Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.259
Filter
1.
J Orthop Traumatol ; 25(1): 30, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850466

ABSTRACT

BACKGROUND: Rotator cuff disorders, whether symptomatic or asymptomatic, may result in abnormal shoulder kinematics (scapular rotation and glenohumeral translation). This study aimed to investigate the effect of rotator cuff tears on in vivo shoulder kinematics during a 30° loaded abduction test using single-plane fluoroscopy. MATERIALS AND METHODS: In total, 25 younger controls, 25 older controls and 25 patients with unilateral symptomatic rotator cuff tears participated in this study. Both shoulders of each participant were analysed and grouped on the basis of magnetic resonance imaging into healthy, rotator cuff tendinopathy, asymptomatic and symptomatic rotator cuff tears. All participants performed a bilateral 30° arm abduction and adduction movement in the scapular plane with handheld weights (0, 2 and 4 kg) during fluoroscopy acquisition. The range of upward-downward scapular rotation and superior-inferior glenohumeral translation were measured and analysed during abduction and adduction using a linear mixed model (loads, shoulder types) with random effects (shoulder ID). RESULTS: Scapular rotation was greater in shoulders with rotator cuff tendinopathy and asymptomatic rotator cuff tears than in healthy shoulders. Additional load increased upward during abduction and downward during adduction scapular rotation (P < 0.001 in all groups but rotator cuff tendinopathy). In healthy shoulders, upward scapular rotation during 30° abduction increased from 2.3° with 0-kg load to 4.1° with 4-kg load and on shoulders with symptomatic rotator cuff tears from 3.6° with 0-kg load to 6.5° with 4-kg load. Glenohumeral translation was influenced by the handheld weights only in shoulders with rotator cuff tendinopathy (P ≤ 0.020). Overall, superior glenohumeral translation during 30° abduction was approximately 1.0 mm with all loads. CONCLUSIONS: The results of glenohumeral translation comparable to control but greater scapular rotations during 30° abduction in the scapular plane in rotator cuff tears indicate that the scapula compensates for rotator cuff deficiency by rotating. Further analysis of load-dependent joint stability is needed to better understand glenohumeral and scapula motion. LEVEL OF EVIDENCE: Level 2. TRIAL REGISTRATION: Ethical approval was obtained from the regional ethics committee (Ethics Committee Northwest Switzerland EKNZ 2021-00182), and the study was registered at clinicaltrials.gov on 29 March 2021 (trial registration number NCT04819724, https://clinicaltrials.gov/ct2/show/NCT04819724 ).


Subject(s)
Rotator Cuff Injuries , Humans , Fluoroscopy , Rotator Cuff Injuries/physiopathology , Rotator Cuff Injuries/diagnostic imaging , Biomechanical Phenomena , Male , Female , Middle Aged , Adult , Aged , Range of Motion, Articular/physiology , Magnetic Resonance Imaging , Rotation , Case-Control Studies , Weight-Bearing/physiology , Shoulder Joint/physiopathology , Shoulder Joint/diagnostic imaging
2.
BMC Musculoskelet Disord ; 25(1): 454, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851696

ABSTRACT

BACKGROUND: Ulnar impingement syndrome is a prevalent source of ulnar carpal pain; however, there is ongoing debate regarding the specific location of shortening, the method of osteotomy, the extent of shortening, and the resulting biomechanical alterations. METHOD: To investigate the biomechanical changes in the distal radioulnar joint (DRUJ) resulting from different osteotomy methods, a cadaveric specimen was dissected, and the presence of a stable DRUJ structure was confirmed. Subsequently, three-dimensional data of the specimen were obtained using a CT scan, and finite element analysis was conducted after additional processing. RESULTS: The DRUJ stress did not change significantly at the metaphyseal osteotomy of 2-3 mm but increased significantly when the osteotomy length reached 5 mm. When the osteotomy was performed at the diaphysis, the DRUJ stress increased with the osteotomy length, and the increase was greater than that of metaphyseal osteotomy. Stress on the DRUJ significantly increases when the position is changed to pronation dorsi-extension. Similarly, the increase in stress in diaphyseal osteotomy was greater than that in metaphyseal osteotomy. When the model was subjected to a longitudinal load of 100 N, neither osteotomy showed a significant change in DRUJ stress at the neutral position. However, the 100 N load significantly increased stress on the DRUJ when the position was changed to pronation dorsi-extension, and the diaphyseal osteotomy significantly increased stress on the DRUJ. CONCLUSIONS: For patients with distal oblique bundle, metaphyseal osteotomy result in a lower increase in intra-articular pressure in the DRUJ compared to diaphyseal osteotomy. However, it is crucial to note that regardless of the specific type of osteotomy employed, it is advisable to avoid a shortening length exceeding 5 mm.


Subject(s)
Cadaver , Finite Element Analysis , Osteotomy , Ulna , Wrist Joint , Humans , Osteotomy/methods , Osteotomy/adverse effects , Wrist Joint/surgery , Wrist Joint/diagnostic imaging , Wrist Joint/physiopathology , Ulna/surgery , Ulna/diagnostic imaging , Biomechanical Phenomena/physiology , Stress, Mechanical , Weight-Bearing/physiology , Male
3.
Sci Rep ; 14(1): 13215, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851842

ABSTRACT

Using a curved carbon-fiber plate (CFP) in running shoes may offer notable performance benefit over flat plates, yet there is a lack of research exploring the influence of CFP geometry on internal foot loading during running. The objective of this study was to investigate the effects of CFP mechanical characteristics on forefoot biomechanics in terms of plantar pressure, bone stress distribution, and contact force transmission during a simulated impact peak moment in forefoot strike running. We employed a finite element model of the foot-shoe system, wherein various CFP configurations, including three stiffnesses (stiff, stiffer, and stiffest) and two shapes (flat plate (FCFP) and curved plate (CCFP)), were integrated into the shoe sole. Comparing the shoes with no CFP (NCFP) to those with CFP, we consistently observed a reduction in peak forefoot plantar pressure with increasing CFP stiffness. This decrease in pressure was even more notable in a CCFP demonstrating a further reduction in peak pressure ranging from 5.51 to 12.62%, compared to FCFP models. Both FCFP and CCFP designs had a negligible impact on reducing the maximum stress experienced by the 2nd and 3rd metatarsals. However, they greatly influenced the stress distribution in other metatarsal bones. These CFP designs seem to optimize the load transfer pathway, enabling a more uniform force transmission by mainly reducing contact force on the medial columns (the first three rays, measuring 0.333 times body weight for FCFP and 0.335 for CCFP in stiffest condition, compared to 0.373 in NCFP). We concluded that employing a curved CFP in running shoes could be more beneficial from an injury prevention perspective by inducing less peak pressure under the metatarsal heads while not worsening their stress state compared to flat plates.


Subject(s)
Running , Shoes , Running/physiology , Humans , Biomechanical Phenomena , Pressure , Carbon Fiber/chemistry , Forefoot, Human/physiology , Finite Element Analysis , Stress, Mechanical , Weight-Bearing/physiology , Carbon/chemistry , Equipment Design , Foot/physiology
4.
J Morphol ; 285(5): e21695, 2024 May.
Article in English | MEDLINE | ID: mdl-38695520

ABSTRACT

Artiodactyls exhibit a striking diversity of the cervical vertebral column in terms of length and overall mobility. Using finite element analysis, this study explores the morphology at the cervico-thoracic boundary and its performance under loads in artiodactyls with different habitual neck postures and body sizes. The first thoracic vertebra of 36 species was loaded with (i) a compressive load on the vertebral body to model the weight of the head and neck exerted onto the trunk; and (ii) a tensile load at the spinous process to model the pull via the nuchal ligament. Additional focus was laid on the peculiar shape of the first thoracic vertebra in giraffes. We hypothesized that a habitually upright neck posture should be reflected in the greater ability to withstand compressive loads compared to tensile loads, whereas for species with a habitually suspended posture it should be the opposite. In comparison to species with a suspended posture, species with an upright posture exhibited lower stress (except Giraffidae). For compressive loads in larger species, stress surprisingly increased. Tensile loads in larger species resulted in decreased stress only in species with an intermediate or suspensory neck posture. High stress under tensile loads was mainly reflecting the relative length of the spinous process, while high stress under compressive loads was common in more "bell"-shaped vertebral bodies. The data supports a stability-mobility trade-off at the cervico-thoracic transition in giraffes. Performance under load at the cervico-thoracic boundary is indicative of habitual neck posture and is influenced by body size.


Subject(s)
Artiodactyla , Finite Element Analysis , Thoracic Vertebrae , Animals , Thoracic Vertebrae/physiology , Thoracic Vertebrae/anatomy & histology , Artiodactyla/anatomy & histology , Artiodactyla/physiology , Posture/physiology , Biomechanical Phenomena , Stress, Mechanical , Weight-Bearing/physiology
5.
J Biomech ; 168: 112136, 2024 May.
Article in English | MEDLINE | ID: mdl-38723427

ABSTRACT

Alterations in ankle's articular contact mechanics serve as one of the fundamental causes of significant pathology. Nevertheless, computationally intensive algorithms and lack of bilateral weightbearing imaging have rendered it difficult to investigate the normative articular contact stress and side-to-side differences. The aims of our study were two-fold: 1) to determine and quantify the presence of side-to-side contact differences in healthy ankles and 2) to establish normative ranges for articular ankle contact parameters. In this retrospective comparative study, 50 subjects with healthy ankles on bilateral weight-bearing CT were confirmed eligible. Segmentation into 3D bony models was performed semi-automatically, and individualized cartilage layers were modelled based on a previously validated methodology. Contact mechanics were evaluated by using the mean and maximum contact stress of the tibiotalar articulation. Absolute and percentage reference range values were determined for the side-to-side difference. Amongst a cohort of individuals devoid of ankle pathology, mean side-to-side variation in these measurements was < 12 %, while respective differences of > 17 % talar peak stress and > 31 % talar mean stress indicate abnormality. No significant differences were found between laterality in any of the evaluated contact parameters. Understanding these values may promote a more accurate assessment of ankle joint biomechanics when distinguishing acceptable versus pathological contact mechanics in clinical practice.


Subject(s)
Ankle Joint , Tomography, X-Ray Computed , Weight-Bearing , Humans , Ankle Joint/physiology , Ankle Joint/diagnostic imaging , Male , Weight-Bearing/physiology , Female , Adult , Tomography, X-Ray Computed/methods , Middle Aged , Retrospective Studies , Biomechanical Phenomena , Stress, Mechanical , Aged
6.
J Foot Ankle Res ; 17(2): e12014, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773711

ABSTRACT

BACKGROUND: Patellofemoral pain (PFP) is characterized by chronic pain in the anterior aspect of the knee during loading activities. Many studies investigating muscle morphology changes for individuals with PFP focus on the proximal joints, however, few studies have investigated muscles of the foot and ankle complex. This study aimed to explore the differences in peroneal muscle size and activation between individuals with PFP and healthy controls using ultrasound imaging in weight-bearing. METHODS: A case-control study in a university lab setting was conducted. Thirty individuals with PFP (age: 20.23 ± 3.30 years, mass: 74.70 ± 27.63 kgs, height: 161.32 ± 11.72 cm) and 30 healthy individuals (age: 20.33 ± 3.37 years, mass: 64.02 ± 11.00 kgs, height: 169.31 ± 9.30 cm) participated. Cross-sectional area (CSA) images of the peroneal muscles were taken in non-weight bearing and weight-bearing positions. The functional activation ratio from lying to single-leg standing (SLS) was calculated. RESULTS: There was a statistically significant (p = 0.041) group (PFP, healthy) by position (non-weight-bearing, weight-bearing) interaction for the peroneal muscle CSA with a Cohen's d effect size of 0.2 in non-weight-bearing position and 0.7 in weight-bearing position. The functional activation ratio for the healthy group was significantly more (p = 0.01) than the PFP group. CONCLUSION: Peroneal muscles were found to be smaller in size in those with PFP compared to the healthy subjects in the weight-bearing SLS position. This study found that those with PFP have lower activation of peroneal muscles in functional position.


Subject(s)
Muscle, Skeletal , Patellofemoral Pain Syndrome , Ultrasonography , Weight-Bearing , Humans , Weight-Bearing/physiology , Case-Control Studies , Male , Female , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscle, Skeletal/pathology , Young Adult , Patellofemoral Pain Syndrome/physiopathology , Patellofemoral Pain Syndrome/diagnostic imaging , Patellofemoral Pain Syndrome/pathology , Adult , Adolescent , Foot/physiopathology , Foot/diagnostic imaging , Foot/pathology , Posture/physiology
7.
J Orthop Surg Res ; 19(1): 280, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711149

ABSTRACT

INTRODUCTION: The escalating incidence of anterior cruciate ligament (ACL) injuries, particularly among adolescents, is a pressing concern. The study of ACL biomechanics in this demographic presents challenges due to the scarcity of cadaveric specimens. This research endeavors to validate the adolescent porcine stifle joint as a fitting model for ACL studies. METHODS: We conducted experiments on 30 fresh porcine stifle knee joints. (Breed: Yorkshire, Weight: avg 90 lbs, Age Range: 2-4 months). They were stored at - 22 °C and a subsequent 24-h thaw at room temperature before being prepared for the experiment. These joints were randomly assigned to three groups. The first group served as a control and underwent only the load-to-failure test. The remaining two groups were subjected to 100 cycles, with forces of 300N and 520N, respectively. The load values of 300N and 520N correspond to three and five times the body weight (BW) of our juvenile porcine, respectively. RESULT: The 520N force demonstrated a higher strain than the 300N, indicating a direct correlation between ACL strain and augmented loads. A significant difference in load-to-failure (p = 0.014) was observed between non-cyclically loaded ACLs and those subjected to 100 cycles at 520N. Three of the ten samples in the 520N group failed before completing 100 cycles. The ruptured ACLs from these tests closely resembled adolescent ACL injuries in detachment patterns. ACL stiffness was also measured post-cyclical loading by applying force and pulling the ACL at a rate of 1 mm per sec. Moreover, ACL stiffness measurements decreased from 152.46 N/mm in the control group to 129.42 N/mm after 100 cycles at 300N and a more significant drop to 86.90 N/mm after 100 cycles at 520N. A one-way analysis of variance (ANOVA) and t-test were chosen for statistical analysis. CONCLUSIONS: The porcine stifle joint is an appropriate model for understanding ACL biomechanics in the skeletally immature demographic. The results emphasize the ligament's susceptibility to injury under high-impact loads pertinent to sports activities. The study advocates for further research into different loading scenarios and the protective role of muscle co-activation in ACL injury prevention.


Subject(s)
Anterior Cruciate Ligament , Stifle , Weight-Bearing , Animals , Swine , Anterior Cruciate Ligament/physiology , Anterior Cruciate Ligament/physiopathology , Stifle/physiology , Stifle/physiopathology , Weight-Bearing/physiology , Biomechanical Phenomena , Anterior Cruciate Ligament Injuries/physiopathology , Stress, Mechanical , In Vitro Techniques
8.
Medicine (Baltimore) ; 103(19): e38065, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728521

ABSTRACT

Knee varus (KV) deformity leads to abnormal forces in the different compartments of the joint cavity and abnormal mechanical loading thus leading to knee osteoarthritis (KOA). This study used computer-aided design to create 3-dimensional simulation models of KOA with varying varus angles to analyze stress distribution within the knee joint cavity using finite element analysis for different varus KOA models and to compare intra-articular loads among these models. Additionally, we developed a cartilage loading model of static KV deformity to correlate with dynamic clinical cases of cartilage injury. Different KV angle models were accurately simulated with computer-aided design, and the KV angles were divided into (0°, 3°, 6°, 9°, 12°, 15°, and 18°) 7 knee models, and then processed with finite element software, and the Von-Mises stress distribution and peak values of the cartilage of the femoral condyles, medial tibial plateau, and lateral plateau were obtained by simulating the human body weight in axial loading while performing the static extension position. Finally, intraoperative endoscopy visualization of cartilage injuries in clinical cases corresponding to KV deformity subgroups was combined to find cartilage loading and injury correlations. With increasing varus angle, there was a significant increase in lower limb mechanical axial inward excursion and peak Von-Mises stress in the medial interstitial compartment. Analysis of patients' clinical data demonstrated a significant correlation between varus deformity angle and cartilage damage in the knee, medial plateau, and patellofemoral intercompartment. Larger varus deformity angles could be associated with higher medial cartilage stress loads and increased cartilage damage in the corresponding peak stress area. When the varus angle exceeds 6°, there is an increased risk of cartilage damage, emphasizing the importance of early surgical correction to prevent further deformity and restore knee function.


Subject(s)
Cartilage, Articular , Finite Element Analysis , Knee Joint , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/surgery , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Knee Joint/physiopathology , Male , Weight-Bearing/physiology , Biomechanical Phenomena , Middle Aged , Stress, Mechanical , Female , Computer Simulation , Aged
9.
BMC Musculoskelet Disord ; 25(1): 395, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773398

ABSTRACT

INTRODUCTION: Anterior cruciate ligament (ACL) ruptures are common injuries that typically affect young, physically active individuals and may require surgical reconstruction. Studies have shown that the long time success of ACL reconstruction depends on the surgical technique and the postoperative rehabilitation strategy. However, there is still no consensus on the content of rehabilitation programs. Hence, additional research is required to elucidate the significance of early weight-bearing in the rehabilitation process following ACL reconstruction. The aim of this article is to examine the impact of weight-bearing on the clinical results of ACL reconstruction. MATERIALS AND METHODS: We retrospectively reviewed patient records who had undergone arthroscopic reconstruction using a semitendinosus-gracilis tendon graft for anterior cruciate ligament rupture between January 2018 and December 2020. The study included the data of 110 patients. The patients were split into two groups: Group 1 underwent early weight-bearing, while Group 2 followed a non-weight-bearing regimen for three weeks. We assessed the patients using the anterior drawer test, Lachman test, range of motion, Lysholm knee scale, Cincinnati scale, Tegner scale, International Knee Documentation Committee (IKDC) form and clinical records. Analytical tests were conducted to compare the results. RESULTS: The complication rates did not show a significant difference between the groups. Group 1 had higher frequencies of positive anterior drawer and Lachman tests. The Lysholm and Cincinnati knee scores of patients in Group 1 were notably lower than those of patients in Group 2. Additionally, the Tegner activity scores and IKDC scores of patients in Group 1 were also meaningfully lower than those of patients in Group 2. In Group 1 patients, there was no notable relationship observed between body mass index (BMI) and the results of the anterior drawer test (ADT) or Lachman test. However, patients with a BMI of 25 or higher in Group 1 showed a decrease in postoperative IKDC scores. In Group 2 patients, no significant relationship was identified between BMI and either the ADT or the Lachman test outcome. CONCLUSION: Based on current literature and current rehabilitation guidelines following ACL reconstruction, the decision to initiate early weight-bearing is based on a limited number of studies with low levels of evidence. In our study, we found that patients who followed a non-weight-bearing regimen for 3 weeks after surgery had better mid-term results than those who were allowed to bear weight early. It appears that further prospective studies on this topic are needed to update rehabilitation guidelines in the next.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Weight-Bearing , Humans , Anterior Cruciate Ligament Reconstruction/rehabilitation , Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament Reconstruction/adverse effects , Retrospective Studies , Female , Weight-Bearing/physiology , Male , Adult , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/rehabilitation , Young Adult , Treatment Outcome , Range of Motion, Articular , Arthroscopy/adverse effects , Arthroscopy/methods , Recovery of Function , Anterior Cruciate Ligament/surgery , Knee Joint/surgery , Knee Joint/physiopathology , Adolescent
10.
PLoS One ; 19(5): e0303070, 2024.
Article in English | MEDLINE | ID: mdl-38809842

ABSTRACT

Tap dance generates forces and joint motions that can lead to injury; however, little is known about the magnitude of load across different tap steps. The purpose of this study was to calculate peak vertical forces, average vertical foot velocities, and maximum/minimum ankle angles produced by tap dancers with different levels of experience performing the toe cannon, heel cannon, flap, and cramp roll. This prospective cross-sectional study included 14 female tap dancers aged ≥18 years with varying tap experience. Participants were recorded by three cameras while performing a choreographed tap combination containing four steps of interest on a force platform. Adjusting for experience and dancer-level clustering, we identified the steps-cramp roll and toe cannon-that had the highest peak vertical ground reaction force, angles, and velocities compared to flap and heel cannon. There was no effect of experience. The results supported our hypothesis and provide new insights into step production. Over time, the larger forces associated with these steps could pose an increased risk of injury to bones and joints when compared to smaller forces, which may suggest the importance of adjusting routines to reduce or avoid injury.


Subject(s)
Ankle Joint , Dancing , Humans , Female , Dancing/physiology , Adult , Cross-Sectional Studies , Ankle Joint/physiology , Prospective Studies , Young Adult , Biomechanical Phenomena , Weight-Bearing/physiology , Ankle/physiology , Adolescent
11.
Gait Posture ; 111: 191-195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718525

ABSTRACT

BACKGROUND: Traumatic lower limb injuries can result in chronic pain. Orthotic interventions are a leading conservative approach to reduce pain, manage loading, and protect the foot. Robust carbon fiber custom dynamic orthoses (CDOs) designed for military service members have been shown to reduce foot loading. However, the effect of carbon fiber orthosis design, including designs widely used in the civilian sector, on foot loading is unknown. RESEARCH QUESTION: Determine if carbon fiber orthoses alter foot loading during gait. METHODS: Loadsol insoles were used to measure peak forces and force impulse acting on the forefoot, midfoot, hindfoot, and total foot. Nine healthy, able-bodied individuals participated. Force impulse was quantified as cumulative loading throughout stance phase. Participants walked without an orthosis and with three carbon fiber orthoses of differing designs: a Firm stiffness CDO, a Moderate stiffness CDO, and a medial and lateral strut orthosis (MLSO). RESULTS: There were significant main effects of orthosis condition on peak forefoot forces as well as forefoot and hindfoot force impulse. Peak forefoot forces were significantly lower in the Moderate and Firm CDOs compared to no orthosis and MLSO. Compared to walking without an orthosis, forefoot force impulse was significantly lower and hindfoot force impulse was significantly greater in all carbon fiber orthoses. Additionally, hindfoot force impulse in the Firm CDO was significantly higher than in the MLSO and Moderate CDO. SIGNIFICANCE: The three carbon fiber orthosis designs differed regarding foot loading, with more robust orthoses providing greater forefoot offloading. Orthosis-related changes in forefoot loading suggest that carbon fiber orthoses could reduce loading-associated pain during gait. However, increased hindfoot force impulse suggests caution should be used when considering carbon fiber orthoses for individuals at risk of skin breakdown with repetitive loading.


Subject(s)
Carbon Fiber , Equipment Design , Foot Orthoses , Weight-Bearing , Humans , Pilot Projects , Male , Adult , Female , Weight-Bearing/physiology , Gait/physiology , Biomechanical Phenomena , Foot/physiology , Young Adult , Carbon
12.
J Sports Sci ; 42(7): 611-620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38752925

ABSTRACT

Accurate assessment of rolling resistance is important for wheelchair propulsion analyses. However, the commonly used drag and deceleration tests are reported to underestimate rolling resistance up to 6% due to the (neglected) influence of trunk motion. The first aim of this study was to investigate the accuracy of using trunk and wheelchair kinematics to predict the intra-cyclical load distribution, more particularly front wheel loading, during hand-rim wheelchair propulsion. Secondly, the study compared the accuracy of rolling resistance determined from the predicted load distribution with the accuracy of drag test-based rolling resistance. Twenty-five able-bodied participants performed hand-rim wheelchair propulsion on a large motor-driven treadmill. During the treadmill sessions, front wheel load was assessed with load pins to determine the load distribution between the front and rear wheels. Accordingly, a machine learning model was trained to predict front wheel load from kinematic data. Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance determined from the predicted load distribution (MAE: 0.9%, mean error (ME): 0.1%) was more accurate than drag test-based rolling resistance (MAE: 2.5%, ME: -1.3%).


Subject(s)
Torso , Wheelchairs , Humans , Biomechanical Phenomena , Male , Adult , Female , Young Adult , Torso/physiology , Machine Learning , Equipment Design , Weight-Bearing/physiology , Exercise Test/methods
13.
Medicine (Baltimore) ; 103(21): e38323, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788003

ABSTRACT

The calcar femorale, first identified by Merkel in 1874, plays a pivotal role in the weight-bearing capacity of the proximal femur, and its structural integrity is crucial for the efficient distribution of mechanical loads. Originating at the vertical ridge where the pubofemoral ligament anchors, this bony prominence extends laterally behind the neutral axis from the medial to lateral aspects. Its presence is not merely an anatomical curiosity but significantly influences the biomechanics of the hip joint by providing additional strength and support against compressive forces encountered during activities such as walking or jumping. Despite its clear description in orthopedic texts, misconceptions persist about its exact function and importance. This article delves into the nuanced anatomy and biomechanical properties of the calcar femorale, offering a detailed literature-based examination that demonstrates its relevance in clinical practice. The review highlights how the robustness of the calcar femorale contributes to the prevention of femoral neck fractures as well as the stabilization of hip prostheses. Furthermore, the indispensable role of the calcar femorale in surgical outcomes is discussed, especially in the context of fracture repair and joint replacement, thus illustrating its enduring significance in contemporary medical applications.


Subject(s)
Femur , Humans , Biomechanical Phenomena/physiology , Femur/anatomy & histology , Femur/physiology , Hip Joint/anatomy & histology , Hip Joint/physiology , Weight-Bearing/physiology , Arthroplasty, Replacement, Hip , Femoral Neck Fractures , Clinical Relevance
14.
J Biomech ; 169: 112133, 2024 May.
Article in English | MEDLINE | ID: mdl-38744146

ABSTRACT

Abnormal loading is thought to play a key role in the disease progression of cartilage, but our understanding of how cartilage compositional measurements respond to acute compressive loading in-vivo is limited. Ten healthy subjects were scanned at two timepoints (7 ± 3 days apart) with a 3 T magnetic resonance imaging (MRI) scanner. Scanning sessions included T1ρ and T2* acquisitions of each knee in two conditions: unloaded (traditional MRI setup) and loaded in compression at 40 % bodyweight as applied by an MRI-compatible loading device. T1ρ and T2* parameters were quantified for contacting cartilage (tibial and femoral) and non-contacting cartilage (posterior femoral condyle) regions. Significant effects of load were found in contacting regions for both T1ρ and T2*. The effect of load (loaded minus unloaded) in femoral contacting regions ranged from 4.1 to 6.9 ms for T1ρ, and 3.5 to 13.7 ms for T2*, whereas tibial contacting regions ranged from -5.6 to -1.7 ms for T1ρ, and -2.1 to 0.7 ms for T2*. Notably, the responses to load in the femoral and tibial cartilage revealed opposite effects. No significant differences were found in response to load between the two visits. This is the first study that analyzed the effects of acute loading on T1ρ and T2* measurements in human femoral and tibial cartilage separately. The results suggest the effect of acute compressive loading on T1ρ and T2* was: 1) opposite in the femoral and tibial cartilage; 2) larger in contacting regions than in non-contacting regions of the femoral cartilage; and 3) not different visit-to-visit.


Subject(s)
Cartilage, Articular , Femur , Magnetic Resonance Imaging , Tibia , Weight-Bearing , Humans , Cartilage, Articular/physiology , Cartilage, Articular/diagnostic imaging , Femur/diagnostic imaging , Femur/physiology , Male , Adult , Female , Magnetic Resonance Imaging/methods , Tibia/diagnostic imaging , Tibia/physiology , Weight-Bearing/physiology , Knee Joint/physiology , Knee Joint/diagnostic imaging , Compressive Strength/physiology
16.
Appl Ergon ; 119: 104293, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38703721

ABSTRACT

BACKGROUND: Load carriage imposes high physical stresses on the human body, increasing the risk of injuries. This study assessed the effectiveness of a passive military exoskeleton in off-loading the weight placed on the body during heavy load carriage under static standing and dynamic walking conditions. METHODS: Eight full-time regular personnel of the Singapore Armed Forces enrolled in the study. Static loading tests included nine trials of 10-s quiet standing while carrying different loads (0-55 kg) with and without the exoskeleton. For dynamic loading, participants walked on a treadmill on flat, inclined, and declined surfaces while carrying two different loads (25 kg, 35 kg) with and without the exoskeleton. In-shoe normal ground reaction forces (GRF) were recorded during quiet standing and treadmill walking. Differences in total force with and without the exoskeleton during static loading were compared using Wilcoxon one-sample signed ranked tests against zero (no weight off-load) as a reference. Statistical parametric mapping test was used to compare the walking in-shoe GRF-time series with and without exoskeleton use for each load and surface condition. RESULTS: Exoskeleton use was effective in off-loading loads of 2.3-13.5 kg during static quiet standing but the response varied substantially across loads and among the participants. Statistical analysis revealed no meaningful differences in the walking in-shoe GRF with and without exoskeleton use. The results were largely consistent across flat, inclined, and declined surfaces, and both 25-kg and 35-kg loads. CONCLUSIONS: The passive military exoskeleton was effective in off-loading some load from the human body during static quiet standing but not dynamic walking on flat and sloped surfaces. The varied response across loads and participants calls for better design and fitting of the military exoskeleton to individual users.


Subject(s)
Cross-Over Studies , Exoskeleton Device , Military Personnel , Walking , Weight-Bearing , Humans , Weight-Bearing/physiology , Male , Walking/physiology , Adult , Biomechanical Phenomena , Singapore , Standing Position , Young Adult
17.
Article in English | MEDLINE | ID: mdl-38758669

ABSTRACT

BACKGROUND: Socks are mainly used to give the foot more comfort while wearing shoes. Stitch density of the knitted fabric used in socks can significantly affect the sock properties because it is one of the most important fabric structural factors influencing the mechanical properties. Continuous plantar pressures can cause serious damage, particularly under the metatarsal heads, and it is deduced that using socks redistributes and reduces peak plantar pressures. If peak pressure under the metatarsal heads is predicted, then it will be possible to produce socks with the best mechanical properties to reduce the pressure in these critical areas. METHODS: Plain knitted socks with three different stitch lengths (high, medium, and low) were produced. Static plantar pressure measurements by the Gaitview system were accomplished on ten women and then compared with the barefoot situation. Also, the peak plantar pressure of three types of socks under the metatarsal heads are theoretically predicted using the Hertz contact theory. RESULTS: Experimental results indicate that all socks redistribute the plantar pressure from high to low plantar pressure regions compared with barefoot. In particular, socks with high stitch length have the best performance. By increasing the stitch length, we can significantly reduce the peak plantar pressure of the socks. Correspondingly, the Hertz contact theory resulted in a trend of mean peak pressure reductions in the forefoot region similar to the socks with different stitch densities. CONCLUSIONS: The theoretical results show that by using the Hertz contact theory, static plantar pressure in the forefoot region can be well predicted at a mean error of approximately 9% compared with the other experimental findings.


Subject(s)
Foot , Pressure , Humans , Female , Foot/physiology , Adult , Biomechanical Phenomena , Clothing , Shoes , Weight-Bearing/physiology , Young Adult
18.
Appl Ergon ; 119: 104285, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38797013

ABSTRACT

We used an armband with embedded surface electromyography (sEMG) electrodes, together with machine-learning (ML) models, to automatically detect lifting-lowering activities and classify hand loads. Nine healthy participants (4 male and 5 female) completed simulated lifting-lowering tasks in various conditions and with two different hand loads (2.3 and 6.8 kg). We compared three sEMG signal feature sets (i.e., time, frequency, and a combination of both domains) and three ML classifiers (i.e., Random Forest, Support Vector Machine, and Logistic Regression). Both Random Forest and Support Vector Machine models, using either time-domain or time- and frequency-domain features, yielded the best performance in detecting lifts, with respective accuracies of 79.2% (start) and 86.7% (end). Similarly, both ML models yielded the highest accuracy (80.9%) in classifying the two hand loads, regardless of the sEMG features used, emphasizing the potential of sEMG armbands for assessing exposure and risks in occupational lifting tasks.


Subject(s)
Electromyography , Hand , Lifting , Task Performance and Analysis , Wearable Electronic Devices , Humans , Male , Female , Hand/physiology , Adult , Machine Learning , Young Adult , Weight-Bearing/physiology , Support Vector Machine , Healthy Volunteers
19.
Sci Rep ; 14(1): 9542, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664550

ABSTRACT

The introduction of women into U.S. military ground close combat roles requires research into sex-specific effects of military training and operational activities. Knee osteoarthritis is prevalent among military service members; its progression has been linked to occupational tasks such as load carriage. Analyzing tibiofemoral arthrokinematics during load carriage is important to understand potentially injurious motion and osteoarthritis progression. The study purpose was to identify effects of load carriage on knee arthrokinematics during walking and running in recruit-aged women. Twelve healthy recruit-aged women walked and ran while unloaded (bodyweight [BW]) and carrying additional + 25%BW and + 45%BW. Using dynamic biplane radiography and subject-specific bone models, tibiofemoral arthrokinematics, subchondral joint space and center of closest contact location between subchondral bone surfaces were analyzed over 0-30% stance (separate one-way repeated measures analysis of variance, load by locomotion). While walking, medial compartment contact location was 5% (~ 1.6 mm) more medial for BW than + 45%BW at foot strike (p = 0.03). While running, medial compartment contact location was 4% (~ 1.3 mm) more lateral during BW than + 25%BW at 30% stance (p = 0.04). Internal rotation was greater at + 45%BW compared to + 25%BW (p < 0.01) at 30% stance. Carried load affects tibiofemoral arthrokinematics in recruit-aged women. Prolonged load carriage could increase the risk of degenerative joint injury in physically active women.


Subject(s)
Knee Joint , Walking , Weight-Bearing , Humans , Female , Weight-Bearing/physiology , Walking/physiology , Knee Joint/physiology , Adult , Running/physiology , Military Personnel , Biomechanical Phenomena , Femur/physiology , Femur/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/etiology , Tibia/physiology , Tibia/diagnostic imaging , Young Adult
20.
J Biomech ; 167: 112068, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582004

ABSTRACT

Intervertebral disc (IVD) degeneration includes changes in tissue biomechanics, physical attributes, biochemical composition, disc microstructure, and cellularity, which can all affect the normal function of the IVD, and ultimately may lead to pain. The purpose of this research was to develop an in-vitro model of degeneration that includes the evaluation of physical, biomechanical, and structural parameters, and that does so over several load/recovery periods. Hyperphysiological loading was used as the degenerative initiator with three experimental groups employed using bovine coccygeal IVD specimens: Control; Single-Overload; and Double-Overload. An equilibrium stage comprising a static load followed by two load/recovery periods was followed by six further load/recovery periods. In the Control group all load/recovery periods were the same, comprising physiological cyclic loading. The overload groups differed in that hyperphysiological loading was applied during the 4th loading period (Single-Overload), or the 4th and 5th loading period (Double-Overload). Overloading led to a significant reduction in disc height compared to the Control group, which was not recovered in subsequent physiological load/recovery periods. However, there were no significant changes in stiffness. Overloading also led to significantly more microstructural damage compared to the Control group. Taking all outcome measures into account, the overload groups were evaluated as replicating clinically relevant aspects of moderate IVD degeneration. Further research into a potential dose-effect, and how more severe degeneration can be replicated would provide a model with the potential to evaluate new treatments and interventions for different stages of IVD degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Cattle , Humans , Biomechanical Phenomena , Physical Examination , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...