Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.333
Filter
1.
PLoS Negl Trop Dis ; 18(5): e0012162, 2024 May.
Article in English | MEDLINE | ID: mdl-38709836

ABSTRACT

West Nile virus (WNV) is a vector-borne flavivirus that causes an increasing number of human and equine West Nile fever cases in Europe. While the virus has been present in the Mediterranean basin and the Balkans since the 1960s, recent years have witnessed its northward expansion, with the first human cases reported in Germany in 2018 and the Netherlands in 2020. WNV transmission and amplification within mosquitoes are temperature-dependent. This study applies a mathematical modelling approach to assess the conditions under which WNV circulation occurs based on the proportion of mosquito bites on WNV-competent birds (dilution), vector-host ratios, mosquito season length and the observed daily temperature data. We modelled five distinct European regions where previous WNV circulation has been observed within the Netherlands, Germany, Spain, Italy, and Greece. We observed that the number of days in which the basic reproduction number (R0) is above one, increased over the last 40 years in all five regions. In the Netherlands, the number of days in which the R0 is above one, is 70% lower than in Spain. The temperature in Greece, Spain and Italy allowed for circulation under low vector-host ratios, and at a high dilution. On the other hand in the Netherlands and Germany, given the observed daily temperature, the thresholds for circulation requires a lower dilution and higher vector-host ratios. For the Netherlands, a short window of introductions between late May and mid-June would result in detectable outbreaks. Our findings revealed that the temperate maritime climate of the Netherlands allows WNV circulation primarily during warmer summers, and only under high vector-host ratios. This research contributes valuable insights into the dynamic relationship between temperature, vector properties, and WNV transmission, offering guidance for proactive strategies in addressing this emerging health threat in Europe.


Subject(s)
Mosquito Vectors , Seasons , Temperature , West Nile Fever , West Nile virus , West Nile Fever/transmission , West Nile Fever/epidemiology , West Nile Fever/virology , Animals , West Nile virus/physiology , West Nile virus/isolation & purification , Europe/epidemiology , Humans , Mosquito Vectors/virology , Mosquito Vectors/physiology , Birds/virology , Netherlands/epidemiology , Models, Theoretical , Culicidae/virology , Culicidae/physiology
2.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793601

ABSTRACT

West Nile virus (WNV) is an arbovirus spread primarily by Culex mosquitoes, with humans being a dead-end host. WNV was introduced to Florida in 2001, with 467 confirmed cases since. It is estimated that 80 percent of cases are asymptomatic, with mild cases presenting as a non-specific flu-like illness. Currently, detection of WNV in humans occurs primarily in healthcare settings via RT-PCR or CSF IgM when patients present with severe manifestations of disease including fever, meningitis, encephalitis, or acute flaccid paralysis. Given the short window of detectable viremia and requirement for CSF sampling, most WNV infections never receive an official diagnosis. This study utilized enzyme-linked immunosorbent assay (ELISA) to detect WNV IgG antibodies in 250 patient serum and plasma samples collected at Tampa General Hospital during 2020 and 2021. Plaque reduction neutralization tests were used to confirm ELISA results. Out of the 250 patients included in this study, 18.8% of them were IgG positive, consistent with previous WNV exposure. There was no relationship between WNV exposure and age or sex.


Subject(s)
Antibodies, Viral , Immunoglobulin G , West Nile Fever , West Nile virus , Humans , West Nile virus/immunology , West Nile Fever/epidemiology , West Nile Fever/virology , Florida/epidemiology , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/cerebrospinal fluid , Middle Aged , Seroepidemiologic Studies , Immunoglobulin G/blood , Immunoglobulin G/cerebrospinal fluid , Adult , Aged , Young Adult , Adolescent , Aged, 80 and over , Enzyme-Linked Immunosorbent Assay , Hospitalization , Immunoglobulin M/blood , Immunoglobulin M/cerebrospinal fluid
3.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793662

ABSTRACT

Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.


Subject(s)
Horse Diseases , Vaccination , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile Fever/immunology , West Nile Fever/prevention & control , West Nile Fever/virology , West Nile Fever/epidemiology , West Nile Fever/transmission , Horses , Animals , West Nile virus/immunology , Humans , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/prevention & control , West Nile Virus Vaccines/immunology , Vaccination/veterinary , One Health , United States/epidemiology
4.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793693

ABSTRACT

Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.


Subject(s)
Neurons , RNA, Viral , Virus Replication , West Nile virus , West Nile virus/genetics , West Nile virus/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Neurons/virology , Neurons/metabolism , Animals , Cell Line , Genome, Viral , West Nile Fever/virology , Humans , Mice , Gene Expression Regulation, Viral
5.
Front Immunol ; 15: 1395870, 2024.
Article in English | MEDLINE | ID: mdl-38799422

ABSTRACT

Emerging infectious diseases represent a significant threat to global health, with West Nile virus (WNV) being a prominent example due to its potential to cause severe neurological disorders alongside mild feverish conditions. Particularly prevalent in the continental United States, WNV has emerged as a global concern, with outbreaks indicating the urgent need for effective prophylactic measures. The current problem is that the absence of a commercial vaccine against WNV highlights a critical gap in preventive strategies against WNV. This study aims to address this gap by proposing a novel, multivalent vaccine designed using immunoinformatics approaches to elicit comprehensive humoral and cellular immune responses against WNV. The objective of the study is to provide a theoretical framework for experimental scientists to formulate of vaccine against WNV and tackle the current problem by generating an immune response inside the host. The research employs reverse vaccinology and subtractive proteomics methodologies to identify NP_041724.2 polyprotein and YP_009164950.1 truncated flavivirus polyprotein NS1 as the prime antigens. The selection process for epitopes focused on B and T-cell reactivity, antigenicity, water solubility, and non-allergenic properties, prioritizing candidates with the potential for broad immunogenicity and safety. The designed vaccine construct integrates these epitopes, connected via GPGPG linkers, and supplemented with an adjuvant with the help of another linker EAAAK, to enhance immunogenicity. Preliminary computational analyses suggest that the proposed vaccine could achieve near-universal coverage, effectively targeting approximately 99.74% of the global population, with perfect coverage in specific regions such as Sweden and Finland. Molecular docking and immune simulation studies further validate the potential efficacy of the vaccine, indicating strong binding affinity with toll-like receptor 3 (TLR-3) and promising immune response profiles, including significant antibody-mediated and cellular responses. These findings present the vaccine construct as a viable candidate for further development and testing. While the theoretical and computational results are promising, advancing from in-silico predictions to a tangible vaccine requires comprehensive laboratory validation. This next step is essential to confirm the vaccine's efficacy and safety in eliciting an immune response against WNV. Through this study, we propose a novel approach to vaccine development against WNV and contribute to the broader field of immunoinformatics, showcasing the potential to accelerate the design of effective vaccines against emerging viral threats. The journey from hypothesis to practical solution embodies the interdisciplinary collaboration essential for modern infectious disease management and prevention strategies.


Subject(s)
Computational Biology , Immunodominant Epitopes , Proteome , Vaccines, Subunit , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile virus/immunology , Immunodominant Epitopes/immunology , Humans , Proteome/immunology , West Nile Fever/prevention & control , West Nile Fever/immunology , West Nile Fever/virology , Computational Biology/methods , West Nile Virus Vaccines/immunology , Vaccines, Subunit/immunology , Vaccine Development , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Proteomics/methods , Immunoinformatics , Protein Subunit Vaccines
6.
Emerg Microbes Infect ; 13(1): 2348510, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38686545

ABSTRACT

West Nile virus (WNV) is the most widely distributed mosquito-borne flavivirus in the world. This flavivirus can infect humans causing in some cases a fatal neurological disease and birds are the main reservoir hosts. WNV is endemic in Spain, and human cases have been reported since 2004. Although different studies analyse how climatic conditions can affect the dynamics of WNV infection, very few use long-term datasets. Between 2003 and 2020 a total of 2,724 serum samples from 1,707 common coots (Fulica atra) were analysed for the presence of WNV-specific antibodies. Mean (SD) annual seroprevalence was 24.67% (0.28) but showed high year-to-year variations ranging from 5.06% (0.17) to 68.89% (0.29). Significant positive correlations (p < 0.01) were observed between seroprevalence and maximum winter temperature and mean spring temperature. The unprecedented WNV outbreak in humans in the south of Spain in 2020 was preceded by a prolonged period of escalating WNV local circulation. Given current global and local climatic trends, WNV circulation is expected to increase in the next decades. This underscores the necessity of implementing One Health approaches to reduce the risk of future WNV outbreaks in humans. Our results suggest that higher winter and spring temperatures may be used as an early warning signal of more intense WNV circulation among wildlife in Spain, and consequently highlight the need of more intense vector control and surveillance in human inhabited areas.


Subject(s)
Antibodies, Viral , Seasons , West Nile Fever , West Nile virus , Spain/epidemiology , West Nile virus/immunology , West Nile virus/isolation & purification , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/veterinary , Animals , Seroepidemiologic Studies , Humans , Antibodies, Viral/blood , Disease Outbreaks , Temperature
7.
Viruses ; 16(4)2024 04 12.
Article in English | MEDLINE | ID: mdl-38675940

ABSTRACT

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Subject(s)
Birds , Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Europe/epidemiology , West Nile virus/genetics , West Nile virus/physiology , West Nile virus/isolation & purification , Animals , Humans , Flavivirus/classification , Flavivirus/genetics , Flavivirus/pathogenicity , Flavivirus/isolation & purification , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Flavivirus Infections/transmission , Flavivirus Infections/veterinary , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/transmission , Birds/virology , Culicidae/virology , Mosquito Vectors/virology , Disease Outbreaks
8.
Microbiol Spectr ; 12(6): e0075824, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687079

ABSTRACT

Human immunoglobulin preparations contain a diverse range of polyclonal antibodies that reflect past immune responses against pathogens encountered by the blood donor population. In this study, we examined a panel of intravenous immunoglobulins (IGIVs) manufactured over the past two decades (1998-2020) for their capacity to neutralize or enhance Zika virus (ZIKV) infection in vitro. These IGIVs were selected specifically based on their production dates in relation to the occurrences of two flavivirus outbreaks in the U.S.: the West Nile virus (WNV) outbreak in 1999 and the ZIKV outbreak in 2015. As demonstrated by enzyme-linked immunosorbent assay (ELISA) experiments, IGIVs made before the ZIKV outbreak already harbored antibodies that bind to various peptides across the envelope protein of ZIKV because of the WNV outbreak. Using phage display, the most dominant binding site was mapped precisely to the P2 peptide between residues 211 and 230 within domain II, where BF1176-56, an anti-ZIKV monoclonal antibody, also binds. When tested in permissive Vero E6 cells for ZIKV neutralization, the IGIVs, even after undergoing rigorous enrichment for P2 binding specificity, failed, as did BF1176-56. Meanwhile, BF1176-56 enhanced ZIKV infection in both FcγRII-expressing K562 cells and human peripheral blood mononuclear cells. However, for enhancement by the IGIVs to be detected in these cells, a substantial increase in their P2 binding specificity was required, thus linking the P2 site with ZIKV enhancement in vitro. Our findings warrant further study of the significance of elevated levels of anti-WNV antibodies in IGIVs, considering that various mechanisms operating in vivo may modulate ZIKV infection outcomes.IMPORTANCEWe investigated the capacity of intravenous immunoglobulins manufactured previously over two decades (1998-2020) to neutralize or enhance Zika virus infection in vitro. West Nile virus antibodies in IGIVs could not neutralize Zika virus initially; however, once the IGIVs were concentrated further, they enhanced its infection. These findings lay the groundwork for exploring how preexisting WNV antibodies in IGIVs could impact Zika infection, both in vitro and in vivo. Our observations are historically significant, since we tested a panel of IGIV lots that were carefully selected based on their production dates which covered two major flavivirus outbreaks in the U.S.: the WNV outbreak in 1999 and the ZIKV outbreak in 2015. These findings will facilitate our understanding of the interplay among closely related viral pathogens, particularly from a historical perspective regarding large blood donor populations. They should remain relevant for future outbreaks of emerging flaviviruses that may potentially affect vulnerable populations.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , West Nile virus/immunology , Antibodies, Viral/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Animals , Chlorocebus aethiops , Vero Cells , West Nile Fever/immunology , West Nile Fever/virology , Antibodies, Neutralizing/immunology , Binding Sites , Immunoglobulins, Intravenous/immunology , Viral Envelope Proteins/immunology , Enzyme-Linked Immunosorbent Assay
9.
Vector Borne Zoonotic Dis ; 24(5): 274-277, 2024 May.
Article in English | MEDLINE | ID: mdl-38294797

ABSTRACT

Background: West Nile virus (WNV) infection, caused by a flavivirus, emerged in Europe and America in the past two decades. The etiological agent causes asymptomatic to life-threatening infection in humans and in some animal species. The objective of this study was to evaluate the seroprevalence of WNV among donkeys and mules in Bulgaria. Methods: A total of 200 archived serum samples were tested by competitive enzyme-linked immunosorbent assay (ELISA). Positive samples were additionally analyzed by virus neutralization assay. Results: Seroprevalence of 7% (14/200) was established among tested animals by ELISA. Two samples were subsequently verified for the presence of virus neutralizing antibodies; thus, the seroprevalence against WNV was determined to be 1% (2/200 [confidence interval = 0.12-3.61]). Positive results among mules included in the study were not found. Conclusion: The findings in the present research demonstrate that donkeys are exposed to WNV infection and seroconvert, which adds to the understanding of virus circulation among donkeys in settlements in north and south Bulgaria.


Subject(s)
Equidae , West Nile Fever , West Nile virus , Animals , Equidae/virology , Bulgaria/epidemiology , Seroepidemiologic Studies , West Nile virus/isolation & purification , West Nile virus/immunology , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile Fever/virology , Retrospective Studies , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/veterinary
10.
J Virol ; 98(1): e0183023, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38088560

ABSTRACT

Usutu virus (USUV) and West Nile virus (WNV) are closely related emerging arboviruses belonging to the Flavivirus genus and posing global public health concerns. Although human infection by these viruses is mainly asymptomatic, both have been associated with neurological disorders such as encephalitis and meningoencephalitis. Since USUV and WNV are transmitted through the bite of an infected mosquito, the skin represents the initial site of virus inoculation and provides the first line of host defense. Although some data on the early stages of WNV skin infection are available, very little is known about USUV. Herein, USUV-skin resident cell interactions were characterized. Using primary human keratinocytes and fibroblasts, an early replication of USUV during the first 24 hours was shown in both skin cells. In human skin explants, a high viral tropism for keratinocytes was observed. USUV infection of these models induced type I and III interferon responses associated with upregulated expression of various interferon-stimulated genes as well as pro-inflammatory cytokine and chemokine genes. Among the four USUV lineages studied, the Europe 2 strain replicated more efficiently in skin cells and induced a higher innate immune response. In vivo, USUV and WNV disseminated quickly from the inoculation site to distal cutaneous tissues. In addition, viral replication and persistence in skin cells were associated with an antiviral response. Taken together, these results provide a better understanding of the pathophysiology of the early steps of USUV infection and suggest that the skin constitutes a major amplifying organ for USUV and WNV infection.IMPORTANCEUsutu virus (USUV) and West Nile virus (WNV) are closely related emerging Flaviviruses transmitted through the bite of an infected mosquito. Since they are directly inoculated within the upper skin layers, the interactions between the virus and skin cells are critical in the pathophysiology of USUV and WNV infection. Here, during the early steps of infection, we showed that USUV can efficiently infect two human resident skin cell types at the inoculation site: the epidermal keratinocytes and the dermal fibroblasts, leading to the induction of an antiviral innate immune response. Moreover, following cutaneous inoculation, we demonstrated that both viruses can rapidly spread, replicate, and persist in all distal cutaneous tissues in mice, a phenomenon associated with a generalized skin inflammatory response. These results highlight the key amplifying and immunological role of the skin during USUV and WNV infection.


Subject(s)
Flavivirus Infections , Flavivirus , Viral Tropism , West Nile Fever , West Nile virus , Animals , Humans , Mice , Antiviral Agents , Culicidae , Flavivirus Infections/virology , Interferons , West Nile Fever/virology , Skin/immunology , Skin/pathology , Skin/virology , In Vitro Techniques
11.
J Virol ; 97(10): e0111223, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796127

ABSTRACT

IMPORTANCE: Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.


Subject(s)
Endothelins , Insulin , West Nile Fever , Animals , Humans , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila melanogaster/virology , Insulin/metabolism , Signal Transduction , West Nile Fever/immunology , West Nile Fever/metabolism , West Nile Fever/virology , West Nile virus/immunology , West Nile virus/physiology , Endothelins/immunology , Endothelins/metabolism
12.
J Virol ; 97(3): e0180522, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36802227

ABSTRACT

West Nile virus (WNV) is the leading cause of epidemic arboviral encephalitis in the United States. As there are currently no proven antiviral therapies or licensed human vaccines, understanding the neuropathogenesis of WNV is critical for rational therapeutic design. In WNV-infected mice, the depletion of microglia leads to enhanced viral replication, increased central nervous system (CNS) tissue injury, and increased mortality, suggesting that microglia play a critical role in protection against WNV neuroinvasive disease. To determine if augmenting microglial activation would provide a potential therapeutic strategy, we administered granulocyte-macrophage colony-stimulating factor (GM-CSF) to WNV-infected mice. Recombinant human GM-CSF (rHuGMCSF) (sargramostim [Leukine]) is an FDA-approved drug used to increase white blood cells following leukopenia-inducing chemotherapy or bone marrow transplantation. Daily treatment of both uninfected and WNV-infected mice with subcutaneous injections of GM-CSF resulted in microglial proliferation and activation as indicated by the enhanced expression of the microglia activation marker ionized calcium binding adaptor molecule 1 (Iba1) and several microglia-associated inflammatory cytokines, including CCL2 (C-C motif chemokine ligand 2), interleukin 6 (IL-6), and IL-10. In addition, more microglia adopted an activated morphology as demonstrated by increased sizes and more pronounced processes. GM-CSF-induced microglial activation in WNV-infected mice was associated with reduced viral titers and apoptotic activity (caspase 3) in the brains of WNV-infected mice and significantly increased survival. WNV-infected ex vivo brain slice cultures (BSCs) treated with GM-CSF also showed reduced viral titers and caspase 3 apoptotic cell death, indicating that GM-CSF specifically targets the CNS and that its actions are not dependent on peripheral immune activity. Our studies suggest that stimulation of microglial activation may be a viable therapeutic approach for the treatment of WNV neuroinvasive disease. IMPORTANCE Although rare, WNV encephalitis poses a devastating health concern, with few treatment options and frequent long-term neurological sequelae. Currently, there are no human vaccines or specific antivirals against WNV infections, so further research into potential new therapeutic agents is critical. This study presents a novel treatment option for WNV infections using GM-CSF and lays the foundation for further studies into the use of GM-CSF as a treatment for WNV encephalitis as well as a potential treatment for other viral infections.


Subject(s)
Brain , West Nile Fever , Animals , Mice , Brain/virology , Caspase 3/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , West Nile Fever/therapy , West Nile Fever/virology , West Nile virus/physiology , Viral Load/physiology , Microglia/cytology , Microglia/drug effects , Cell Proliferation/drug effects , Recombinant Proteins/pharmacology
13.
Virology ; 568: 49-55, 2022 03.
Article in English | MEDLINE | ID: mdl-35114499

ABSTRACT

West Nile virus (WNV) overwintering is poorly understood and likely multifactorial. Interest in alligators as a potential amplifying host arose when it was shown that they develop viremias theoretically sufficient to infect mosquitoes. We examined potential ways in which alligators may contribute to the natural ecology of WNV. We experimentally demonstrated that alligators are capable of WNV amplification with subsequent mosquito infection and transmission capability, that WNV-infected mosquitoes readily infect alligators and that water can serve as a source of infection for alligators but does not easily serve as in intermediate means for transmission between birds and alligators. These findings indicate potential mechanisms for maintenance of WNV outside of the primary bird-mosquito transmission cycle.


Subject(s)
Alligators and Crocodiles/virology , Culicidae/virology , Mosquito Vectors/virology , Virus Replication , West Nile Fever/transmission , West Nile virus/physiology , Animals , Birds/virology , Chlorocebus aethiops , Disease Reservoirs/virology , Vero Cells , Viral Zoonoses , West Nile Fever/virology
14.
PLoS Negl Trop Dis ; 16(2): e0010186, 2022 02.
Article in English | MEDLINE | ID: mdl-35176020

ABSTRACT

BACKGROUND: In Greece vector borne diseases (VBD) and foremost West Nile virus (WNV) pose an important threat to public health and the tourist industry, the primary sector of contribution to the national economy. The island of Crete, is one of Greece's major tourist destinations receiving annually over 5 million tourists making regional VBD control both a public health and economic priority. METHODOLOGY: Under the auspices of the Region of Crete, a systematic integrative surveillance network targeting mosquitoes and associated pathogens was established in Crete for the years 2018-2020. Using conventional and molecular diagnostic tools we investigated the mosquito species composition and population dynamics, pathogen infection occurrences in vector populations and in sentinel chickens, and the insecticide resistance status of the major vector species. PRINCIPAL FINDINGS: Important disease vectors were recorded across the island including Culex pipiens, Aedes albopictus, and Anopheles superpictus. Over 75% of the sampled specimens were collected in the western prefectures potentially attributed to the local precipitation patterns, with Cx. pipiens being the most dominant species. Although no pathogens (flaviviruses) were detected in the analysed mosquito specimens, chicken blood serum analyses recorded a 1.7% WNV antibody detection rate in the 2018 samples. Notably detection of the first WNV positive chicken preceded human WNV occurrence in the same region by approximately two weeks. The chitin synthase mutation I1043F (associated with high diflubenzuron resistance) was recorded at an 8% allelic frequency in Lasithi prefecture Cx. pipiens mosquitoes (sampled in 2020) for the first time in Greece. Markedly, Cx. pipiens populations in all four prefectures were found harboring the kdr mutations L1014F/C/S (associated with pyrethroid resistance) at a close to fixation rate, with mutation L1014C being the most commonly found allele (≥74% representation). Voltage gated sodium channel analyses in Ae. albopictus revealed the presence of the kdr mutations F1534C and I1532T (associated with putative mild pyrethroid resistance phenotypes) yet absence of V1016G. Allele F1534C was recorded in all prefectures (at an allelic frequency range of 25-46.6%) while I1532T was detected in populations from Chania, Rethymnon and Heraklion (at frequencies below 7.1%). Finally, no kdr mutations were detected in the Anopheles specimens included in the analyses. CONCLUSIONS/SIGNIFICANCE: The findings of our study are of major concern for VBD control in Crete, highlighting (i) the necessity for establishing seasonal integrated entomological/pathogen surveillance programs, supporting the design of targeted vector control responses and; ii) the need for establishing appropriate insecticide resistance management programs ensuring the efficacy and sustainable use of DFB and pyrethroid based products in vector control.


Subject(s)
Culicidae/drug effects , Insecticide Resistance , Insecticides/pharmacology , Mosquito Vectors/drug effects , Vector Borne Diseases/veterinary , Vector Borne Diseases/virology , West Nile Fever/veterinary , West Nile Fever/virology , Animals , Chickens , Culicidae/classification , Culicidae/physiology , Culicidae/virology , Diflubenzuron/pharmacology , Greece , Humans , Insect Proteins/genetics , Insect Proteins/metabolism , Mosquito Vectors/classification , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Mutation , Poultry Diseases/transmission , Poultry Diseases/virology , Pyrethrins/pharmacology , Vector Borne Diseases/transmission , West Nile Fever/transmission , West Nile virus/genetics , West Nile virus/isolation & purification , West Nile virus/physiology
15.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055061

ABSTRACT

Understanding the flavivirus infection process in mosquito hosts is important and fundamental in the search for novel control strategies that target the mosquitoes' ability to carry and transmit pathogenic arboviruses. A group of viruses known as insect-specific viruses (ISVs) has been shown to interfere with the infection and replication of a secondary arbovirus infection in mosquitoes and mosquito-derived cell lines. However, the molecular mechanisms behind this interference are unknown. Therefore, in the present study, we infected the Aedes albopictus cell line U4.4 with either the West Nile virus (WNV), the insect-specific Lammi virus (LamV) or an infection scheme whereby cells were pre-infected with LamV 24 h prior to WNV challenge. The qPCR analysis showed that the dual-infected U4.4 cells had a reduced number of WNV RNA copies compared to WNV-only infected cells. The transcriptome profiles of the different infection groups showed a variety of genes with altered expression. WNV-infected cells had an up-regulation of a broad range of immune-related genes, while in LamV-infected cells, many genes related to stress, such as different heat-shock proteins, were up-regulated. The transcriptome profile of the dual-infected cells was a mix of up- and down-regulated genes triggered by both viruses. Furthermore, we observed an up-regulation of signal peptidase complex (SPC) proteins in all infection groups. These SPC proteins have shown importance for flavivirus assembly and secretion and could be potential targets for gene modification in strategies for the interruption of flavivirus transmission by mosquitoes.


Subject(s)
Aedes/genetics , Aedes/virology , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Transcriptome , Animals , Coinfection , Computational Biology/methods , Flavivirus , Gene Expression Profiling/methods , Gene Ontology , Mosquito Vectors/genetics , Mosquito Vectors/virology , Real-Time Polymerase Chain Reaction , West Nile Fever/transmission , West Nile Fever/virology , West Nile virus
16.
Viruses ; 13(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34960732

ABSTRACT

Mosquitoes collected from mid-December 2020 to early March 2021 from hibernacula in northeastern Germany, a region of West Nile virus (WNV) activity since 2018, were examined for WNV-RNA. Among the 6101 mosquitoes tested in 722 pools of up to 12 specimens, one pool of 10 Culex pipiens complex mosquitoes collected in early March 2021 in the cellar of a medieval castle in Rosslau, federal state of Saxony-Anhalt, tested positive. Subsequent mosquito DNA analysis produced Culex pipiens biotype pipiens. The pool homogenate remaining after nucleic acid extraction failed to grow the virus on Vero and C6/36 cells. Sequencing of the viral NS2B-NS3 coding region, however, demonstrated high homology with virus strains previously collected in Germany, e.g., from humans, birds, and mosquitoes, which have been designated the East German WNV clade. The finding confirms the expectation that WNV can overwinter in mosquitoes in Germany, facilitating an early start to the natural transmission season in the subsequent year. On the other hand, the calculated low infection prevalence of 0.016-0.20%, depending on whether one or twelve of the mosquitoes in the positive pool was/were infected, indicates a slow epidemic progress and mirrors the still-hypoendemic situation in Germany. In any case, local overwintering of the virus in mosquitoes suggests its long-term persistence and an enduring public health issue.


Subject(s)
Culicidae/virology , Mosquito Vectors/virology , West Nile Fever/virology , West Nile virus/isolation & purification , Animals , Culicidae/classification , Culicidae/physiology , Germany , Humans , Mosquito Vectors/classification , Mosquito Vectors/physiology , Seasons , West Nile Fever/transmission , West Nile virus/classification , West Nile virus/genetics
17.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34930835

ABSTRACT

Statistical phylogeography provides useful tools to characterize and quantify the spread of organisms during the course of evolution. Analyzing georeferenced genetic data often relies on the assumption that samples are preferentially collected in densely populated areas of the habitat. Deviation from this assumption negatively impacts the inference of the spatial and demographic dynamics. This issue is pervasive in phylogeography. It affects analyses that approximate the habitat as a set of discrete demes as well as those that treat it as a continuum. The present study introduces a Bayesian modeling approach that explicitly accommodates for spatial sampling strategies. An original inference technique, based on recent advances in statistical computing, is then described that is most suited to modeling data where sequences are preferentially collected at certain locations, independently of the outcome of the evolutionary process. The analysis of georeferenced genetic sequences from the West Nile virus in North America along with simulated data shows how assumptions about spatial sampling may impact our understanding of the forces shaping biodiversity across time and space.


Subject(s)
Models, Statistical , Phylogeography/methods , Population Dynamics , Algorithms , Bayes Theorem , Ecosystem , Evolution, Molecular , Humans , North America , Spatial Analysis , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus/genetics
18.
Sci Rep ; 11(1): 20932, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686730

ABSTRACT

Determination of the seroprevalence and risk factors that are associated with West Nile virus (WNV) in horses is essential for adoption of effective prevention strategies. Our objective in this study, therefore, was to determine the seroprevalence and to identify the risk factors associated with WNV infection in the most densely horse-populated governorates in Egypt. A cross-sectional study was conducted in 2018 on 930 horses, which were distributed over five governorates in the Nile delta of Egypt. The horses, which were randomly selected, were serologically tested through use of an ID screen West Nile competition enzyme-linked immunosorbent assay (ELISA) to detect anti-WNV immunoglobulin G (IgG) and plaque reduction neutralization tests (PRNT; gold standard) to confirm the seropositive status of animals and to avoid cross reaction with other flavi-viruses. Four variables (geographical location, breed, sex and age) were considered in the risk analysis. Univariable and stepwise forward multivariable logistic regression methods were used for risk-factor analysis. The odds ratio (OR) was used as an approximate measure of relative risk. A total of 156 (16.8%; 95% confidence interval (CI) 14.4-19.2; P < 0.001) serum samples were found to be serologically positive for WNV. The highest seroprevalence rate was detected in horses of age ≥ 15 years (68.1%; 95% CI 49.8-72.4), stallions (26.4%; 95% CI 22.7-30.4), and those of mixed breed (21.5%; 95% CI 17.7-27.5). Horses older than 15 years were found to be at increased risk of WNV infection with OR = 4.3 (95% CI 3.0-6.2, P < 0.001) compared with horses aged under 2.5 years. Also, when all the risk factors were considered, stallions were more likely than mares to be WNV seropositive (OR = 2.4, 95% CI 1.6-3.7, P < 0.001), and of the breeds, mixed-breed (OR = 1.9, 95% CI 1.2-2.8, P = 0.005) and Arabian horses (OR = 1.9, 95% CI 1.2-2.8, P = 0.005) were more likely to be seropositive. Geographical location seemed to have no impact on the seroprevalence of exposure to WNV among these horses. Due to these findings, we strongly recommend intensive surveillance and implementation of effective control and prevention strategies against WNV, especially in stallion, mixed-breed horses with ages ≥ 15 years.


Subject(s)
Horse Diseases/epidemiology , Horse Diseases/immunology , West Nile Fever/epidemiology , West Nile Fever/immunology , West Nile virus/immunology , Animals , Cross Reactions/immunology , Cross-Sectional Studies , Egypt/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Horse Diseases/virology , Horses , Immunoglobulin G/immunology , Neutralization Tests/methods , Risk Factors , Seroepidemiologic Studies , West Nile Fever/virology
19.
Sci Rep ; 11(1): 20131, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635758

ABSTRACT

West Nile virus (WNV), re-emerging neurotropic flavivirus, can cross the blood-brain barrier (BBB) and cause fatal encephalitis and meningitis. Infection of the human brain microvascular endothelial cells (hBMECs), building blocks of the BBB, represents the pivotal step in neuroinvasion. Domain III (DIII) of the envelope (E) glycoprotein is a key receptor-binding domain, thus, it is an attractive target for anti-flavivirus strategies. Here, two combinatorial phage display peptide libraries, Ph.D.-C7C and Ph.D.-12, were panned against receptor-binding site (RBS) on DIII to isolate peptides that could block DIII. From series of pannings, nine peptides (seven 7-mer cyclic and two 12-mer linear) were selected and overexpressed in E. coli SHuffle T5. Presence of disulfide bond in 7-mer peptides was confirmed with thiol-reactive maleimide labeling. Except for linear peptide 19 (HYSWSWIAYSPG), all peptides proved to be DIII binders. Among all peptides, 4 cyclic peptides (CTKTDVHFC, CIHSSTRAC, CTYENHRTC, and CLAQSHPLC) showed significant blocking of the interaction between DIII and hBMECs, and ability to neutralize infection in cultured cells. None of these peptides showed toxic or hemolytic activity. Peptides identified in this study may serve as potential candidates for the development of novel antiviral therapeutics against WNV.


Subject(s)
Brain/drug effects , Endothelium, Vascular/drug effects , Peptide Fragments/pharmacology , Viral Envelope Proteins/antagonists & inhibitors , West Nile Fever/prevention & control , West Nile virus/physiology , Binding Sites , Brain/metabolism , Brain/virology , Cells, Cultured , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , Humans , Peptide Fragments/chemistry , Peptide Fragments/isolation & purification , Peptide Library , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , West Nile Fever/metabolism , West Nile Fever/virology
20.
Viruses ; 13(10)2021 09 22.
Article in English | MEDLINE | ID: mdl-34696323

ABSTRACT

West Nile virus (WNV, Flaviviridae, Flavivirus) is a mosquito-borne flavivirus introduced to North America in 1999. Since 1999, the Earth's average temperature has increased by 0.6 °C. Mosquitoes are ectothermic organisms, reliant on environmental heat sources. Temperature impacts vector-virus interactions which directly influence arbovirus transmission. RNA viral replication is highly error-prone and increasing temperature could further increase replication rates, mutation frequencies, and evolutionary rates. The impact of temperature on arbovirus evolutionary trajectories and fitness landscapes has yet to be sufficiently studied. To investigate how temperature impacts the rate and extent of WNV evolution in mosquito cells, WNV was experimentally passaged 12 times in Culex tarsalis cells, at 25 °C and 30 °C. Full-genome deep sequencing was used to compare genetic signatures during passage, and replicative fitness was evaluated before and after passage at each temperature. Our results suggest adaptive potential at both temperatures, with unique temperature-dependent and lineage-specific genetic signatures. Further, higher temperature passage was associated with significantly increased replicative fitness at both temperatures and increases in nonsynonymous mutations. Together, these data indicate that if similar selective pressures exist in natural systems, increases in temperature could accelerate emergence of high-fitness strains with greater phenotypic plasticity.


Subject(s)
Adaptation, Physiological/genetics , Culicidae/virology , Directed Molecular Evolution/methods , Genetic Variation , Host Microbial Interactions , Hot Temperature , West Nile virus/genetics , Animals , Culicidae/cytology , Mosquito Vectors/virology , RNA, Viral/genetics , Virus Replication/genetics , Virus Replication/physiology , West Nile Fever/transmission , West Nile Fever/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...