Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.135
Filter
1.
Food Res Int ; 188: 114475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823838

ABSTRACT

This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.


Subject(s)
Chitosan , Nanocomposites , Resins, Plant , Solubility , Waxes , Zinc Oxide , Chitosan/chemistry , Zinc Oxide/chemistry , Nanocomposites/chemistry , Resins, Plant/chemistry , Waxes/chemistry , Nanoparticles/chemistry , Food Packaging/methods , Permeability
2.
Open Biol ; 14(5): 230430, 2024 May.
Article in English | MEDLINE | ID: mdl-38806146

ABSTRACT

Both leaves and petals are covered in a cuticle, which itself contains and is covered by cuticular waxes. The waxes perform various roles in plants' lives, and the cuticular composition of leaves has received much attention. To date, the cuticular composition of petals has been largely ignored. Being the outermost boundary between the plant and the environment, the cuticle is the first point of contact between a flower and a pollinator, yet we know little about how plant-pollinator interactions shape its chemical composition. Here, we investigate the general structure and composition of floral cuticular waxes by analysing the cuticular composition of leaves and petals of 49 plant species, representing 19 orders and 27 families. We show that the flowers of plants from across the phylogenetic range are nearly devoid of wax crystals and that the total wax load of leaves in 90% of the species is higher than that of petals. The proportion of alkanes is higher, and the chain lengths of the aliphatic compounds are shorter in petals than in leaves. We argue these differences are a result of adaptation to the different roles leaves and petals play in plant biology.


Subject(s)
Flowers , Plant Leaves , Waxes , Plant Leaves/chemistry , Plant Leaves/metabolism , Waxes/chemistry , Waxes/metabolism , Flowers/chemistry , Flowers/metabolism , Phylogeny , Plant Epidermis/chemistry , Plant Epidermis/metabolism , Plants/chemistry , Plants/metabolism , Species Specificity
3.
BMC Plant Biol ; 24(1): 468, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811873

ABSTRACT

BACKGROUND: The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS: In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS: This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.


Subject(s)
Droughts , Gossypium , Multigene Family , Plant Proteins , Gossypium/genetics , Gossypium/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Genes, Plant , Phylogeny , Adaptation, Physiological/genetics , Waxes/metabolism , MicroRNAs/genetics
4.
Food Chem ; 453: 139680, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788648

ABSTRACT

Hydrophobic coatings have wide applications, but face challenges in food flexible packaging in terms of poor adhesion and inadequate wear resistance. Health hazards and poor adhesion drive the search for novel hydrophobic coatings substitutes. Here, we introduced rationally synthesized carnauba wax-SiO2 microspheres as a component to composite polyethylene (PE) film construction, and created a wear-resistant hydrophobic composite PE film via the blown film technique. The resultant hydrophobic composite film demonstrated an enhanced water contact angle from 86° to above 100°, coupled with favorable mechanical properties such as wear resistance, tensile strength and effective barrier performance against water vapor and oxygen. Upon implementation in the preservation of a Cantonese delicacy, Chaoshan fried shrimp rolls, it was observed that at 25 °C, the carnauba wax-SiO2-PE composite packaging film extended the shelf life of the product by 3 days compared to pure PE film.


Subject(s)
Food Packaging , Food Preservation , Hydrophobic and Hydrophilic Interactions , Polyethylene , Waxes , Polyethylene/chemistry , Food Packaging/instrumentation , Animals , Waxes/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Tensile Strength , Silicon Dioxide/chemistry , Penaeidae/chemistry
5.
J Agric Food Chem ; 72(21): 11990-12002, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757490

ABSTRACT

The main challenge in the development of agrochemicals is the lack of new leads and/or targets. It is critical to discover new molecular targets and their corresponding ligands. YZK-C22, which contains a 1,2,3-thiadiazol-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole skeleton, is a fungicide lead compound with broad-spectrum fungicidal activity. Previous studies suggested that the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole scaffold exhibited good antifungal activity. Inspired by this, a series of pyrrolo[2,3-d]thiazole derivatives were designed and synthesized through a bioisosteric strategy. Compounds C1, C9, and C20 were found to be more active against Rhizoctonia solani than the positive control YZK-C22. More than half of the target compounds provided favorable activity against Botrytis cinerea, where the EC50 values of compounds C4, C6, C8, C10, and C20 varied from 1.17 to 1.77 µg/mL. Surface plasmon resonance and molecular docking suggested that in vitro potent compounds C9 and C20 have a new mode of action instead of acting as pyruvate kinase inhibitors. Transcriptome analysis revealed that compound C20 can impact the tryptophan metabolic pathway, cutin, suberin, and wax biosynthesis of B. cinerea. Overall, pyrrolo[2,3-d]thiazole is discovered as a new fungicidal lead structure with a potential new mode of action for further exploration.


Subject(s)
Botrytis , Fungicides, Industrial , Rhizoctonia , Thiazoles , Tryptophan , Waxes , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Botrytis/drug effects , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Tryptophan/metabolism , Tryptophan/chemistry , Waxes/chemistry , Waxes/metabolism , Structure-Activity Relationship , Metabolic Networks and Pathways/drug effects , Molecular Docking Simulation , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/metabolism , Plant Diseases/microbiology , Molecular Structure
6.
Anal Methods ; 16(21): 3372-3384, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38747244

ABSTRACT

Microfluidic channels fabricated over fabrics or papers have the potential to find substantial application in the next generation of wearable healthcare monitoring systems. The present work focuses on the fabrication procedures that can be used to obtain practically realizable fabric-based microfluidic channels (µFADs) utilizing patterning masks and wax, unlike conventional printing techniques. In this study, comparative analysis was used to differentiate channels obtained using different masking tools for channel patterning as well as different wax materials as hydrophobic barriers. Drawbacks of the conventional tape and candle wax technique were noted and a novel approach was used to create microfluidic channels through a facile and simple masking technique using PVC clear sheets as channel stencils and beeswax as the channel barriers. The resulting fabric based microfluidic channels with varying widths as well as complex microchannel, microwell, and micromixer designs were investigated and a minimum channel width resolution of 500 µm was successfully obtained over cotton based fabrics. Thereafter, the PVC clear sheet-beeswax based microwells were successfully tested to confine various organic and inorganic samples indicating vivid applicability of the technique. Finally, the microwells were used to make a simple and facile colorimetric assay for glucose detection and demonstrated effective detection of glucose levels from 10 mM to 50 mM with significant color variation using potassium iodide as the coloring agent. The above findings clearly suggest the potential of this alternative technique for making low-cost and practically realizable fabric based diagnostic devices (µFADs) in contrast to the other approaches that are currently in use.


Subject(s)
Polyvinyl Chloride , Textiles , Waxes , Waxes/chemistry , Polyvinyl Chloride/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cost-Benefit Analysis , Glucose/analysis , Lab-On-A-Chip Devices , Humans , Equipment Design , Wearable Electronic Devices
7.
Sci Rep ; 14(1): 12098, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802489

ABSTRACT

The aim of this study was to investigate the efficacy of a new therapeutic approach (cassava wax bath: CWB) compared with usual care (paraffin wax bath: PWB) in patients with plantar fasciitis (PF). Forty patients with PF were recruited into the study (CWB group, n = 20, PWB group, n = 20). Patients in the CWB group received cassava wax bath and patients in the PWB group received usual care (PWB). The primary outcome was pain intensity (PI). The secondary outcomes were the pressure pain threshold (PPT), pain frequency (PFr), foot and ankle ability measure (FAAM), and ankle dorsiflexion range of motion (ADROM). All outcomes were assessed before and after the five-week intervention, one month, and three months after the intervention period. After the intervention, statistically significant improvement was found in all outcomes after the intervention period and during the one month and three months follow-up study in both groups (P < 0.05). For all outcomes, no between-group differences were seen at any post-assessment time-point, except for PFr (P < 0.05). In conclusion, the findings of this study indicate that CWB was significantly superior to PWB in reducing PFr. For the other outcomes, CWB and PWB were both equally effective in reducing PI and increasing PPT, FAAM, and ADROM in patients with PF. Therefore, CWB might be considered as a novel useful therapeutic option for PF patients.Trial registration: Thai Clinical Trials Registry (TCTR) (Identification number: TCTR20220128002), First posted date: 28/01/2022.


Subject(s)
Fasciitis, Plantar , Manihot , Humans , Female , Male , Middle Aged , Manihot/chemistry , Double-Blind Method , Adult , Fasciitis, Plantar/therapy , Treatment Outcome , Waxes/therapeutic use , Pain Measurement , Range of Motion, Articular , Baths/methods
8.
Theor Appl Genet ; 137(6): 123, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722407

ABSTRACT

KEY MESSAGE: BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.


Subject(s)
Alleles , Brassica , Mutation , Phenotype , Waxes , Brassica/genetics , Waxes/chemistry , Waxes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Polymorphism, Single Nucleotide , Plant Leaves/genetics , Transaminases/genetics
9.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598012

ABSTRACT

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Subject(s)
Arabidopsis , MicroRNAs , RNA, Long Noncoding , RNA, Competitive Endogenous , RNA, Long Noncoding/genetics , Abscisic Acid/pharmacology , Arabidopsis/genetics , Mannitol , MicroRNAs/genetics , RNA, Messenger , Triticum/genetics , Waxes
10.
Food Res Int ; 184: 114213, 2024 May.
Article in English | MEDLINE | ID: mdl-38609212

ABSTRACT

Understanding the impact of minor components and the fatty acid profile of oil on oleogel properties is essential for optimizing their characteristics. Considering the scarcity of literature addressing this aspect, this study aimed to explore the correlation between these factors and the properties of beeswax and stearic acid-based oleogels derived from rice bran oil and sesame oil. Minor oil components were modified by stripping the oil, heating the oil with water, and adding ß-sitosterol. Oleogels were then prepared using a mixture of beeswax and stearic acid (3:1, w/w) at a concentration of 11.74 % (w/w). The properties of oils and oleogels were evaluated. The findings indicated that minor components and fatty acid composition of the oils substantially influence the oleogel properties. Removing minor components by stripping resulted in smaller and less uniformly distributed crystals and less oil binding capacity compared to the oleogels prepared from untreated oils. A moderate amount of minor components exhibited a significant influence on oleogel properties. The addition of ß-sitosterol did not show any influence on oleogel properties except for the oleogel made from untreated oil blend added with ß-sitosterol which had more uniform crystals in the microstructure and demonstrated better rheological stability when stored at 5 °C for two months. The oil composition did not show any influence on the thermal and molecular properties of oleogels. Consequently, the oleogel formulation derived from the untreated oil blend enriched with ß-sitosterol was identified as the optimal formula for subsequent development. The findings of this study suggest that the physical and mechanical properties as well as the oxidative stability of beeswax and stearic acid-based oleogels are significantly affected by the minor constituents and fatty acid composition of the oil. Moreover, it demonstrates that the properties of oleogels can be tailored by modifying oil composition by blending different oils.


Subject(s)
Fatty Acids , Stearic Acids , Waxes , Rice Bran Oil , Organic Chemicals
11.
Carbohydr Polym ; 335: 122070, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616092

ABSTRACT

Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.


Subject(s)
Starch , alpha-Glucosidases , Humans , Animals , Hydrolysis , Amylose , Calorimetry, Differential Scanning , Waxes , Zea mays , Mammals
12.
BMC Plant Biol ; 24(1): 330, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664602

ABSTRACT

Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.


Subject(s)
Diploidy , Droughts , Gene Expression Regulation, Plant , Tetraploidy , Waxes , Waxes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Epidermis/genetics , Plant Epidermis/metabolism , Plant Epidermis/physiology , Gene Expression Profiling , Drought Resistance
13.
Food Chem ; 449: 139234, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608604

ABSTRACT

Cuticle wax chemicals are cultivar-dependent and contribute to storage quality. Few research reported on wax analysis between melting flesh-type (MF; 'Jinhuami 25') and nonmelting flesh-type (NMF; 'Xizhoumi 17' and 'Chougua') Hami melons. Chemicals and crystal structures of Hami melon cuticular wax, cell wall metabolism related to fruit melting, and fruit physiology were analyzed to observe wax functions. Results showed that Hami melon cuticle wax predominantly consists of esters, alkanes, alcohols, aldehydes, and terpenoids. MF-type has a lower alkane/terpenoid ratio, concomitant to its higher weight loss and cuticle permeability. Micromorphology of wax crystals appears as numerous platelets with irregular crystals, and the transformation of wax structure in NMF Hami melon is delayed. Waxy components affect cell wall metabolism and physiological quality, which results in the pulp texture difference between MF-type and NMF-type during storage. Results provide a reference for the regulation of wax synthesis in both types of melons.


Subject(s)
Cucumis melo , Fruit , Waxes , Waxes/chemistry , Fruit/chemistry , Cucumis melo/chemistry , Cell Wall/chemistry
14.
Food Chem ; 450: 139334, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636379

ABSTRACT

We investigated the ripening and skin greasiness of "Hongro" apples during storage at 20 °C. Postharvest treatment using 100 µLL-1 ethylene accelerated ripening and increased greasiness, whereas treatment using 1 µLL-1 1-methylcyclopropene delayed ripening and reduced greasiness. Scanning electron microscopy showed changes in cuticular wax structure linked to greasiness. Metabolic analysis identified specific metabolites related to greasiness, which varied upon postharvest treatment. Greasiness was positively associated with ethylene production and butyl-9,12-octadecadienoate content. Random forest modeling predicted greasiness levels with high accuracy, with root mean square error values of 0.322 and 0.362 for training and validation datasets, respectively. These findings illuminate the complex interplay between postharvest treatment, apple ripening, wax composition, and skin greasiness. The application of predictive models exemplifies the potential for technology-driven approaches in agriculture and aids in the development of postharvest strategies to control greasiness and maintain fruit quality.


Subject(s)
Fruit , Malus , Waxes , Malus/chemistry , Malus/metabolism , Malus/growth & development , Fruit/chemistry , Fruit/metabolism , Fruit/growth & development , Waxes/chemistry , Waxes/metabolism , Food Storage , Ethylenes/chemistry , Ethylenes/metabolism
15.
Insect Biochem Mol Biol ; 169: 104126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663758

ABSTRACT

Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes fatty acyl-CoA reductase (CsFAR) and calmodulin (CsCaM) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of CsCaM apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the CsCaM might act as a main upstream regulator of fatty acid biosynthesis pathway.


Subject(s)
Calmodulin , Fatty Acids , Waxes , Animals , Calmodulin/metabolism , Calmodulin/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Waxes/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Biosynthetic Pathways
16.
Plant Biol (Stuttg) ; 26(4): 568-582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634447

ABSTRACT

The plant cuticle controls non-stomatal water loss and can serve as a barrier against biotic agents, whereas the heteropolymer suberin and its associated waxes are deposited constitutively at specific cell wall locations. While several transcription factors controlling cuticle formation have been identified, those involved in the transcriptional regulation of suberin biosynthesis remain poorly characterized. The major goal of this study was to further analyse the function of the R2R3-Myeloblastosis (MYB) transcription factor AtMYB41 in formation of the cuticle, suberin, and suberin-associated waxes throughout plant development. For functional analysis, the organ-specific expression pattern of AtMYB41 was analysed and Atmyb41ge alleles were generated using the CRISPR/Cas9 system. These were investigated for root growth and water permeability upon stress. In addition, the fatty acid, wax, cutin, and suberin monomer composition of different organs was evaluated by gas chromatography. The characterization of Atmyb41ge mutants revealed that AtMYB41 negatively regulates the production of cuticular lipids and fatty acid biosynthesis in leaves and seeds, respectively. Remarkably, biochemical analyses indicate that AtMYB41 also positively regulates the formation of cuticular waxes in stems of Arabidopsis thaliana. Overall, these results suggest that the AtMYB41 acts as a negative regulator of cuticle and fatty acid biosynthesis in leaves and seeds, respectively, but also as a positive regulator of wax production in A. thaliana stems.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Lipids , Transcription Factors , Waxes , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Lipids/biosynthesis , Waxes/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Membrane Lipids/metabolism , Fatty Acids/metabolism , Mutation , Seeds/metabolism , Seeds/growth & development , Seeds/genetics
17.
J Food Sci ; 89(5): 2943-2955, 2024 May.
Article in English | MEDLINE | ID: mdl-38557930

ABSTRACT

Bell pepper presents rapid weight loss and is highly susceptible to gray mold caused by the fungus Botrytis cinerea. The most employed method to control this disease is the application of synthetic fungicides such as thiabendazole (TBZ); however, its continued use causes resistance in fungi as well as environmental problems. For these reasons, natural alternatives arise as a more striking option. Currently, bell pepper fruits are coated with carnauba wax (CW) to prevent weight loss and improve appearance. Moreover, CW can be used as a carrier to incorporate essential oils, and previous studies have shown that thyme essential oil (TEO) is highly effective against B. cinerea. Therefore, this study aimed to evaluate the effect of CW combined with TEO on the development of gray mold and maintenance of microestructural and postharvest quality in bell pepper stored at 13°C. The minimal inhibitory concentration of TEO was 0.5%. TEO and TBZ provoked the leakage of intracellular components. TEO and CW + TEO treatments were equally effective to inhibit the development of gray mold. On the quality parameters, firmness and weight loss were ameliorated with CW and CW + TEO treatments; whereas lightness increased in these treatments. The structural analysis showed that CW + TEO treatment maintained the cell structure reducing the apparition of deformities. The results suggest that CW + TEO treatment could be used as a natural and effective antifungal retarding the appearance of gray mold and maintaining the postharvest quality of bell pepper. PRACTICAL APPLICATION: CW and TEO are classified as generally recognized as safe (GRAS) by the US Food and Drug Administration (FDA). This combination can be employed on the bell pepper packaging system to extend shelf life and oppose gray mold developments. Bell pepper fruits are normally coated with lipid-base coatings such as CW before commercialization; therefore, TEO addition would represent a small investment without any changes on the packaging system infrastructure.


Subject(s)
Botrytis , Capsicum , Food Preservation , Fruit , Oils, Volatile , Thymus Plant , Waxes , Botrytis/drug effects , Capsicum/microbiology , Capsicum/chemistry , Thymus Plant/chemistry , Oils, Volatile/pharmacology , Waxes/chemistry , Waxes/pharmacology , Food Preservation/methods , Fruit/microbiology , Fruit/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fungicides, Industrial/pharmacology
18.
J Food Sci ; 89(5): 2787-2802, 2024 May.
Article in English | MEDLINE | ID: mdl-38563098

ABSTRACT

This study aimed to analyze the effect of 1-methylcyclopropene (1-MCP) treatment on the postharvest quality, epidermal wax morphology, composition, and gene expression of Jinxiu yellow peach during cold storage. The results showed that 1-MCP treatment could maintain the postharvest quality of peach fruit as compared to control (CK) during cold storage. The wax crystals of peach fruit were better retained by 1-MCP, and they still existed in 0.6 and 0.9 µL/L 1-MCP treated fruit at 36 days. The total wax content in all the fruit increased first and then decreased during cold storage. Meanwhile, n-alkanes and primary alcohols were the main wax components. Compared to CK, 1-MCP treatment could delay the reduction of wax content during cold storage. The correlation analysis indicated that the postharvest quality of yellow peach was mainly affected by the contents of fatty acids and triterpenoids in cuticular wax. The transcriptomics results revealed PpaCER1, PpaKCS, PpaKCR1, PpaCYP86B1, PpaFAR, PpaSS2, and PpaSQE1 played the important roles in the formation of peach fruit wax. 1-MCP treatment upregulated PpaCER1 (18785414, 18786441, and 18787644), PpaKCS (18774919, 18789438, and 18793503), PpaKCR1 (18790432), and PpaCYP86B1 (18789815) to deposit more n-alkanes and fatty acids during cold storage. This study could provide a new perspective for regulating the postharvest quality of yellow peach in view of the application of cuticular wax. PRACTICAL APPLICATION: 'Jinxiu' yellow peach fruit is favorable among consumers because of its high commercial value. However, it ripens and deteriorates rapidly during storage, leading to serious economic loss and consumer disappointment. The effect of 1-methylcyclopropene (1-MCP) treatment on the postharvest quality, epidermal wax morphology, composition, and genes regulation of 'Jinxiu' yellow peach during cold storage was assessed. Compared to control, 1-MCP treatment could retain the storage quality of yellow peach by affecting cuticular wax composition and gene expression. This study could provide new perspective for regulating the postharvest quality of yellow peach in view of the application of cuticular wax.


Subject(s)
Cold Temperature , Cyclopropanes , Food Storage , Fruit , Gene Expression Regulation, Plant , Prunus persica , Waxes , Cyclopropanes/pharmacology , Waxes/metabolism , Prunus persica/chemistry , Fruit/chemistry , Fruit/drug effects , Food Storage/methods , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Food Preservation/methods
20.
Talanta ; 273: 125860, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38479029

ABSTRACT

This article describes the synthesis of sorptive phases for bioanalysis based on the modification of cellulose paper with natural beeswax as sorbent, resulting in a substrate completely renewable and sustainable. The preparation of the sorptive phases consisted of the dissolution of beeswax in hexane, followed by its drop-casting on cellulose paper and subsequent evaporation of the solvent. The beeswax modification of paper renders it hydrophobic, enabling the extraction of the target analytes, i.e., imipramine, desipramine, amitriptyline and trimipramine, via hydrophobic interactions. The main variables affecting the extraction performance were investigated (e.g., pH, ionic strength, extraction time, eluent composition, agitation speed). The analytical workflow combines a straightforward sampling, simultaneous extraction of 30 samples in 1 h, and the rapid (<2 min) determination of the analytes via direct infusion mass spectrometry. The method provided limits of detection in the range 2.0 and 3.2 µg L-1, and the precision, expressed as relative standard deviation, was better than 5.4 % and 8.5 % for intra and inter-day analyses, respectively. The accuracy, in terms of relative recovery, ranged from 90 % to 121 % using saliva as model biofluid.


Subject(s)
Antidepressive Agents, Tricyclic , Cellulose , Cellulose/chemistry , Amitriptyline , Waxes
SELECTION OF CITATIONS
SEARCH DETAIL
...