Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793662

ABSTRACT

Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.


Subject(s)
Horse Diseases , Vaccination , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile Fever/immunology , West Nile Fever/prevention & control , West Nile Fever/virology , West Nile Fever/epidemiology , West Nile Fever/transmission , Horses , Animals , West Nile virus/immunology , Humans , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/prevention & control , West Nile Virus Vaccines/immunology , Vaccination/veterinary , One Health , United States/epidemiology
2.
Front Immunol ; 15: 1395870, 2024.
Article in English | MEDLINE | ID: mdl-38799422

ABSTRACT

Emerging infectious diseases represent a significant threat to global health, with West Nile virus (WNV) being a prominent example due to its potential to cause severe neurological disorders alongside mild feverish conditions. Particularly prevalent in the continental United States, WNV has emerged as a global concern, with outbreaks indicating the urgent need for effective prophylactic measures. The current problem is that the absence of a commercial vaccine against WNV highlights a critical gap in preventive strategies against WNV. This study aims to address this gap by proposing a novel, multivalent vaccine designed using immunoinformatics approaches to elicit comprehensive humoral and cellular immune responses against WNV. The objective of the study is to provide a theoretical framework for experimental scientists to formulate of vaccine against WNV and tackle the current problem by generating an immune response inside the host. The research employs reverse vaccinology and subtractive proteomics methodologies to identify NP_041724.2 polyprotein and YP_009164950.1 truncated flavivirus polyprotein NS1 as the prime antigens. The selection process for epitopes focused on B and T-cell reactivity, antigenicity, water solubility, and non-allergenic properties, prioritizing candidates with the potential for broad immunogenicity and safety. The designed vaccine construct integrates these epitopes, connected via GPGPG linkers, and supplemented with an adjuvant with the help of another linker EAAAK, to enhance immunogenicity. Preliminary computational analyses suggest that the proposed vaccine could achieve near-universal coverage, effectively targeting approximately 99.74% of the global population, with perfect coverage in specific regions such as Sweden and Finland. Molecular docking and immune simulation studies further validate the potential efficacy of the vaccine, indicating strong binding affinity with toll-like receptor 3 (TLR-3) and promising immune response profiles, including significant antibody-mediated and cellular responses. These findings present the vaccine construct as a viable candidate for further development and testing. While the theoretical and computational results are promising, advancing from in-silico predictions to a tangible vaccine requires comprehensive laboratory validation. This next step is essential to confirm the vaccine's efficacy and safety in eliciting an immune response against WNV. Through this study, we propose a novel approach to vaccine development against WNV and contribute to the broader field of immunoinformatics, showcasing the potential to accelerate the design of effective vaccines against emerging viral threats. The journey from hypothesis to practical solution embodies the interdisciplinary collaboration essential for modern infectious disease management and prevention strategies.


Subject(s)
Computational Biology , Immunodominant Epitopes , Proteome , Vaccines, Subunit , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile virus/immunology , Immunodominant Epitopes/immunology , Humans , Proteome/immunology , West Nile Fever/prevention & control , West Nile Fever/immunology , West Nile Fever/virology , Computational Biology/methods , West Nile Virus Vaccines/immunology , Vaccines, Subunit/immunology , Vaccine Development , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Proteomics/methods , Immunoinformatics , Protein Subunit Vaccines
3.
Viruses ; 13(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34960621

ABSTRACT

West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses that can cause neuroinvasive disease in humans. WNV and USUV circulate in both Africa and Europe and are closely related. Due to antigenic similarity, WNV-specific antibodies and USUV-specific antibodies have the potential to bind heterologous viruses; however, it is unclear whether this interaction may offer protection against infection. To investigate how prior WNV exposure would influence USUV infection, we used an attenuated WNV vaccine that contains the surface proteins of WNV in the backbone of a dengue virus 2 vaccine strain and protects against WNV disease. We hypothesized that vaccination with this attenuated WNV vaccine would protect against USUV infection. Neutralizing responses against WNV and USUV were measured in vitro using sera following vaccination. Sera from vaccinated CD-1 and Ifnar1-/- mice cross-neutralized with WNV and USUV. All mice were then subsequently challenged with an African or European USUV strain. In CD-1 mice, there was no difference in USUV titers between vaccinated and mock-vaccinated mice. However, in the Ifnar1-/- model, vaccinated mice had significantly higher survival rates and significantly lower USUV viremia compared to mock-vaccinated mice. Our results indicate that exposure to an attenuated form of WNV protects against severe USUV disease in mice and elicits a neutralizing response to both WNV and USUV. Future studies will investigate the immune mechanisms responsible for the protection against USUV infection induced by WNV vaccination, providing critical insight that will be essential for USUV and WNV vaccine development.


Subject(s)
Flavivirus Infections/prevention & control , Flavivirus/immunology , West Nile Virus Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Male , Mice , Mice, Knockout , Vaccination
4.
J Equine Vet Sci ; 106: 103755, 2021 11.
Article in English | MEDLINE | ID: mdl-34670707

ABSTRACT

The purpose of this study was to establish if peak serum amyloid A (SAA) concentrations can be used to determine an appropriate immune response to a vaccine containing West Nile Virus (WNV) antigen. A pilot study with 20 clinically healthy horses was performed to identify peak SAA concentration postvaccination with a commercial multivalent WNV vaccine. Blood was collected for SAA at 0, 24, 48, 72, 96, 168 hours postvaccination. Serum for WNV serum neutralization antibody testing was obtained immediately prior to and 30 days postvaccination. An additional 40 horses underwent the study protocol, but with SAA measurements acquired at 0-hours and 72-hours postvaccination. Ninety percent of the population had an increase in SAA in response to WNV vaccination, though no significant correlation was identified between SAA peak and antibody titer fold changes. WNV antibody titer fold changes between pre- and post-vaccination revealed 57% of horses had increased fold changes, 30% had no fold changes and 13% had negative fold changes. There was a negative correlation between age and SAA response (P = .0008). The main conclusions were SAA response postvaccination against WNV does not appear to mirror antibody response. Age appears to significantly affect SAA response. Further, vaccination with WNV antigen may not consistently induce a positive increase in WNV antibodies.


Subject(s)
Horse Diseases , West Nile Fever , West Nile Virus Vaccines , West Nile virus , Animals , Antibody Formation , Horse Diseases/prevention & control , Horses , Pilot Projects , Serum Amyloid A Protein , West Nile Fever/prevention & control , West Nile Fever/veterinary
5.
Front Immunol ; 12: 730346, 2021.
Article in English | MEDLINE | ID: mdl-34566991

ABSTRACT

Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Cell Degranulation/drug effects , Immunity, Mucosal/drug effects , Mast Cells/drug effects , West Nile Fever/prevention & control , West Nile Virus Vaccines/administration & dosage , West Nile virus/pathogenicity , Administration, Intranasal , Animals , Cell Line , Disease Models, Animal , Drug Discovery , Female , High-Throughput Screening Assays , Host-Pathogen Interactions , Immunity, Mucosal/genetics , Immunization , Immunogenicity, Vaccine , Mast Cells/immunology , Mast Cells/virology , Mice, Inbred BALB C , Proof of Concept Study , West Nile Fever/genetics , West Nile Fever/immunology , West Nile Fever/virology , West Nile virus/immunology
6.
EMBO Mol Med ; 13(9): e14108, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34351689

ABSTRACT

The genus Flavivirus comprises numerous emerging and re-emerging arboviruses causing human illness. Vaccines are the best approach to prevent flavivirus diseases. But pathogen diversities are always one of the major hindrances for timely development of new vaccines when confronting unpredicted flavivirus outbreaks. We used West Nile virus (WNV) as a model to develop a new live-attenuated vaccine (LAV), WNV-poly(A), by replacing 5' portion (corresponding to SL and DB domains in WNV) of 3'-UTR with internal poly(A) tract. WNV-poly(A) not only propagated efficiently in Vero cells, but also was highly attenuated in mouse model. A single-dose vaccination elicited robust and long-lasting immune responses, conferring full protection against WNV challenge. Such "poly(A)" vaccine strategy may be promising for wide application in the development of flavivirus LAVs because of its general target regions in flaviviruses.


Subject(s)
West Nile Fever , West Nile Virus Vaccines , 3' Untranslated Regions , Animals , Antibodies, Viral , Chlorocebus aethiops , Mice , Poly A , Vero Cells , West Nile Fever/prevention & control
7.
J Zoo Wildl Med ; 52(2): 732-736, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34130419

ABSTRACT

Greater sage-grouse (Centrocercus urophasianus) are an endangered species in Canada and have been extirpated from five states in the United States. Infectious diseases can pose a challenge to conservation efforts, and the greater sage-grouse is susceptible to West Nile virus (WNV). This study measured the humoral response to a commercially available WNV vaccine in a zoo-based conservation breeding population of greater sage-grouse. Since the initiation of the conservation program in 2014, all sage-grouse at the Calgary Zoo's Wildlife Conservation Centre have been vaccinated against WNV. Juveniles received a series of three vaccines every 2-3 wk starting around 2 wk of age; adults had received the same vaccination series at hatch and had since been boostered annually. Antibody titers were measured on 60 serum samples from 36 juveniles and 18 adults collected in 2018 using either serum neutralization or plaque-reduction neutralization methods. No detectable antibody response was noted in juveniles after their second (n = 17) or third booster vaccinations (n = 23). Only 35% of 20 adult samples collected had positive titers even after multiple years of vaccination. Only two cases of adverse vaccine reaction have been noted in this species with over 800 doses being administered between 2014 and 2020. Despite a lack of antibody response in juveniles and most adults, there have been no WNV-associated deaths in this population even with confirmed cases of WNV in free-ranging greater sage-grouse and other species in the area during this time frame, suggesting that cell-mediated immunity may be of greater importance for protection against WNV infections in this species. The initial vaccination series was changed in 2019 to a series of only two doses of vaccine, and no clinical cases or mortality from WNV occurred in 2019 or 2020 with the new protocol.


Subject(s)
Bird Diseases/prevention & control , Conservation of Natural Resources , Endangered Species , Galliformes , West Nile Fever/veterinary , West Nile Virus Vaccines/immunology , Animals , Animals, Zoo , Antibodies, Viral/blood , Bird Diseases/virology , West Nile Fever/prevention & control , West Nile Virus Vaccines/adverse effects
8.
Clin Infect Dis ; 73(9): 1565-1570, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34117746

ABSTRACT

BACKGROUND: West Nile virus (WNV) is the leading cause of arboviral disease in the United States and is associated with significant morbidity and mortality. A previous analysis found that a vaccination program targeting persons aged ≥60 years was more cost-effective than universal vaccination, but costs remained high. METHODS: We used a mathematical Markov model to evaluate cost-effectiveness of an age- and incidence-based WNV vaccination program. We grouped states and large counties (≥100 000 persons aged ≥60 years) by median annual WNV incidence rates from 2004 to 2017 for persons aged ≥60 years. We defined WNV incidence thresholds, in increments of 0.5 cases per 100 000 persons ≥60 years. We calculated potential cost per WNV vaccine-prevented case and per quality adjusted life-years (QALYs) saved. RESULTS: Vaccinating persons aged ≥60 years in states with an annual incidence of WNV neuroinvasive disease of ≥0.5 per 100 000 resulted in approximately half the cost per health outcome averted compared to vaccinating persons aged ≥60 years in the contiguous United States. This approach could potentially prevent 37% of all neuroinvasive disease cases and 63% of WNV-related deaths nationally. Employing such a threshold at a county level further improved cost-effectiveness ratios while preventing 19% and 30% of WNV-related neuroinvasive disease cases and deaths, respectively. CONCLUSIONS: An age- and incidence-based WNV vaccination program could be a more cost-effective strategy than an age-based program while still having a substantial impact on lowering WNV-related morbidity and mortality.


Subject(s)
West Nile Fever , West Nile Virus Vaccines , West Nile virus , Cost-Benefit Analysis , Humans , Incidence , United States/epidemiology , West Nile Fever/epidemiology , West Nile Fever/prevention & control
9.
J Immunol Res ; 2020: 7235742, 2020.
Article in English | MEDLINE | ID: mdl-32258174

ABSTRACT

West Nile Virus (WNV) causes a debilitating and life-threatening neurological disease in humans. Since its emergence in Africa 50 years ago, new strains of WNV and an expanding geographical distribution have increased public health concerns. There are no licensed therapeutics against WNV, limiting effective infection control. Vaccines represent the most efficacious and efficient medical intervention known. Epitope-based vaccines against WNV remain significantly underexploited. Here, we use a selection protocol to identify a set of conserved prevalidated immunogenic T cell epitopes comprising a putative WNV vaccine. Experimentally validated immunogenic WNV epitopes and WNV sequences were retrieved from the IEDB and West Nile Virus Variation Database. Clustering and multiple sequence alignment identified a smaller subset of representative sequences. Protein variability analysis identified evolutionarily conserved sequences, which were used to select a diverse set of immunogenic candidate T cell epitopes. Cross-reactivity and human leukocyte antigen-binding affinities were assessed to eliminate unsuitable epitope candidates. Population protection coverage (PPC) quantified individual epitopes and epitope combinations against the world population. 3 CD8+ T cell epitopes (ITYTDVLRY, TLARGFPFV, and SYHDRRWCF) and 1 CD4+ epitope (VTVNPFVSVATANAKVLI) were selected as a putative WNV vaccine, with an estimated PPC of 97.14%.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , West Nile Fever/immunology , West Nile Virus Vaccines/immunology , West Nile virus/physiology , Cells, Cultured , Conserved Sequence , Cross Reactions , Demography , Enzyme-Linked Immunospot Assay , Epitope Mapping , Epitopes/chemistry , Epitopes/metabolism , Genome , HLA Antigens/metabolism , Humans , Protein Binding , United Kingdom , Viral Proteins/chemistry , Viral Proteins/metabolism
10.
Viruses ; 11(9)2019 09 05.
Article in English | MEDLINE | ID: mdl-31491885

ABSTRACT

Although West Nile virus (WNV) has been a prominent mosquito-transmitted infection in North America for twenty years, no human vaccine has been licensed. With a cumulative number of 24,714 neurological disease cases and 2314 deaths in the U.S. since 1999, plus a large outbreak in Europe in 2018 involving over 2000 human cases in 15 countries, a vaccine is essential to prevent continued morbidity, mortality, and economic burden. Currently, four veterinary vaccines are licensed, and six vaccines have progressed into clinical trials in humans. All four veterinary vaccines require multiple primary doses and annual boosters, but for a human vaccine to be protective and cost effective in the most vulnerable older age population, it is ideal that the vaccine be strongly immunogenic with only a single dose and without subsequent annual boosters. Of six human vaccine candidates, the two live, attenuated vaccines were the only ones that elicited strong immunity after a single dose. As none of these candidates have yet progressed beyond phase II clinical trials, development of new candidate vaccines and improvement of vaccination strategies remains an important area of research.


Subject(s)
West Nile Fever/prevention & control , West Nile Virus Vaccines/immunology , West Nile virus/immunology , Animals , Clinical Trials, Phase II as Topic/history , Drug Development/history , History, 21st Century , Humans , West Nile Fever/immunology , West Nile Fever/virology , West Nile Virus Vaccines/administration & dosage , West Nile Virus Vaccines/genetics , West Nile Virus Vaccines/history , West Nile virus/genetics
11.
Hum Vaccin Immunother ; 15(10): 2337-2342, 2019.
Article in English | MEDLINE | ID: mdl-31116691

ABSTRACT

West Nile virus (WNV) is a widely spread human pathogenic arthropod-borne virus. It can lead to severe, sometimes fatal, neurological disease. Over the last two decades, several vaccine candidates for the protection of humans from WNV have been developed. Some technologies were transferred into clinical testing, but these approaches have not yet led to a licensed product. This review summarizes the current status of a human WNV vaccine and discusses reasons for the lack of clinically advanced product candidates. It also discusses the problem of immunological cross-reactivity between flaviviruses and how it can be addressed during vaccine development.


Subject(s)
West Nile Fever/prevention & control , West Nile Virus Vaccines/immunology , West Nile virus/immunology , Animals , Antibodies, Viral/immunology , Clinical Trials as Topic , Cross Reactions/immunology , Humans , Viral Envelope Proteins/immunology
12.
Vet Ital ; 55(1): 73-79, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-30951184

ABSTRACT

To evaluate the immunological response following vaccination, 40 WNV serologically negative horses were selected and divided in two groups of 20 animals. One group was vaccinated (booster after 28 days) with a whole inactivated viral strain and the second group with a live recombinant canarypox virus expressing the genes coding for the WNV preM/E viral proteins. IgM, IgG and neutralizing antibodies were monitored by class specific ELISAs and serum neutralization assay for 360 days. In both groups, IgM antibodies were first detected 7 days post vaccination (dpv). However, in the group vaccinated with inactivated vaccine, IgM antibodies were detected until day 42 pv, whereas in the group vaccinated with the recombinant vaccine, they were detected up to day 52 pv. A similar (P > 0.05) proportion of horses showed IgM antibodies after vaccination with either recombinant [30%; 95% confidence interval (CI): 14.59%-52.18%] or inactivated (32%; 95% CI: 15.39-54.28%) vaccine. Both vaccines induced in vaccinated horses a detectable IgG antibody response starting from day 7 pv and lasting till the end of the trial. Analogously, both products elicited WNV specific neutralizing antibodies. The response induced by the live canarypox virus-vectored vaccine was higher (mean titres 1:298 vs 1:18.9) and lasted longer than did that induced by the killed-virus vaccines. In fact, one year after the vaccination, neutralizing antibodies were still detectable in the horses which received the canarypox virus-based vaccine but not in the group vaccinated with the killed product. The use of vaccines is a valuable tool to prevent WNV disease in horses and the availability of different products facilitates the control of the disease in endemic areas.


Subject(s)
Horse Diseases/immunology , West Nile Fever/veterinary , West Nile Virus Vaccines/immunology , West Nile virus/immunology , Animals , Horses , Vaccines, Inactivated/immunology , Vaccines, Synthetic/immunology , West Nile Fever/immunology
13.
Vaccine ; 37(30): 4222-4230, 2019 07 09.
Article in English | MEDLINE | ID: mdl-30661836

ABSTRACT

BACKGROUND: West Nile virus (WNV) is the most common mosquito-borne infection in the United States. HydroVax-001 WNV is a hydrogen peroxide inactivated, whole virion (WNV-Kunjin strain) vaccine adjuvanted with aluminum hydroxide. METHODS: We performed a phase 1, randomized, placebo-controlled, double-blind (within dosing group), dose escalation clinical trial of the HydroVax-001 WNV vaccine administered via intramuscular injection. This trial evaluated 1 mcg and 4 mcg dosages of HydroVax-001 WNV vaccine given intramuscularly on day 1 and day 29 in healthy adults. The two dosing groups of HydroVax-001 were enrolled sequentially and each group consisted of 20 individuals who received HydroVax-001 and 5 who received placebo. Safety was assessed at all study days (days 1, 2, 4 and 15 post dose 1, and days 1, 2, 4, 15, 29, 57, 180 and 365 post dose 2), and reactogenicity was assessed for 14 days after administration of each dose. Immunogenicity was measured by WNV-specific plaque reduction neutralization tests (PRNT50) in the presence or absence of added complement or by WNV-specific enzyme-linked immunosorbent assays (ELISA). RESULTS: HydroVax-001 was safe and well-tolerated as there were no serious adverse events or concerning safety signals. At the 1 mcg dose, HydroVax-001 was not immunogenic by PRNT50 but elicited up to 41% seroconversion by WNV-specific ELISA in the per-protocol population (PP) after the second dose. At the 4 mcg dose, HydroVax-001 elicited neutralizing antibody responses in 31% of the PP following the second dose. In the presence of added complement, PRNT50 seroconversion rates increased to 50%, and 75% seroconversion was observed by WNV-specific ELISA. CONCLUSIONS: The HydroVax-001 WNV vaccine was found to be modestly immunogenic and well-tolerated at all dose levels.


Subject(s)
Antibodies, Neutralizing/immunology , West Nile Virus Vaccines/therapeutic use , West Nile virus/pathogenicity , Adolescent , Adult , Antibodies, Viral/immunology , Double-Blind Method , Female , Humans , Male , Middle Aged , Neutralization Tests , Vaccines, Inactivated/therapeutic use , West Nile virus/immunology , Young Adult
14.
Vaccine ; 37(30): 4214-4221, 2019 07 09.
Article in English | MEDLINE | ID: mdl-30606462

ABSTRACT

West Nile virus (WNV) is the most frequent mosquito-borne disease reported in the continental United States and although an effective veterinary vaccine exists for horses, there is still no commercial vaccine approved for human use. We have previously tested a 3% hydrogen peroxide (H2O2)-based WNV inactivation approach termed, HydroVax, in Phase I clinical trials and the vaccine was found to be safe and modestly immunogenic. Here, we describe an advanced, next-generation oxidation approach (HydroVax-II) for the development of inactivated vaccines that utilizes reduced concentrations of H2O2 in combination with copper (cupric ions, Cu2+) complexed with the antiviral compound, methisazone (MZ). Further enhancement of this oxidative approach included the addition of a low percentage of formaldehyde, a cross-linking reagent with a different mechanism of action that, together with H2O2/Cu/MZ, provides a robust two-pronged approach to virus inactivation. Together, this new approach results in rapid virus inactivation while greatly improving the maintenance of WNV-specific neutralizing epitopes mapped across the three structural domains of the WNV envelope protein. In combination with more refined manufacturing techniques, this inactivation technology resulted in vaccine-mediated WNV-specific neutralizing antibody responses that were 130-fold higher than that observed using the first generation, H2O2-only vaccine approach and provided 100% protection against lethal WNV infection. This new approach to vaccine development represents an important area for future investigation with the potential not only for improving vaccines against WNV, but other clinically relevant viruses as well.


Subject(s)
Vaccinology/methods , Virus Inactivation/drug effects , West Nile Fever/prevention & control , West Nile Virus Vaccines/immunology , West Nile virus/immunology , Animals , Cell Line , Chlorocebus aethiops , Female , Horse Diseases/prevention & control , Horse Diseases/virology , Horses/immunology , Horses/virology , Humans , Mice , Mice, Inbred BALB C , Vaccines, Inactivated/immunology , Vero Cells
15.
Nat Microbiol ; 4(1): 71-77, 2019 01.
Article in English | MEDLINE | ID: mdl-30455471

ABSTRACT

West Nile virus (WNV), a member of the Flavivirus genus, is a leading cause of viral encephalitis in the United States1. The development of neutralizing antibodies against the flavivirus envelope (E) protein is critical for immunity and vaccine protection2. Previously identified candidate therapeutic mouse and human neutralizing monoclonal antibodies (mAbs) target epitopes within the E domain III lateral ridge and the domain I-II hinge region, respectively3. To explore the neutralizing antibody repertoire elicited by WNV infection for potential therapeutic application, we isolated ten mAbs from WNV-infected individuals. mAb WNV-86 neutralized WNV with a 50% inhibitory concentration of 2 ng ml-1, one of the most potently neutralizing flavivirus-specific antibodies ever isolated. WNV-86 targets an epitope in E domain II, and preferentially recognizes mature virions lacking an uncleaved form of the chaperone protein prM, unlike most flavivirus-specific antibodies4. In vitro selection experiments revealed a neutralization escape mechanism involving a glycan addition to E domain II. Finally, a single dose of WNV-86 administered two days post-infection protected mice from lethal WNV challenge. This study identifies a highly potent human neutralizing mAb with therapeutic potential that targets an epitope preferentially displayed on mature virions.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , West Nile Fever/prevention & control , West Nile Virus Vaccines/therapeutic use , West Nile virus/immunology , Aedes , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Domains/immunology , Vero Cells , West Nile Fever/therapy
16.
Biomed Res Int ; 2018: 8309816, 2018.
Article in English | MEDLINE | ID: mdl-30356362

ABSTRACT

West Nile virus (WNV) is a zoonotic arboviral pathogen affecting humans, birds, and horses. Vaccines are available for veterinary use, which efficiently prevent the infection in horses. Most common diagnostic tools rely on the identification of the agent (RT-PCR, virus isolation), or on the detection of antibodies (IgM and IgG) recognizing structural proteins of the virus or neutralizing virus infection in cell cultures (virus-neutralization tests). The recent emergence of WNV in different parts of the world has resulted in an increase in the vaccination of horses in many countries. Methods for differentiation between infected and vaccinated animals ("DIVA" assays) would be useful for surveillance and control purposes but are still not available. A usual approach in this regard is the use of antibodies to nonstructural proteins as markers of nonvaccinated, infected animals, and the nonstructural NS1 protein of WNV has been proposed as a candidate for such a marker. The aim of this study was to test the hypothesis that NS1 can be a useful antigen in DIVA assays for differentiating WNV vaccinated and infected horses in field conditions. For that, we examined serum samples from either vaccinated and infected horses both from experimental infections/vaccinations (under controlled conditions) and from the field, exposed to natural infection or vaccinated in response to a risk of infection. The overall conclusion of the study is that NS1 antigen can effectively differentiate WNV infected from vaccinated horses in experimental (controlled) conditions, but this differentiation might be difficult depending on the conditions prevailing in the field.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Horse Diseases , West Nile Fever , West Nile Virus Vaccines/pharmacology , West Nile virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Horse Diseases/blood , Horse Diseases/immunology , Horse Diseases/prevention & control , Horses , Male , West Nile Fever/blood , West Nile Fever/immunology , West Nile Fever/prevention & control , West Nile Fever/veterinary , West Nile Virus Vaccines/immunology
17.
Math Biosci ; 305: 60-70, 2018 11.
Article in English | MEDLINE | ID: mdl-30171883

ABSTRACT

A discrete-time model describing the west nile virus transmission among the mosquito, wild bird, and domestic bird populations is constructed. The expressions for the basic reproduction number R0 and the disease-free fixed point of the model are computed. The local stability of the disease-free fixed point is established based on R0. Optimal control theory is used to devise the most effective administration profile of mosquito larvicide, mosquito adulticide and domestic bird-protection in controlling the virus transmission among the mosquito - wild bird - domestic bird community.


Subject(s)
Models, Biological , West Nile Fever/transmission , Animals , Birds/immunology , Birds/virology , Computer Simulation , Culex/virology , Culicidae/virology , Disease Vectors , Female , Humans , Insect Bites and Stings/virology , Insecticides/administration & dosage , Mathematical Concepts , Mosquito Vectors/virology , Time Factors , West Nile Fever/prevention & control , West Nile Fever/virology , West Nile Virus Vaccines/administration & dosage , West Nile virus/immunology , West Nile virus/pathogenicity
18.
Vaccine ; 36(14): 1846-1852, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29490880

ABSTRACT

West Nile virus (WNV) has caused multiple global outbreaks with increased frequency of neuroinvasive disease in recent years. Despite many years of research, there are no licensed therapeutics or vaccines available for human use. One of the major impediments of vaccine development against WNV is the potential enhancement of infection by related flaviviruses in vaccinated subjects through the mechanism of antibody-dependent enhancement of infection (ADE). For instance, the recent finding of enhancement of Zika virus (ZIKV) infection by pre-exposure to WNV further complicates the development of WNV vaccines. Epidemics of WNV and the potential risk of ADE by current vaccine candidates demand the development of effective and safe vaccines. We have previously reported that the domain III (DIII) of the WNV envelope protein can be readily expressed in Nicotiana benthamiana leaves, purified to homogeneity, and promote antigen-specific antibody response in mice. Herein, we further investigated the in vivo potency of a plant-made DIII (plant-DIII) in providing protective immunity against WNV infection. Furthermore, we examined if vaccination with plant-DIII would enhance the risk of a subsequent infection by ZIKV and Dengue virus (DENV). Plant-DIII vaccination evoked antigen-specific cellular immune responses as well as humoral responses. DIII-specific antibodies were neutralizing and the neutralization titers met the threshold correlated with protective immunity by vaccines against multiple flaviviruses. Furthermore, passive administration of anti-plant DIII mouse serum provided full protection against a lethal challenge of WNV infection in mice. Notably, plant DIII-induced antibodies did not enhance ZIKV and DENV infection in Fc gamma receptor-expressing cells, addressing the concern of WNV vaccines in inducing cross-reactive antibodies and sensitizing subjects to subsequent infection by heterologous flavivirus. This study provides the first report of a WNV subunit vaccine that induces protective immunity, while circumventing induction of antibodies with enhancing activity for ZIKV and DENV infection.


Subject(s)
Cross Reactions/immunology , Dengue Virus/immunology , West Nile Fever/immunology , West Nile Fever/prevention & control , West Nile Virus Vaccines/immunology , West Nile virus/immunology , Zika Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue/immunology , Humans , Immunoglobulin G/immunology , Mice , Neutralization Tests , Viral Envelope Proteins/immunology , Zika Virus Infection/immunology
19.
Indian J Pediatr ; 85(2): 117-123, 2018 02.
Article in English | MEDLINE | ID: mdl-28560654

ABSTRACT

Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.


Subject(s)
Culicidae , Insect Vectors , Vaccines/therapeutic use , Animals , Culicidae/microbiology , Culicidae/parasitology , Culicidae/virology , Dengue Vaccines/therapeutic use , Humans , Insect Vectors/microbiology , Insect Vectors/parasitology , Insect Vectors/virology , Japanese Encephalitis Vaccines/therapeutic use , Malaria Vaccines/therapeutic use , West Nile Virus Vaccines/therapeutic use , Yellow Fever Vaccine/therapeutic use , Zika Virus Infection/prevention & control
20.
Vaccine ; 35(23): 3143-3151, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28456529

ABSTRACT

BACKGROUND: West Nile virus (WNV) is the leading cause of domestically-acquired arboviral disease in the United States. Several WNV vaccines are in various stages of development. We estimate the cost-effectiveness of WNV vaccination programs targeting groups at increased risk for severe WNV disease. METHODS: We used a mathematical model to estimate costs and health outcomes of vaccination with WNV vaccine compared to no vaccination among seven cohorts, spaced at 10year intervals from ages 10 to 70years, each followed until 90-years-old. U.S. surveillance data were used to estimate WNV neuroinvasive disease incidence. Data for WNV seroprevalence, acute and long-term care costs of WNV disease patients, quality-adjusted life-years (QALYs), and vaccine characteristics were obtained from published reports. We assumed vaccine efficacy to either last lifelong or for 10years with booster doses given every 10years. RESULTS: There was a statistically significant difference in cost-effectiveness ratios across cohorts in both models and all outcomes assessed (Kruskal-Wallis test p<0.0001). The 60-year-cohort had a mean cost per neuroinvasive disease case prevented of $664,000 and disability averted of $1,421,000 in lifelong model and $882,000 and $1,887,000, respectively in 10-year immunity model; these costs were statistically significantly lower than costs for other cohorts (p<0.0001). Vaccinating 70-year-olds had the lowest cost per death averted in both models at around $4.7 million (95%CI $2-$8 million). Cost per disease case averted was lowest among 40- and 50-year-old cohorts and cost per QALY saved lowest among 60-year cohorts in lifelong immunity model. The models were most sensitive to disease incidence, vaccine cost, and proportion of persons developing disease among infected. CONCLUSIONS: Age-based WNV vaccination program targeting those at higher risk for severe disease is more cost-effective than universal vaccination. Annual variation in WNV disease incidence, QALY weights, and vaccine costs impact the cost effectiveness ratios.


Subject(s)
Immunization Programs/economics , West Nile Virus Vaccines/economics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Cost-Benefit Analysis , Female , Humans , Immunization, Secondary/economics , Male , Markov Chains , Middle Aged , Monte Carlo Method , Quality-Adjusted Life Years , Risk Factors , Seroepidemiologic Studies , United States/epidemiology , Vaccination/economics , West Nile Fever/epidemiology , West Nile Fever/prevention & control , West Nile Virus Vaccines/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...