothenic Acid , Water Loss, Insensible , Humans , Female , Adult , Pantothenic Acid/administration & dosage , Pantothenic Acid/adverse effects , Pantothenic Acid/analogs & derivatives , Male , Young Adult , Water Loss, Insensible/drug effects , Acne Vulgaris/drug therapy , Sebum/metabolism , Sebum/drug effects , Middle Aged , Treatment Outcome , Skin/drug effects , Adolescent , Administration, Cutaneous , Erythema/etiology , Erythema/chemically induced
10.
J Cosmet Dermatol ; 23(6): 2135-2144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38400612

ABSTRACT

INTRODUCTION: Senescent cells contribute to age-related tissue deterioration, including the skin, which plays important roles in overall health and social interactions. This study aimed to assess the effects of the senotherapeutic peptide, OS-01 (a.k.a. Pep 14), on skin. METHODS: A 12-week split-face, double-blinded, vehicle-controlled study involving 22 participants was conducted. The OS-01-containing formulation was applied to one side of the face, while the other side received an identical control formulation lacking the peptide. Skin characteristics were assessed using instrumental measurements, expert clinical grading, and subjective questionnaires. RESULTS: Results showed that the OS-01 formulation significantly improved one aspect of skin barrier function, as evidenced by reduced trans-epidermal water loss compared to both baseline and vehicle control. Expert grading and Antera 3D image analysis revealed a reduction in wrinkle appearance and indentation in the periorbital area, and improved skin texture and radiance on both sides of the face, with the OS-01-containing formulation demonstrating superior results. Participants also perceived improvements in skin hydration, smoothness, radiance, and overall appearance. CONCLUSION: The findings suggest that the OS-01 formulation promotes skin health by strengthening the skin barrier, protecting against dehydration, reducing the appearance of wrinkles, and improving skin texture and radiance. These effects are likely attributed to the senotherapeutic properties of OS-01 in reducing cellular senescence and its associated detrimental effects.


Subject(s)
Rejuvenation , Skin Aging , Humans , Skin Aging/drug effects , Double-Blind Method , Middle Aged , Female , Adult , Water Loss, Insensible/drug effects , Face , Skin/drug effects , Skin/pathology , Male , Peptides/administration & dosage , Peptides/pharmacology , Administration, Cutaneous , Aged
11.
J Cosmet Dermatol ; 23(6): 2097-2102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38400600

ABSTRACT

BACKGROUND: Prolonged use of medical masks has increased skin-related issues. AIM: To evaluate the efficacy of a facial cream and facial mask in mitigating medical mask related skin symptoms. METHODS: Healthy women were randomly assigned to apply a facial cream (n = 32) or a facial mask plus a facial cream (n = 32) on half-faces after wearing medical masks for 4 h (Tb). Transepidermal water loss (TEWL), dryness score, and redness area were assessed at Tb and 10 min after using the cream (T1) in the facial cream group, and at Tb, 1 h after using the facial mask (T2), and 10 min after using the cream (T3) in the combined use group. RESULTS: In the facial cream group, the treated half-face showed significantly better improvements from Tb to T1 in TEWL (-2.95 ± 0.38 vs. -0.68 ± 0.35 g/h·cm2, p < 0.001) and skin dryness score (-1.00 ± 0.12 vs. 0.00 ± 0.00, p < 0.001). In the combined use group, the treated half-face showed significantly better improvements from Tb to T2 and T3 in TEWL (T2, -3.46 ± 0.33 vs. -0.09 ± 0.13 g/h·cm2; T3, -4.67 ± 0.31 vs. -0.28 ± 0.22 g/h·cm2) and skin dryness score (T2, -0.63 ± 0.13 vs. 0.03 ± 0.03; T3, -0.94 ± 0.17 vs. 0.19 ± 0.07) (all p < 0.001) then the untreated half-face. The combined use group had significantly lower TEWL at T3 than T2 (p < 0.05). The reduction in redness area was similar between the treated and untreated half-faces in both groups. CONCLUSIONS: The test facial cream and mask significantly improved skin barrier function and alleviated dryness symptoms associated with medical mask use, with the combined use offering superior benefits.


Subject(s)
Masks , Skin Cream , Water Loss, Insensible , Humans , Female , Adult , Skin Cream/administration & dosage , Skin Cream/adverse effects , Water Loss, Insensible/drug effects , Masks/adverse effects , Face , Treatment Outcome , Young Adult , Erythema/etiology , Erythema/prevention & control , Middle Aged , Emollients/administration & dosage , Healthy Volunteers , Skin/drug effects
12.
J Biol Rhythms ; 39(2): 208-214, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38305093

ABSTRACT

Atopic dermatitis (AD) is symptomatically worse in the evening, but the mechanism driving nocturnal eczema remains elusive. Our objective was to determine the circadian rhythm of skin barrier function measured by transepidermal water loss (TEWL) in AD patients and explore the molecular underpinnings. A pilot study was performed on a diverse group of AD (n = 4) and control (n = 2) young patients. We used an inpatient tightly controlled, modified, constant routine protocol. TEWL was measured at least every 90 min in the antecubital fossa (lesional) and forearm, while whole blood samples were collected every 4 h. Results show a significant difference in the antecubital fossa TEWL in the AD group versus controls. TEWL in control skin decreases starting a few hours prior to bedtime, both in the antecubital fossa and in the forearm, while in the AD forearm skin, pre-bedtime TEWL increases. We identified 1576 differentially expressed genes using a time-dependent model. The top 20 upregulated gene ontology pathways included neuronal pathways, while the downregulated functional terms included innate immune signaling and viral response. Similar pathways positively correlated with forearm TEWL in controls and inversely with the AD group. Upregulation in sensory perception pathways correlated with increases in lesional (antecubital fossa) TEWL in the evening. Results show skin barrier function worsens in the evening in the AD group, at a time when barrier is normally rejuvenating in healthy skin. This timing and the detection of transcriptomic signatures of sensory perception and diminished viral response might correspond to the nocturnal itch. Larger studies are needed to evaluate these associations in the skin.


Subject(s)
Dermatitis, Atopic , Humans , Dermatitis, Atopic/diagnosis , Pilot Projects , Water Loss, Insensible/physiology , Circadian Rhythm , Skin
13.
Skin Res Technol ; 30(2): e13591, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38279544

ABSTRACT

PURPOSE: Electrical stimulation (ES) is a widely used technique in the medical field for various purposes. The effect of ES on several skin properties has been investigated; however, its effect on skin vulnerability to irritants remains unknown. This study aimed to investigate the effects of ES application on skin vulnerability to external irritants. MATERIALS AND METHODS: An experimental study on 12 healthy male subjects (Mean ± SD, 22.9 ± 3.6 years) who completed the study. The subjects were free of skin abnormalities in the volar aspect of both forearms. Three areas were allocated to each forearm and marked as areas 1, 2, and A in the treated forearm, and areas 3, 4, and B in the control forearm. ES was applied to the volar aspect of the treated forearm for 30 min three times a week, for 2 weeks. The effect of ES on skin vulnerability was investigated using 5% and 0.5% sodium lauryl sulfate (SLS) patches applied to both treated and control forearms. The skin response to irritants was evaluated using transepidermal water loss (TEWL) and a visual erythema score 24 h after patch removal. RESULTS: Compared to the control forearm, ES increased skin permeability and erythema in response to external irritants (SLS), as measured by the visual analog score (Z = 2.75, p = 0.006) and TEWL (p < 0.05), respectively. CONCLUSIONS: ES escalates skin reactions to low concentrations of irritant substances, such as SLS, in the area between the two electrodes. This emphasizes the use of this substance, and similar irritants should be avoided in areas treated with ES.


Subject(s)
Dermatitis, Irritant , Irritants , Male , Humans , Irritants/pharmacology , Dermatitis, Irritant/etiology , Water Loss, Insensible , Skin , Sodium Dodecyl Sulfate/pharmacology , Erythema
14.
J Exp Biol ; 227(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38073475

ABSTRACT

Changes in environmental temperature during development can affect growth, metabolism and temperature tolerance of the offspring. We know little about whether such changes remain to adulthood, which is important to understand the links between climate change, development and fitness. We investigated whether phenotypic consequences of the thermal environment in early life remained in adulthood in two studies on Japanese quail (Coturnix japonica). Birds were raised under simulated heatwave, cold snap or control conditions, from hatching until halfway through the growth period, and then in common garden conditions until reproductively mature. We measured biometric and thermoregulatory [metabolic heat production (MHP), evaporative water and heat loss (EWL, EHL) and body temperature] responses to variation in submaximal air temperature at the end of the thermal acclimation period and in adulthood. Warm birds had lower MHP than control birds at the end of the thermal acclimation period and, in the warmest temperature studied (40°C), also had higher evaporative cooling capacity compared with controls. No analogous responses were recorded in cold birds, although they had higher EWL than controls in all but the highest test temperature. None of the effects found at the end of the heatwave or cold snap period remained until adulthood. This implies that chicks exposed to higher temperatures could be more prepared to counter heat stress as juveniles but that they do not enjoy any advantages of such developmental conditions when facing high temperatures as adults. Conversely, cold temperature does not seem to confer any priming effects in adolescence.


Subject(s)
Body Temperature , Coturnix , Humans , Animals , Adolescent , Adult , Body Temperature/physiology , Cold Temperature , Hot Temperature , Water Loss, Insensible/physiology , Body Temperature Regulation/physiology
15.
Int J Cosmet Sci ; 46(1): 85-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37699769

ABSTRACT

OBJECTIVE: This study aimed to assess the effect of 1,3-propanediol at different concentrations (5%, 10%, or 15%), either applied alone or in combination with butylene glycol (BG) (5%) and/or glycerol (5%), on skin hydration and skin barrier function. The measurements were conducted using capacitance to determine skin hydration and trans epidermal water loss (TEWL) rates to evaluate skin barrier function. METHODS: A total of 30 healthy female subjects participated in the study. Capacitance and TEWL measurements were conducted at multiple time points, including before application and at 15 min, 2 and 8 h after the humectants were applied to the forearms of the subjects. All the subjects provided written informed consent. RESULTS: The 1,3-propanediol in all concentrations and in all combinations (with BG and/or glycerol) increased skin hydration and improved skin barrier function 15 min, 2 and 8 h after application. Glycerol increased the hydration performance of 1,3-propanediol. The application of 1,3-propanediol at a concentration of 15%, either alone or in combination with other humectants, reduced the TEWL to a greater extent than lower concentrations of 1,3-propanediol. Furthermore, the addition of glycerol to 1,3-propanediol 15% improved the skin barrier and reduced TEWL when compared with 1,3-propanediol alone and with the combination of 1,3-propanediol + BG. CONCLUSION: The humectants significantly improved skin hydration and reduced TEWL throughout the 8-h time course. The increase in 1,3-propanediol concentration, as well as its combination with glycerol, provided a greater benefit to the skin, improving both hydration and the skin barrier function.


OBJECTIF: Cette étude visait à évaluer l'effet sur l'hydratation de la peau et la fonction de barrière cutanée du 1,3-propanediol à différentes concentrations (5 %, 10 % ou 15 %), appliqué seul ou en association avec du butylène glycol (5 %) et/ou du glycérol (5 %). Les mesures ont été effectuées à l'aide de la capacitance pour déterminer l'hydratation de la peau et les taux de perte d'eau transépidermique (Trans Epidermal Water Loss, TEWL) pour évaluer la fonction de barrière cutanée. MÉTHODES: Au total, 30 sujets de sexe féminin en bonne santé ont participé à l'étude. Les mesures de la capacitance et de la TEWL ont été effectuées à plusieurs moments, y compris avant l'application, 15 minutes, 2 heures et 8 heures après l'application des produits humectant sur les avant-bras des sujets. Tous les sujets ont fourni un consentement éclairé écrit. RÉSULTATS: Le 1,3-propanediol, à toutes les concentrations et dans toutes les associations (avec le butylène glycol et/ou le glycérol), a augmenté l'hydratation de la peau et amélioré la fonction de barrière cutanée à 15 minutes, 2 heures et 8 heures après l'application. Le glycérol a augmenté les performances d'hydratation du 1,3-propanediol. L'application de 1,3-propanediol à une concentration de 15 %, seul ou en association avec d'autres produits humectant, a réduit la TEWL dans une plus grande mesure que des concentrations inférieures de 1,3-propanediol. En outre, l'ajout de glycérol au 1,3-propanediol 15 % a amélioré la barrière cutanée et réduit la TEWL par rapport au 1,3-propanediol seul et à l'association 1,3-propanediol + butylène glycol. CONCLUSION: Les produits humectant ont significativement amélioré l'hydratation de la peau et réduit la TEWL tout au long des 8 heures. L'augmentation de la concentration de 1,3-propanediol, ainsi que son association avec le glycérol, ont apporté un plus grand bénéfice à la peau, améliorant à la fois l'hydratation et la fonction de barrière cutanée.


Subject(s)
Glycerol , Hygroscopic Agents , Propylene Glycols , Female , Humans , Glycerol/pharmacology , Glycerol/metabolism , Hygroscopic Agents/pharmacology , Skin , Water/metabolism , Propylene Glycol/pharmacology , Propylene Glycol/metabolism , Butylene Glycols/metabolism , Butylene Glycols/pharmacology , Water Loss, Insensible
16.
Int J Cosmet Sci ; 46(2): 228-238, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37909390

ABSTRACT

BACKGROUND: Stressed, damaged or very aged skin is predominantly characterized by a malfunctioning skin barrier. Underlying skin barrier malfunction is a reduced or defective calcium gradient in the epidermis. Consequently, replenishing the compromised skin's calcium stores with topical calcium could be a potential therapeutic approach. METHODS: We investigated the effect of our novel Ca2+ double cone vector system on improving the differentiation and barrier function of reconstructed human epidermis (RHE), cultured at low basal calcium (0.3 mM) to represent very aged skin. Furthermore, in a randomized placebo-controlled clinical study the skin barrier of 20 healthy volunteers was challenged with 2% sodium lauryl sulphate (SLS) for 24 h under occlusion, following and/or prior to treatment with a gel containing 2% of our calcium vector system. RESULTS: Culture in reduced basal calcium conditions (0.3 mM) strongly impeded the formation of a dense stratified epidermis. The apical treatment with 1.1 mM CaCl2 was not able to restore a functional differentiation. Treatment with 0.1% of the Ca2+ delivery system rescued the differentiation process and resulted in a normal stratified epidermis. Clinically, application of the Ca2+ vector system prior to and following SLS stress prevented increases in skin irritation and transepidermal water loss (TEWL) compared to placebo controls. Importantly, the treatment also significantly accelerated the recovery time following SLS stress. CONCLUSION: With our novel Ca2+ vector system, we highlight the delivery of bioavailable Ca2+ ions into the skin as a new and successful approach to treat a damaged barrier present in stressed, aged or atopic skin.


CONTEXTE: Les peaux stressées, lésées ou très âgées se caractérisent principalement par un dysfonctionnement de la barrière cutanée. Le dysfonctionnement de la barrière cutanée est sous­tendu par un gradient de calcium réduit ou défectueux dans l'épiderme. Par conséquent, la reconstitution des réserves de calcium de la peau fragilisées à l'aide de calcium topique pourrait constituer une approche thérapeutique potentielle. MÉTHODES: Nous avons étudié l'effet de notre nouveau système de vecteur à double cône Ca2+ sur l'amélioration de la différenciation et de la fonction de barrière de l'épiderme humain reconstitué (EHR), cultivé à un faible niveau de calcium basal (0,3 mM) pour représenter une peau très âgée. En outre, dans une étude clinique randomisée, contrôlée par placebo, la barrière cutanée de 20 volontaires en bonne santé a été exposée à 2 % de laurylsulfate de sodium (SLS) pendant 24 heures sous occlusion, après et/ou avant le traitement avec un gel contenant 2 % de notre système de vecteur de calcium. RÉSULTATS: La culture dans des conditions de calcium basal réduit (0,3 mM) a fortement empêché la formation d'un épiderme stratifié dense. Le traitement apical avec 1,1 mM de CaCl2 n'a pas permis de rétablir une différenciation fonctionnelle. Le traitement avec 0,1 % du système de libération de Ca2+ a permis de rétablir le processus de différenciation et d'obtenir un épiderme stratifié normal. Sur le plan clinique, l'application du système de vecteur Ca2+ avant et après l'exposition au SLS a empêché l'augmentation de l'irritation cutanée et de la perte d'eau transépidermique (Transepidermal Water Loss, TEWL) par rapport aux témoins sous placebo. Il est important de noter que le traitement a également accéléré de manière significative le temps de récupération après l'exposition au SLS. CONCLUSION: Grâce à notre nouveau système de vecteurs Ca2+, nous mettons en évidence l'apport d'ions Ca2+ biodisponibles dans la peau comme une approche nouvelle et efficace pour traiter la barrière endommagée présente dans une peau stressée, âgée ou atopique.


Subject(s)
Calcium , Skin Aging , Humans , Aged , Calcium/metabolism , Water Loss, Insensible , Sodium Dodecyl Sulfate/pharmacology , Epidermis
17.
ACS Sens ; 8(11): 4407-4416, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37953512

ABSTRACT

Early diagnosis of skin barrier dysfunction helps provide timely preventive care against diseases such as atopic dermatitis, psoriasis, food allergies, and other atopic skin disorders. Skin barrier function is commonly evaluated by measuring the transepidermal water loss (TEWL) through stratum corneum due to its noninvasive characteristics. However, existing commercial TEWL devices are significantly affected by many factors, such as ambient temperature, humidity, air flow, water accumulation, initial water contents on the skin surface, bulky sizes, high costs, and requirements for well-controlled environments. Here, we developed a wearable closed-chamber hygrometer-based TEWL device (Wearable Analytical Skin Probe, WASP) and the related algorithm for accurate and continuous monitoring of skin water vapor flux. The WASP uses short dry air purges to dry the skin surface and chamber before each water vapor flux measurement. Its design ensures a highly controlled local environment, such as consistent initial dry conditions for the skin surface and the chamber. We further applied WASP to measure the water vapor flux from six different locations of a small group of human participants. It is found that the WASP can not only measure and distinguish between insensible sweating (i.e., TEWL) and sensible sweating (i.e., thermal sweating) but also track skin dehydration-rehydration cycles. Comparisons with a commercial TEWL device, AquaFlux, show that the results obtained by both devices agree well. The WASP will be broadly applicable to clinical, cosmetic, and biomedical research.


Subject(s)
Steam , Water Loss, Insensible , Humans , Skin , Epidermis , Humidity
18.
Skin Pharmacol Physiol ; 36(4): 174-185, 2023.
Article in English | MEDLINE | ID: mdl-37717558

ABSTRACT

BACKGROUND: The anatomic layers of the skin are well-defined, and a functional model of the skin barrier has recently been described. Barrier disruption plays a key role in several skin conditions, and moisturization is recommended as an initial treatment in conditions such as atopic dermatitis. This review aimed to analyze the skin barrier in the context of the function model, with a focus on the mechanisms by which moisturizers support each of the functional layers of the skin barrier to promote homeostasis and repair. SUMMARY: The skin barrier is comprised of four interdependent layers - physical, chemical, microbiologic, and immunologic - which maintain barrier structure and function. Moisturizers target disruption affecting each of these four layers through several mechanisms and were shown to improve transepidermal water loss in several studies. Occlusives, humectants, and emollients occlude the surface of the stratum corneum (SC), draw water from the dermis into the epidermis, and assimilate into the SC, respectively, in order to strengthen the physical skin barrier. Acidic moisturizers bolster the chemical skin barrier by supporting optimal enzymatic function, increasing ceramide production, and facilitating ideal conditions for commensal microorganisms. Regular moisturization may strengthen the immunologic skin barrier by reducing permeability and subsequent allergen penetration and sensitization. KEY MESSAGES: The physical, chemical, microbiologic, and immunologic layers of the skin barrier are each uniquely impacted in states of skin barrier disruption. Moisturizers target each of the layers of the skin barrier to maintain homeostasis and facilitate repair.


Subject(s)
Dermatitis, Atopic , Skin , Humans , Skin/metabolism , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Epidermis , Emollients/metabolism , Water/metabolism , Water Loss, Insensible
19.
Skin Pharmacol Physiol ; 36(4): 165-173, 2023.
Article in English | MEDLINE | ID: mdl-37640014

ABSTRACT

BACKGROUND: Obesity is a condition defined by an excess amount of body fat, with body mass index (BMI) of 30 and higher. It is associated with a number of other medical conditions, including insulin resistance, diabetes mellitus, and cardiovascular diseases, as well as dyslipidemia, and it is also associated with several cutaneous disorders such as atopic dermatitis, psoriasis, intertriginous dermatitis, acanthosis nigricans and skin infections. SUMMARY: Evidence suggests a link between obesity and epidermal dysfunction. Generally, individuals with obesity display higher transepidermal water loss rate and lower stratum corneum hydration levels, although no association of obesity with epidermal dysfunction has been documented. Results of skin surface pH are controversial. But study demonstrated a positive correlation of BMI with skin surface pH on both the forearm and the shin in males, suggesting that the changes in epidermal function vary with gender in individuals with obesity. KEY MESSAGES: This review summarizes the association between obesity and epidermal function, and discusses possible underlying mechanisms. Individuals with obesity exhibit poor epidermal permeability barrier and lower stratum corneum hydration levels. Because of the pathogenic role of compromised epidermal function in inflammation, which is also linked to obesity, improvement in epidermal function could benefit individuals with obesity, particularly those with abnormalities in epidermal function.


Subject(s)
Dermatitis, Atopic , Skin Diseases , Male , Humans , Epidermis/metabolism , Skin/pathology , Skin Diseases/pathology , Administration, Cutaneous , Dermatitis, Atopic/metabolism , Water Loss, Insensible
20.
Int J Obes (Lond) ; 47(10): 963-969, 2023 10.
Article in English | MEDLINE | ID: mdl-37479793

ABSTRACT

BACKGROUND: Skin diseases impact significantly on the quality of life and psychology of patients. Obesity has been observed as a risk factor for skin diseases. Skin epidermal barrier dysfunctions are typical manifestations across several dermatological disturbances. OBJECTIVES: We aim to establish the association between obesity and skin physiology measurements and investigate whether obesity may play a possible causal role on skin barrier dysfunction. METHODS: We investigated the relationship of obesity with skin physiology measurements, namely transepidermal water loss (TEWL), skin surface moisture and skin pH in an Asian population cohort (n = 9990). To assess for a possible causal association between body mass index (BMI) and skin physiology measurements, we performed Mendelian Randomization (MR), along with subsequent additional analyses to assess the potential causal impact of known socioeconomic and comorbidities of obesity on TEWL. RESULTS: Every 1 kg/m2 increase in BMI was associated with a 0.221% (95%CI: 0.144-0.298) increase in TEWL (P = 2.82E-08), a 0.336% (95%CI: 0.148-0.524) decrease in skin moisture (P = 4.66E-04) and a 0.184% (95%CI: 0.144-0.224) decrease in pH (P = 1.36E-19), adjusting for age, gender, and ethnicity. Relationships for both TEWL and pH with BMI remained strong (Beta 0.354; 95%CI: 0.189-0.520 and Beta -0.170; 95%CI: -0.253 to -0.087, respectively) even after adjusting for known confounders, with MR experiments further supporting BMI's possible causal relationship with TEWL. Based on additional MR performed, none of the socioeconomic and comorbidities of obesity investigated are likely to have possible causal relationships with TEWL. CONCLUSION: We establish strong association of BMI with TEWL and skin pH, with MR results suggestive of a possible causal relationship of obesity with TEWL. It emphasizes the potential impact of obesity on skin barrier function and therefore opportunity for primary prevention.


Subject(s)
Obesity , Skin Physiological Phenomena , Water Loss, Insensible , Humans , Causality , Obesity/complications , Obesity/epidemiology , Risk Factors , Asian People
SELECTION OF CITATIONS
SEARCH DETAIL
...