Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.226
Filter
1.
Mar Pollut Bull ; 203: 116484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781802

ABSTRACT

Community-based marine debris removal efforts on the Hawaiian Islands of Kaua'i and Hawai'i, spanning 2013-2022, provided large datasets and documented remarkable variations in annual amounts of debris, mainly from abandoned, lost and derelict fishing gear. To test the hypothesis that the influx of marine debris on Hawaiian shores is determined by the proximity of the North Pacific garbage patch, whose pattern changes under the control of large-scale ocean dynamics, we compared these observational data with the output of an oceanographic drift model. The high correlations between the total mass of debris collected and the model, ranging between r = 0.81 and r = 0.84, validate the attribution of the strong interannual signal to significant migrations of the garbage patch reproduced in the model experiments. Synchronous variations in marine debris fluxes on the two islands, separated by >500 km, confirm the large scale of the interannual changes in the North Pacific marine debris system.


Subject(s)
Environmental Monitoring , Waste Products , Hawaii , Pacific Ocean , Waste Products/analysis , Water Pollutants/analysis
2.
Mar Pollut Bull ; 201: 116266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522339

ABSTRACT

Floating marine debris (FMD) poses several threats to marine species, such as entanglement, ingestion, and the transport of pollutants. The Shiretoko Peninsula, located in northern Japan, is a registered World Natural Heritage Site and a biodiversity hotspot. However, FMD has not yet been thoroughly investigated in this region. In 2022, sighting surveys were conducted in Abashiri (west side of the peninsula) and Rausu (east side) to assess the abundance, composition, and distribution of FMD. The mean densities were notably higher in Abashiri, and there was more fishing-related debris in Rausu. Regarding local human activities, the population and number of tourists are higher in Abashiri, and fishing activities are higher in Rausu. While marine pollution is a global issue, our study suggests that addressing it should commence with community-based management at the local level.


Subject(s)
Plastics , Water Pollutants , Humans , Japan , Waste Products/analysis , Water Pollutants/analysis , Water Pollution/analysis , Environmental Monitoring
3.
J Environ Manage ; 356: 120534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531136

ABSTRACT

The increase in economic activity, particularly in transport, leads to a significant increase in emissions of pollutants, such as ammonia, arsenic and cadmium, at the European Union (EU) level. This can seriously impact human health and, consequently, public health spending. Based on data from 15 European Union countries from 1992 to 2020, a panel co-integration approach is used to study these pollutants' short- and long-term co-movements and per capita health expenditure. The results show a long-term relationship between ammonia, arsenic and cadmium emissions and per capita health spending, as they are panel-cointegrated. Ammonia and cadmium emissions exert a statistically significant positive effect on health expenditure in the short run, and arsenic emissions have a statistically significant positive impact in the long run. The forecast assessment of reductions in health spending resulting from policies to reduce emissions of air, land and water pollutants, such as ammonia, arsenic and cadmium, from the transport sector supports investments in its policies that reduce pressure on health spending. The reduction in annual healthcare expenditure is greater when these reductions are made sooner and more severely. Indeed, varying the reduction in emissions for each pollutant by 10% and 100%, respectively, from the first year for all countries over a 3-year period results in an average annual reduction in health spending of 2.05% and 51.02%, respectively. However, if we wait until the third year, the annual reduction is only 0.77% and 17.63% respectively.


Subject(s)
Air Pollutants , Arsenic , Water Pollutants , Humans , Health Expenditures , Public Health , European Union , Ammonia , Cadmium , Air Pollutants/analysis
5.
Mar Pollut Bull ; 200: 116140, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342000

ABSTRACT

China's coastal waters are confronting serious water quality problems, particularly the Hangzhou Bay in the Yangtze River Delta. To find out the underlying cause, we use the Regional Ocean Modeling System (ROMS) to simulate the hydrodynamic characteristics and the evolution of water pollutants. The results show that the hydrodynamic conditions are complicated and the semi-exchange time is 46 days, significantly hindering the dilution and diffusion of water pollutants. Concentrations of each typical pollutant as chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), and phosphate (PO4) decrease from west to east, showing an obvious enrichment in the coastal region. Source-oriented results show that the inland water pollution of the Yangtze River and the Qiantang River is the key contributor, and the sewage outfalls on the coast near the bay worsen the pollution. This suggests that the government needs to strengthen the management of sources that affect water security.


Subject(s)
Water Pollutants, Chemical , Water Pollutants , Environmental Monitoring/methods , Bays , Hydrodynamics , Water Pollutants, Chemical/analysis , China , Nitrogen/analysis , Rivers
6.
Chemosphere ; 352: 141275, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253089

ABSTRACT

Priority water pollutants comprising six plasticizers, 18 volatile organic compounds (VOCs), total petroleum hydrocarbon (TPH), 1,4-dioxane, epichlorohydrin, formaldehyde, acrylamide, and cyanides were determined in surface river sediments to assess their distribution patterns and ecological risks. Among these, di (2-ethylhexyl) phthalate (DEHP), toluene, TPH, and acrylamide were frequently found in sediments. The industrial sites had higher concentrations of ∑plasticizers (median 628 ng/g dry weight (dw)), ∑VOCs (median 3.35 ng/g dw), acrylamide (median 0.966 ng/g dw), and TPH (median 152 µg/g dw) in sediments than the mixed and non-industrial areas. The other pollutants did not show the significant differences in levels according to site types because of their relatively low detection frequencies. Volatile and soluble substances as well as hydrophobic pollutants were predominantly detected in surface sediments from industrial areas. Sediment contamination patterns were affected by the size and composition of the industrial zones around the sampling sites. The ecological risks determined using the sediment quality guidelines (DEHP, VOCs, and TPH) and the mean probable effect level quotients (DEHP) were mostly acceptable. However, the two most representative industrial regions (the largest industrial area and the first industrial city) showed risks of concern for DEHP and TPH.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Petroleum , Phthalic Acids , Water Pollutants, Chemical , Water Pollutants , Rivers/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Plasticizers , Geologic Sediments/chemistry , Acrylamides , China , Environmental Monitoring
7.
Mar Pollut Bull ; 200: 116055, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295483

ABSTRACT

Sea turtles face considerable risks from ingesting marine debris. They are primarily visual feeders, so color may be important for identifying food suitability or enhancing prey detection. Here, we investigated the impacts of color and texture on foraging behavior in relation to plastic consumption. We experimentally assessed the influences of color and texture as attractors for sea turtles using edible jellyfish. The findings showed that the colors of objects significantly affected selective preferences, as evidenced by different behaviors by sea turtles in response to different colors. They exhibited diet-related selectivity toward colors similar to common aquarium food, and texture had a significant impact on complete ingestion. The results suggest that plastic resembling natural prey is more likely ingested. Also, sea turtles were attracted by the color yellow, suggesting that visually distinctive items can attract them. Our results provide fundamental knowledge, helping mitigate the effects of plastic pollution on wildlife.


Subject(s)
Turtles , Water Pollutants , Animals , Plastics , Turtles/physiology , Cues , Diet , Eating , Water Pollutants/analysis
8.
Sci Total Environ ; 912: 169155, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38065493

ABSTRACT

Characterized by irregular spatial and temporal variations of pollutant loading and complex occurrence mechanisms, agricultural nonpoint source pollution (ANPSP) has always been a great challenge in field restoration worldwide. Returning farmlands to wetlands (RFWs) as an ecological restoration mode among various constructed wetlands was selected to manage ANPSP in this study. Triarrhena lutarioriparia, Nelumbo nucifera and Zizania latifolia monocultures were designed and the water pollutants was monitored. N. nucifera and Z. latifolia could reach the highest TN (53.28 %) and TP (53.22 %) removal efficiency, respectively. By 16s high-throughput sequencing of rhizosphere bacteria, 45 functional species were the main contributors for efficient N and P removal, and 38 functional keystone taxa (FKT) were found with significant ecological niche roles and metabolic functions. To our knowledge, this is the first study to explore the microbial driving N and P removal mechanism in response to ANPSP treated by field scale RFWs.


Subject(s)
Environmental Pollutants , Non-Point Source Pollution , Water Pollutants , Wetlands , Nitrogen/analysis , Phosphorus , Waste Disposal, Fluid
9.
Environ Pollut ; 342: 122967, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38030113

ABSTRACT

Microplastic (MP) pollution has emerged as a pressing environmental issue, with its impacts on ecosystems and human health yet to be fully understood. This study aims to investigate the presence and distribution of MPs in the soil of a managed aquifer recharge (MAR) system, built with different reactive barriers of natural materials and irrigated with the secondary effluent of a wastewater treatment plant (WWTP). MPs were extracted from reactive barrier material following an approach based on the density separation of MPs with posterior oxidant digestion, combined with visual and chemical characterisation by Fourier-Transform Infrared Spectroscopy (FTIR). The results revealed the widespread occurrence of MPs in the MAR soil samples. MPs concentration in the different barrier materials ranged from 60 to 236 n kg-1. The most dominant morphologies were fragments (60%) and fibers (17%), and the most abundant colour was white (51%), followed by transparent MPs (20%). Polypropylene (PP) was detected in all the samples with an abundance of 47%, followed by polyethylene (PE, 34%). The interplay of barrier composition significantly influences the retention of MPs, with compost (T5) and woodchips (T4) exhibiting the most notable retention rates. Remarkably, the outer layers of the reactive barriers display superior retention compared to the deeper layers. The findings of this study demonstrate the good performance of the MAR system in retaining MPs and contribute to the growing body of knowledge on MPs pollution in freshwater systems while providing insights into the dynamics of MPs transport and accumulation in soil. Such information can inform the development of effective wastewater management strategies to mitigate the impacts of these pollutants on water resources and safeguard the environment.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Pollutants , Humans , Microplastics , Wastewater , Plastics , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring , Soil
10.
Chemosphere ; 349: 140729, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37989439

ABSTRACT

Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.


Subject(s)
Metal-Organic Frameworks , Metals, Heavy , Water Pollutants , Water Purification , Metal-Organic Frameworks/chemistry , Metals, Heavy/chemistry , Coloring Agents , Water Purification/methods , Adsorption
11.
Environ Pollut ; 343: 123077, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38135138

ABSTRACT

Dual-functional S/N (sulfur and nitrogen) doped graphene-tagged zinc oxide nanograins were synthesized for bioimaging applications and light-dependent photocatalytic activity. Applying the green synthesis approach, graphene was synthesized from kimchi cabbage through a hydrothermal process followed by tagging it with synthesized zinc oxide nanoparticles (ZnO-NPs). The 2D/0D heterostructure prepared by combining both exhibited exceptional advantages. Comprehensive characterizations such as TEM, SEM, XRD, FTIR, XPS, and UV-Vis spectra have been performed to confirm the structures and explore the properties of the synthesized nanocomposite. The graphene/ZnO-NP composite produced exhibited more intense fluorescence, greater chemical stability and biocompatibility, lower cytotoxicity, and better durability than ZnO NPs conferring them with potential applications in cellular imaging. While tagging the ZnO NPs with carbon derived from a natural source containing hydroxyl, sulfur, and nitrogen-containing functional group, the S/N doped graphene/ZnO heterostructure evidences the high photocatalytic activity under UV and visible irradiation which is 3.2 and 3.8 times higher than the as-prepared ZnO-NPs. It also demonstrated significant antibacterial activity which confers its application in removing pathogenic contaminant bacteria in water bodies. In addition, the composite had better optical properties and biocompatibility, and lower toxicity than ZnO NPs. Our findings indicate that the synthesized nanocomposite will be suitable for various biomedical and pollutant remediation due to its bright light-emitting properties and stable fluorescence.


Subject(s)
Graphite , Water Pollutants , Zinc Oxide , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Graphite/chemistry , Sulfur , Nitrogen/chemistry
12.
Mar Pollut Bull ; 197: 115723, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918143

ABSTRACT

Marine Debris is all-pervading in the world's oceans. In this research, for the first time, Floating Marine Debris (FMD) accumulation in the intertidal zone of Manprua island, an offshore island of Bangladesh, is reported. The assessment has been done by integrating both physical investigations and questionnaire survey. The Study shows high debris density on the windward and river-facing sides of the island. The density of debris items in this area varies from 550,000 to 60,000 items per km2 (8.5 to 0.08 g/m2) for transect samples during low tide and 350,000 to 60,000 items per km2 (5.76 to 1.20 g/m2) for net samples during high tide. However, the most damaging debris items are uprooted trees and water hyacinths because they hinder fishing activities. This study provides baseline information on FMD in the Meghna Estuary, which can be used as a reference for sustainable monitoring and management of marine pollution.


Subject(s)
Water Pollutants , Water Pollutants/analysis , Plastics , Bangladesh , Waste Products/analysis , Environmental Monitoring , Water Pollution/analysis , Islands
13.
Sci Rep ; 13(1): 17253, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828123

ABSTRACT

The "Integrated Wastewater Discharge Standard" was implemented for water pollutant discharge in China's pesticide industry, which has no control requirements for particular wastewater pollutants in the industry. In the standard, certain pollutants discharge limits are limited strictly or loosely, resulting in practical management implementation difficulties. In view of the highly selective targeting characteristics of organic pesticide active ingredients in fungicides, insecticides, and herbicides, a method for deriving discharge limits based on the water quality criteria for pesticides for the protection of nonsensitive species is established based on the idea of fully protecting aquatic organisms beyond sensitive objects. Through the use of malathion as an example, by screening its toxicity data in different species of aquatic organisms, the sequence point with the most significant change in the acute toxicity sensitivity of the species is taken as the variation point in the cumulative frequency of the sensitive and nonsensitive species to derive the water quality criteria, using the species sensitivity distribution method as the scientific basis for determining the discharge limits. After a comparative analysis of different simulation models, the sigmoid model, with the best fit, is selected to determine that the sensitive species hazard concentration (HCs) of malathion to aquatic organisms in China is 46.4 µg/L, and the discharge limit derived from the HCs based on the relationship between the environmental capacity and emissions is rounded to 250 µg/L. Studies showed that the relationship between the emissions limit derived from the water quality criteria for protecting nonsensitive species and malathion limit stipulated in the "Environmental Quality Standards for Surface Water" conforms to the corresponding relationship of the quality standard and discharge standard, which can be achieved by current pollution control technology, combined with water quality improvement. The discharge limit offers the advantages of technical accessibility and economic rationality.


Subject(s)
Pesticides , Water Pollutants, Chemical , Water Pollutants , Malathion/toxicity , Water Pollutants/analysis , Aquatic Organisms , Wastewater , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Pesticides/toxicity , Water Quality
14.
Ecotoxicol Environ Saf ; 266: 115578, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37856984

ABSTRACT

In this study, a green approach was used to synthesize SmMnO3 magnetic nanoparticles via the auto combustion method, where pomegranate juice was utilized as a natural fuel. The concentration of fuel was varied to investigate its effect on the purity and morphology of SmMnO3 nanoparticles. The physiochemical properties of the synthesized nanoparticles, including crystal structures, morphology, optical, and magnetic properties, were investigated using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), Vibrating Sample Magnetometer (VSM), Diffuse Reflectance Spectroscopy (DRS), X-ray fluorescence (XRF) and Brunauer-Emmett-Teller (BET). The band gap of the as-synthesized nanoparticles was determined to be 1.8 eV, indicating their potential as a photocatalyst. The photocatalytic activity of SmMnO3 nanoparticles was evaluated against Methyl violet and Erythrosine, and the mechanism of photocatalyst was determined using EDTA, benzoic acid, and benzoquinone as scavengers. Photocatalytic activity was studied in both UV and visible light, and it was found that the maximum degradation (94%) was related to the degradation of Erythrosine (10 ppm) in the presence of visible light. The stability test of SmMnO3 performed and confirmed the stability of nanoparticles after 5 cycles. The results suggest that SmMnO3 nanoparticles synthesized via the green auto combustion method using pomegranate juice as a natural fuel can serve as a promising photocatalyst for the degradation of organic pollutants in the environment. Further studies can be conducted to investigate their potential in other applications.


Subject(s)
Environmental Pollutants , Nanoparticles , Water Pollutants , Samarium , Erythrosine , Light , Water , Catalysis
15.
Environ Res ; 238(Pt 1): 117078, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37704076

ABSTRACT

Synthesis of fully triazine frameworks (C3N3) by metal catalyzed reactions at high temperatures results in carbonized and less-defined structures. Moreover, metal impurities affect the physicochemical, optical and electrical properties of the synthesized frameworks, dramatically. In this work, two-dimensional C3N3 (2DC3N3) has been synthesized by in situ catalyst-free copolymerization of sodium cyanide and cyanuric chloride, as cheap and commercially available precursors, at ambient conditions on gram scale. Reaction between sodium cyanide and cyanuric chloride resulted in electron-poor polyfunctional intermediates, which converted to 2DC3N3 with several hundred micrometers lateral size at ambient conditions upon [2 + 2+2] cyclotrimerization. 2DC3N3 sheets, in bulk and individually, showed strong fluorescence with 63% quantum yield and sensitive to small objects such as dyes and metal ions. The sensitivity of 2DC3N3 emission to foreign objects was used to detect low concentration of water impurities. Due to the high negative surface charge (-37.7 mV) and dispersion in aqueous solutions, they demonstrated a high potential to remove positively charged dyes from water, exemplified by excellent removal efficiency (>99%) for methylene blue. Taking advantage of the straightforward production and strong interactions with dyes and metal ions, 2DC3N3 was integrated in filters and used for the fast detection and efficient removal of water impurities.


Subject(s)
Metal-Organic Frameworks , Water Pollutants , Sodium Cyanide , Coloring Agents , Triazines , Water
16.
Sci Total Environ ; 905: 167089, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37717745

ABSTRACT

OBJECTIVE: Systematic screening for congenital hypothyroidism by heel-stick sampling has revealed unexpected heterogeneity in the geographic distribution of newborn thyroid-stimulating hormone concentrations in Picardy, France. We explored a possible relationship with environmental pollutants. METHODS: Zip code geolocation data from mothers of newborns without congenital hypothyroidism born in 2021 were linked to ecological data for a set of airborne (particulate matter with a diameter of 2.5 µm or less [PM2.5] or 10 µm or less [PM10]) and tap-water (nitrate and perchlorate ions and atrazine) pollutants. Statistical associations between mean exposure levels during the third trimester of pregnancy and Thyroid-stimulating hormone (TSH) concentrations in 6249 newborns (51 % male) were investigated using linear regression models. RESULTS: Median neonatal TSH concentration (interquartile range, IQR) was 1.7 (1-2.8) mIU/L. An increase of one IQR in prenatal exposure to perchlorate ions (3.6 µg/L), nitrate ions (19.2 mg/L), PM2.5 (3.7 µg/m3) and PM10 (3.4 µg/m3), were associated with increases in TSH concentrations of 2.30 % (95 % CI: 0.95-3.66), 5.84 % (95 % CI: 2.81-8.87), 13.44 % (95 % CI: 9.65-17.28) and 6.26 % (95 % CI: 3.01-9.56), respectively. CONCLUSIONS: Prenatal exposure to perchlorate and nitrate ions in tap water and to airborne PM over the third trimester of pregnancy was significantly associated with increased neonatal TSH concentrations.


Subject(s)
Air Pollutants , Air Pollution , Congenital Hypothyroidism , Environmental Pollutants , Prenatal Exposure Delayed Effects , Water Pollutants , Humans , Pregnancy , Infant, Newborn , Female , Male , Child, Preschool , Thyrotropin , Perchlorates , Nitrates , Particulate Matter/analysis , Water , Environmental Exposure
17.
Water Environ Res ; 95(10): e10927, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37723660

ABSTRACT

In recent years, the synergistic degradation of water pollutants through advanced oxidation technology has emerged as a prominent research area due to its integration of various advanced oxidation technologies. The combined utilization of peroxymonosulfate (PMS) activation technology and photocatalysis demonstrates mild and nontoxic characteristics, enabling the degradation of water pollutants across a wide pH range. Moreover, this approach reduces the efficiency of electron hole recombination, broadens the catalyst's light response range, facilitates electron transfer of PMS, and ultimately improves its photocatalytic performance. The paper reviews the current research status of photocatalytic technology and PMS activation technology, respectively, while highlighting the advancements achieved through the integration of photocatalytic synergetic PMS activation technology for water pollutant degradation. Furthermore, this review delves into the mechanisms involving both free radicals and nonradicals in the reaction process and presents a promising prospect for future development in water treatment technology. PRACTITIONER POINTS: Degradation of water pollutants by photocatalysis and PMS synergistic action has emerged. Synergism can enhance the generation of free radicals. This technology can provide theoretical support for actual wastewater treatment.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Pollutants , Peroxides , Oxidation-Reduction , Water Pollutants, Chemical/analysis
18.
Water Environ Res ; 95(10): e10930, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37746676

ABSTRACT

In this study, the integration of carbon nanotube (CNT), graphene, and biochar (BC) with zinc oxide nanorods (ZnO NRs) was investigated for efficient water pollutant removal. Two types of ZnO NRs/BC hybrids (BC on top and bottom of ZnO NRs) were synthesized and compared to other carbon material-based ZnO NRs combinations. Methylene blue (MB) adsorption efficiency was evaluated for various carbon material-based ZnO NRs composites, revealing good performance in ZnO NRs/BC hybrids, particularly with BC on top. The adsorption efficiency reached an impressive 61.79% for ZnO NRs/BC, surpassing other configurations. MB removal by ZnO NRs/BC fitted well with pseudo-first-order kinetics and the rate constants of MB adsorption is 9.19 × 10-2 1/min (R2 = 0.9237). Surface characterizations revealed a distinctive distribution of BC grains, with denser aggregation observed on top of ZnO NRs. This unique distribution contributed to higher MB adsorption rates, substantiated by Fourier transform infrared spectroscopy (FTIR) analysis that showcased stronger MB adsorption in ZnO NRs/BC hybrids. Notably, the enhanced MB adsorption rates were attributed to the population of BC grains. This research establishes ZnO NRs/BC composites as promising candidates for effective water pollutant removal. The developed materials can be combined with the existed conventional wastewater treatment systems to further purify the water quality. PRACTITIONER POINTS: ZnO NRs/BC hybrids achieve a remarkable 61.79% efficiency in removing MB pollutants, surpassing other carbon materials. MB removal using BC-based materials follows pseudo-first-order kinetics. BC grains exhibit unique distribution patterns on ZnO NRs, with densely packed grains atop contributing to higher MB removal. FTIR analysis confirms increased MB-related bond vibration, supporting the effectiveness of ZnO NRs/BC hybrids for water pollutant removal.


Subject(s)
Environmental Pollutants , Nanotubes, Carbon , Water Pollutants, Chemical , Water Pollutants , Zinc Oxide , Zinc Oxide/chemistry , Methylene Blue/chemistry , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
19.
Environ Sci Pollut Res Int ; 30(41): 94205-94217, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37526819

ABSTRACT

To reveal the influence of the phosphorus chemical industry (PCI) on regional water environmental quality and safety, the water quality and ecotoxicological effects of a stream near a phosphorus chemical plant (PCP) in Guizhou Province, southwestern China, were investigated based on water samples collected from the stream. The results showed that the average concentrations of NH3-N, TN, P, F-, Hg, Mn, and Ni were 3.14 mg/L, 30.09 mg/L, 3.34 mg/L, 1.18 mg/L, 1.06 µg/L, 45.82 µg/L, and 11.30 µg/L, respectively. The overall water quality of the stream was in the heavily polluted category, and NH3-N, TN, P, F-, and Hg were the main pollution factors. The degree of pollution was in the order of rainy period > transitional period > dry period, and the most polluted sample site was 1100 m from the PCP. After 28 days of exposure to stream water, there was no significant change in the growth parameters of zebrafish. The gills of zebrafish showed a small amount of epithelial cell detachment and a small amount of inflammatory cell infiltration, and the liver tissue displayed a large amount of hepatocyte degeneration with loose and lightly stained cytoplasm. Compared with the control group, the %DNA in tail, tail length, tail moment, and olive tail moment were significantly increased (p < 0.05), indicating that the water sample caused DNA damage in the peripheral blood erythrocytes of zebrafish. The stream water in the PCI area was found to be polluted and exhibited significant toxicity to zebrafish, which could pose a threat to regional ecological security.


Subject(s)
Chemical Industry , Rivers , Water Pollutants , Water Pollution, Chemical , Water Pollutants/analysis , Water Pollutants/toxicity , Water Quality , Zebrafish/growth & development , Animals , China , Random Allocation , Rivers/chemistry , Gills/drug effects , Liver/drug effects , DNA Damage/drug effects , Ammonia/analysis , Phosphorus/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...