Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.343
Filter
1.
Sci Signal ; 17(837): eadi9844, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771918

ABSTRACT

Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.


Subject(s)
2',5'-Oligoadenylate Synthetase , Endoribonucleases , RNA, Double-Stranded , Zika Virus , Endoribonucleases/metabolism , Endoribonucleases/genetics , Endoribonucleases/chemistry , Humans , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Zika Virus/metabolism , Animals , Dengue Virus/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , RNA Stability , West Nile virus/metabolism , West Nile virus/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Enzyme Activation , HeLa Cells , HEK293 Cells
2.
PLoS Negl Trop Dis ; 18(5): e0012162, 2024 May.
Article in English | MEDLINE | ID: mdl-38709836

ABSTRACT

West Nile virus (WNV) is a vector-borne flavivirus that causes an increasing number of human and equine West Nile fever cases in Europe. While the virus has been present in the Mediterranean basin and the Balkans since the 1960s, recent years have witnessed its northward expansion, with the first human cases reported in Germany in 2018 and the Netherlands in 2020. WNV transmission and amplification within mosquitoes are temperature-dependent. This study applies a mathematical modelling approach to assess the conditions under which WNV circulation occurs based on the proportion of mosquito bites on WNV-competent birds (dilution), vector-host ratios, mosquito season length and the observed daily temperature data. We modelled five distinct European regions where previous WNV circulation has been observed within the Netherlands, Germany, Spain, Italy, and Greece. We observed that the number of days in which the basic reproduction number (R0) is above one, increased over the last 40 years in all five regions. In the Netherlands, the number of days in which the R0 is above one, is 70% lower than in Spain. The temperature in Greece, Spain and Italy allowed for circulation under low vector-host ratios, and at a high dilution. On the other hand in the Netherlands and Germany, given the observed daily temperature, the thresholds for circulation requires a lower dilution and higher vector-host ratios. For the Netherlands, a short window of introductions between late May and mid-June would result in detectable outbreaks. Our findings revealed that the temperate maritime climate of the Netherlands allows WNV circulation primarily during warmer summers, and only under high vector-host ratios. This research contributes valuable insights into the dynamic relationship between temperature, vector properties, and WNV transmission, offering guidance for proactive strategies in addressing this emerging health threat in Europe.


Subject(s)
Mosquito Vectors , Seasons , Temperature , West Nile Fever , West Nile virus , West Nile Fever/transmission , West Nile Fever/epidemiology , West Nile Fever/virology , Animals , West Nile virus/physiology , West Nile virus/isolation & purification , Europe/epidemiology , Humans , Mosquito Vectors/virology , Mosquito Vectors/physiology , Birds/virology , Netherlands/epidemiology , Models, Theoretical , Culicidae/virology , Culicidae/physiology
3.
Infect Dis Poverty ; 13(1): 38, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790027

ABSTRACT

BACKGROUND: West Nile virus (WNV), the most widely distributed flavivirus causing encephalitis globally, is a vector-borne pathogen of global importance. The changing climate is poised to reshape the landscape of various infectious diseases, particularly vector-borne ones like WNV. Understanding the anticipated geographical and range shifts in disease transmission due to climate change, alongside effective adaptation strategies, is critical for mitigating future public health impacts. This scoping review aims to consolidate evidence on the impact of climate change on WNV and to identify a spectrum of applicable adaptation strategies. MAIN BODY: We systematically analyzed research articles from PubMed, Web of Science, Scopus, and EBSCOhost. Our criteria included English-language research articles published between 2007 and 2023, focusing on the impacts of climate change on WNV and related adaptation strategies. We extracted data concerning study objectives, populations, geographical focus, and specific findings. Literature was categorized into two primary themes: 1) climate-WNV associations, and 2) climate change impacts on WNV transmission, providing a clear understanding. Out of 2168 articles reviewed, 120 met our criteria. Most evidence originated from North America (59.2%) and Europe (28.3%), with a primary focus on human cases (31.7%). Studies on climate-WNV correlations (n = 83) highlighted temperature (67.5%) as a pivotal climate factor. In the analysis of climate change impacts on WNV (n = 37), most evidence suggested that climate change may affect the transmission and distribution of WNV, with the extent of the impact depending on local and regional conditions. Although few studies directly addressed the implementation of adaptation strategies for climate-induced disease transmission, the proposed strategies (n = 49) fell into six categories: 1) surveillance and monitoring (38.8%), 2) predictive modeling (18.4%), 3) cross-disciplinary collaboration (16.3%), 4) environmental management (12.2%), 5) public education (8.2%), and 6) health system readiness (6.1%). Additionally, we developed an accessible online platform to summarize the evidence on climate change impacts on WNV transmission ( https://2xzl2o-neaop.shinyapps.io/WNVScopingReview/ ). CONCLUSIONS: This review reveals that climate change may affect the transmission and distribution of WNV, but the literature reflects only a small share of the global WNV dynamics. There is an urgent need for adaptive responses to anticipate and respond to the climate-driven spread of WNV. Nevertheless, studies focusing on these adaptation responses are sparse compared to those examining the impacts of climate change. Further research on the impacts of climate change and adaptation strategies for vector-borne diseases, along with more comprehensive evidence synthesis, is needed to inform effective policy responses tailored to local contexts.


Subject(s)
Climate Change , West Nile Fever , West Nile virus , West Nile virus/physiology , West Nile Fever/transmission , West Nile Fever/epidemiology , Humans , Animals , Adaptation, Physiological
4.
Viruses ; 16(5)2024 04 29.
Article in English | MEDLINE | ID: mdl-38793584

ABSTRACT

Genetic studies preceded by the observation of an unknown mosquito species in Mikolów (Poland) confirmed that it belongs to a new invasive species in Polish fauna, Aedes japonicus (Theobald, 1901), a known vector for numerous infectious diseases. Ae. japonicus is expanding its geographical presence, raising concerns about potential disease transmission given its vector competence for chikungunya virus, dengue virus, West Nile virus, and Zika virus. This first genetically confirmed identification of Ae. japonicus in Poland initiates a comprehensive review of the literature on Ae. japonicus, its biology and ecology, and the viral infections transmitted by this species. This paper also presents the circumstances of the observation of Ae. japonicus in Poland and a methodology for identifying this species.


Subject(s)
Aedes , Mosquito Vectors , Poland , Aedes/virology , Animals , Mosquito Vectors/virology , Introduced Species , Humans , West Nile virus/genetics , Dengue Virus/genetics , Dengue Virus/isolation & purification , Dengue Virus/classification , Zika Virus/genetics , Chikungunya virus/genetics , Chikungunya virus/classification , Chikungunya virus/isolation & purification
5.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793601

ABSTRACT

West Nile virus (WNV) is an arbovirus spread primarily by Culex mosquitoes, with humans being a dead-end host. WNV was introduced to Florida in 2001, with 467 confirmed cases since. It is estimated that 80 percent of cases are asymptomatic, with mild cases presenting as a non-specific flu-like illness. Currently, detection of WNV in humans occurs primarily in healthcare settings via RT-PCR or CSF IgM when patients present with severe manifestations of disease including fever, meningitis, encephalitis, or acute flaccid paralysis. Given the short window of detectable viremia and requirement for CSF sampling, most WNV infections never receive an official diagnosis. This study utilized enzyme-linked immunosorbent assay (ELISA) to detect WNV IgG antibodies in 250 patient serum and plasma samples collected at Tampa General Hospital during 2020 and 2021. Plaque reduction neutralization tests were used to confirm ELISA results. Out of the 250 patients included in this study, 18.8% of them were IgG positive, consistent with previous WNV exposure. There was no relationship between WNV exposure and age or sex.


Subject(s)
Antibodies, Viral , Immunoglobulin G , West Nile Fever , West Nile virus , Humans , West Nile virus/immunology , West Nile Fever/epidemiology , West Nile Fever/virology , Florida/epidemiology , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/cerebrospinal fluid , Middle Aged , Seroepidemiologic Studies , Immunoglobulin G/blood , Immunoglobulin G/cerebrospinal fluid , Adult , Aged , Young Adult , Adolescent , Aged, 80 and over , Enzyme-Linked Immunosorbent Assay , Hospitalization , Immunoglobulin M/blood , Immunoglobulin M/cerebrospinal fluid
6.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793662

ABSTRACT

Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.


Subject(s)
Horse Diseases , Vaccination , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile Fever/immunology , West Nile Fever/prevention & control , West Nile Fever/virology , West Nile Fever/epidemiology , West Nile Fever/transmission , Horses , Animals , West Nile virus/immunology , Humans , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/prevention & control , West Nile Virus Vaccines/immunology , Vaccination/veterinary , One Health , United States/epidemiology
7.
Viruses ; 16(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38793670

ABSTRACT

The West Nile Virus (WNV), a member of the family Flaviviridae, is an emerging mosquito-borne flavivirus causing potentially severe infections in humans and animals involving the central nervous system (CNS). Due to its emerging tendency, WNV now occurs in many areas where other flaviviruses are co-occurring. Cross-reactive antibodies with flavivirus infections or vaccination (e.g., tick-borne encephalitis virus (TBEV), Usutu virus (USUV), yellow fever virus (YFV), dengue virus (DENV), Japanese encephalitis virus (JEV)) therefore remain a major challenge in diagnosing flavivirus infections. Virus neutralization tests are considered as reference tests for the detection of specific flavivirus antibodies, but are elaborate, time-consuming and need biosafety level 3 facilities. A simple and straightforward assay for the differentiation and detection of specific WNV IgG antibodies for the routine laboratory is urgently needed. In this study, we compared two commercially available enzyme-linked immunosorbent assays (anti-IgG WNV ELISA and anti-NS1-IgG WNV), a commercially available indirect immunofluorescence assay, and a newly developed in-house ELISA for the detection of WNV-NS1-IgG antibodies. All four tests were compared to an in-house NT to determine both the sensitivity and specificity of the four test systems. None of the assays could match the specificity of the NT, although the two NS1-IgG based ELISAs were very close to the specificity of the NT at 97.3% and 94.6%. The in-house WNV-NS1-IgG ELISA had the best performance regarding sensitivity and specificity. The specificities of the ELISA assays and the indirect immunofluorescence assays could not meet the necessary specificity and/or sensitivity.


Subject(s)
Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , West Nile Fever , West Nile virus , West Nile virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , West Nile Fever/diagnosis , West Nile Fever/immunology , Enzyme-Linked Immunosorbent Assay/methods , Serologic Tests/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Fluorescent Antibody Technique, Indirect/methods , Cross Reactions/immunology , Animals
8.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793693

ABSTRACT

Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.


Subject(s)
Neurons , RNA, Viral , Virus Replication , West Nile virus , West Nile virus/genetics , West Nile virus/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Neurons/virology , Neurons/metabolism , Animals , Cell Line , Genome, Viral , West Nile Fever/virology , Humans , Mice , Gene Expression Regulation, Viral
9.
Front Immunol ; 15: 1395870, 2024.
Article in English | MEDLINE | ID: mdl-38799422

ABSTRACT

Emerging infectious diseases represent a significant threat to global health, with West Nile virus (WNV) being a prominent example due to its potential to cause severe neurological disorders alongside mild feverish conditions. Particularly prevalent in the continental United States, WNV has emerged as a global concern, with outbreaks indicating the urgent need for effective prophylactic measures. The current problem is that the absence of a commercial vaccine against WNV highlights a critical gap in preventive strategies against WNV. This study aims to address this gap by proposing a novel, multivalent vaccine designed using immunoinformatics approaches to elicit comprehensive humoral and cellular immune responses against WNV. The objective of the study is to provide a theoretical framework for experimental scientists to formulate of vaccine against WNV and tackle the current problem by generating an immune response inside the host. The research employs reverse vaccinology and subtractive proteomics methodologies to identify NP_041724.2 polyprotein and YP_009164950.1 truncated flavivirus polyprotein NS1 as the prime antigens. The selection process for epitopes focused on B and T-cell reactivity, antigenicity, water solubility, and non-allergenic properties, prioritizing candidates with the potential for broad immunogenicity and safety. The designed vaccine construct integrates these epitopes, connected via GPGPG linkers, and supplemented with an adjuvant with the help of another linker EAAAK, to enhance immunogenicity. Preliminary computational analyses suggest that the proposed vaccine could achieve near-universal coverage, effectively targeting approximately 99.74% of the global population, with perfect coverage in specific regions such as Sweden and Finland. Molecular docking and immune simulation studies further validate the potential efficacy of the vaccine, indicating strong binding affinity with toll-like receptor 3 (TLR-3) and promising immune response profiles, including significant antibody-mediated and cellular responses. These findings present the vaccine construct as a viable candidate for further development and testing. While the theoretical and computational results are promising, advancing from in-silico predictions to a tangible vaccine requires comprehensive laboratory validation. This next step is essential to confirm the vaccine's efficacy and safety in eliciting an immune response against WNV. Through this study, we propose a novel approach to vaccine development against WNV and contribute to the broader field of immunoinformatics, showcasing the potential to accelerate the design of effective vaccines against emerging viral threats. The journey from hypothesis to practical solution embodies the interdisciplinary collaboration essential for modern infectious disease management and prevention strategies.


Subject(s)
Computational Biology , Immunodominant Epitopes , Proteome , Vaccines, Subunit , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile virus/immunology , Immunodominant Epitopes/immunology , Humans , Proteome/immunology , West Nile Fever/prevention & control , West Nile Fever/immunology , West Nile Fever/virology , Computational Biology/methods , West Nile Virus Vaccines/immunology , Vaccines, Subunit/immunology , Vaccine Development , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Proteomics/methods , Immunoinformatics , Protein Subunit Vaccines
11.
Euro Surveill ; 29(20)2024 05.
Article in English | MEDLINE | ID: mdl-38757289

ABSTRACT

Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.


Subject(s)
Aedes , Chikungunya virus , Dengue Virus , Zika Virus , Animals , Aedes/virology , Humans , Zika Virus/isolation & purification , Dengue Virus/isolation & purification , Chikungunya virus/isolation & purification , Paris , Mosquito Vectors/virology , West Nile virus/isolation & purification , Arboviruses/isolation & purification , Arbovirus Infections/transmission , Flavivirus/isolation & purification , France , Dengue/transmission , Dengue/epidemiology , Zika Virus Infection/transmission
12.
BMC Ophthalmol ; 24(1): 160, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600458

ABSTRACT

BACKGROUND: To describe a case of bilateral multifocal chorioretinitis as the only presentation of acute West Nile virus (WNV) infection in the absence of neurological involvement. CASE PRESENTATION: A 78-year-old Italian woman was admitted to our emergency department because she noticed blurry vision in both eyes. She did not report fever, fatigue, or neurological symptoms in the last few days. Multimodal imaging showed the presence of bilateral hyperfluorescent lesions with a linear distribution, that corresponded to hypocyanescent spots on indocyanine green angiography. Antibody serology showed the presence of IgM antibodies, IgG antibodies, and ribonucleic acid (RNA) for WNV. Magnetic resonance imaging (MRI) of the brain ruled out central nervous system involvement. Three months later, the patient reported spontaneous resolution of her symptoms and remission of the chorioretinal infiltrates. CONCLUSIONS: In endemic areas, it is important to think of acute WNV infection as an explanatory etiology in cases of multifocal chorioretinitis, even without neurological involvement.


Subject(s)
Chorioretinitis , Eye Infections, Viral , West Nile Fever , West Nile virus , Humans , Female , Aged , West Nile Fever/complications , West Nile Fever/diagnosis , West Nile Fever/epidemiology , Eye Infections, Viral/diagnosis , Chorioretinitis/etiology , Vitreous Body/pathology , Antibodies, Viral
13.
Emerg Microbes Infect ; 13(1): 2348510, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38686545

ABSTRACT

West Nile virus (WNV) is the most widely distributed mosquito-borne flavivirus in the world. This flavivirus can infect humans causing in some cases a fatal neurological disease and birds are the main reservoir hosts. WNV is endemic in Spain, and human cases have been reported since 2004. Although different studies analyse how climatic conditions can affect the dynamics of WNV infection, very few use long-term datasets. Between 2003 and 2020 a total of 2,724 serum samples from 1,707 common coots (Fulica atra) were analysed for the presence of WNV-specific antibodies. Mean (SD) annual seroprevalence was 24.67% (0.28) but showed high year-to-year variations ranging from 5.06% (0.17) to 68.89% (0.29). Significant positive correlations (p < 0.01) were observed between seroprevalence and maximum winter temperature and mean spring temperature. The unprecedented WNV outbreak in humans in the south of Spain in 2020 was preceded by a prolonged period of escalating WNV local circulation. Given current global and local climatic trends, WNV circulation is expected to increase in the next decades. This underscores the necessity of implementing One Health approaches to reduce the risk of future WNV outbreaks in humans. Our results suggest that higher winter and spring temperatures may be used as an early warning signal of more intense WNV circulation among wildlife in Spain, and consequently highlight the need of more intense vector control and surveillance in human inhabited areas.


Subject(s)
Antibodies, Viral , Seasons , West Nile Fever , West Nile virus , Spain/epidemiology , West Nile virus/immunology , West Nile virus/isolation & purification , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/veterinary , Animals , Seroepidemiologic Studies , Humans , Antibodies, Viral/blood , Disease Outbreaks , Temperature
14.
Viruses ; 16(4)2024 04 12.
Article in English | MEDLINE | ID: mdl-38675940

ABSTRACT

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Subject(s)
Birds , Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Europe/epidemiology , West Nile virus/genetics , West Nile virus/physiology , West Nile virus/isolation & purification , Animals , Humans , Flavivirus/classification , Flavivirus/genetics , Flavivirus/pathogenicity , Flavivirus/isolation & purification , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Flavivirus Infections/transmission , Flavivirus Infections/veterinary , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/transmission , Birds/virology , Culicidae/virology , Mosquito Vectors/virology , Disease Outbreaks
15.
Rev Med Virol ; 34(3): e2535, 2024 May.
Article in English | MEDLINE | ID: mdl-38610091

ABSTRACT

Arthropod-borne viruses (arboviruses) pose significant threats to global public health by causing a spectrum of diseases ranging from mild febrile illnesses to severe neurological complications. Understanding the intricate interplay between arboviruses and the immune system within the central nervous system is crucial for developing effective strategies to combat these infections and mitigate their neurological sequelae. This review comprehensively explores the mechanisms by which arboviruses such as Zika virus, West Nile virus, and Dengue virus manipulate immune responses within the CNS, leading to diverse clinical manifestations.


Subject(s)
Dengue Virus , West Nile virus , Zika Virus Infection , Zika Virus , Humans , Central Nervous System , Immunity , Zika Virus Infection/complications
16.
Parasit Vectors ; 17(1): 140, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500161

ABSTRACT

BACKGROUND: Different mosquito control strategies have been implemented to mitigate or prevent mosquito-related public health situations. Modern mosquito control largely relies on multiple approaches, including targeted, specific treatments. Given this, it is becoming increasingly important to supplement these activities with rapid and mobile diagnostic capacities for mosquito-borne diseases. We aimed to create and test the applicability of a rapid diagnostic system for West Nile virus that can be used under field conditions. METHODS: In this pilot study, various types of adult mosquito traps were applied within the regular mosquito monitoring activity framework for mosquito control. Then, the captured specimens were used for the detection of West Nile virus RNA under field conditions with a portable qRT-PCR approach within 3-4 h. Then, positive samples were subjected to confirmatory RT-PCR or NGS sequencing in the laboratory to obtain genome information of the virus. We implemented phylogenetic analysis to characterize circulating strains. RESULTS: A total of 356 mosquito individuals representing 7 species were processed in 54 pools, each containing up to 20 individuals. These pools were tested for the presence of West Nile virus, and two pools tested positive, containing specimens from the Culex pipiens and Anopheles atroparvus mosquito species. As a result of subsequent sequencing, we present the complete genome of West Nile virus and Bagaza virus. CONCLUSIONS: The rapid identification of infected mosquitoes is the most important component of quick response adulticide or larvicide treatments to prevent human cases. The conceptual framework of real-time surveillance can be optimized for other pathogens and situations not only in relation to West Nile virus. We present an early warning system for mosquito-borne diseases and demonstrate its application to aid rapid-response mosquito control actions.


Subject(s)
Culex , Culicidae , West Nile Fever , West Nile virus , Animals , Humans , West Nile virus/genetics , West Nile Fever/diagnosis , West Nile Fever/prevention & control , West Nile Fever/epidemiology , Phylogeny , Pilot Projects , Mosquito Control , Mosquito Vectors
17.
Proc Biol Sci ; 291(2018): 20232432, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471554

ABSTRACT

Mathematical models within the Ross-Macdonald framework increasingly play a role in our understanding of vector-borne disease dynamics and as tools for assessing scenarios to respond to emerging threats. These threats are typically characterized by a high degree of heterogeneity, introducing a range of possible complexities in models and challenges to maintain the link with empirical evidence. We systematically identified and analysed a total of 77 published papers presenting compartmental West Nile virus (WNV) models that use parameter values derived from empirical studies. Using a set of 15 criteria, we measured the dissimilarity compared with the Ross-Macdonald framework. We also retrieved the purpose and type of models and traced the empirical sources of their parameters. Our review highlights the increasing refinements in WNV models. Models for prediction included the highest number of refinements. We found uneven distributions of refinements and of evidence for parameter values. We identified several challenges in parametrizing such increasingly complex models. For parameters common to most models, we also synthesize the empirical evidence for their values and ranges. The study highlights the potential to improve the quality of WNV models and their applicability for policy by establishing closer collaboration between mathematical modelling and empirical work.


Subject(s)
West Nile Fever , West Nile virus , Humans , Models, Theoretical , West Nile Fever/transmission
18.
Parasit Vectors ; 17(1): 156, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532512

ABSTRACT

BACKGROUND: Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. METHODS: We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. RESULTS: Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. CONCLUSIONS: Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks.


Subject(s)
Culex , Culicidae , West Nile Fever , West Nile virus , Animals , Microclimate , Birds , Mosquito Vectors
19.
JAMA Netw Open ; 7(3): e244294, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38546642

ABSTRACT

Importance: West Nile virus (WNV) is the leading cause of human arboviral disease in the US, peaking during summer. The incidence of WNV, including its neuroinvasive form (NWNV), is increasing, largely due to the expanding distribution of its vector, the Culex mosquito, and climatic changes causing heavy monsoon rains. However, the distinct characteristics and outcomes of NWNV in individuals who are immunosuppressed (IS) and individuals who are not IS remain underexplored. Objective: To describe and compare clinical and radiographic features, treatment responses, and outcomes of NWNV infection in individuals who are IS and those who are not IS. Design, Setting, and Participants: This retrospective cohort study used data from the Mayo Clinic Hospital system collected from July 2006 to December 2021. Participants were adult patients (age ≥18 years) with established diagnosis of NWNV infection. Data were analyzed from May 12, 2020, to July 20, 2023. Exposure: Immunosuppresion. Main Outcomes and Measures: Outcomes of interest were clinical and radiographic features and 90-day mortality among patients with and without IS. Results: Of 115 participants with NWNV infection (mean [SD] age, 64 [16] years; 75 [66%] male) enrolled, 72 (63%) were not IS and 43 (37%) were IS. Neurologic manifestations were meningoencephalitis (98 patients [85%]), encephalitis (10 patients [9%]), and myeloradiculitis (7 patients [6%]). Patients without IS, compared with those with IS, more frequently reported headache (45 patients [63%] vs 18 patients [42%]) and myalgias (32 patients [44%] vs 9 patients [21%]). In contrast, patients with IS, compared with those without, had higher rates of altered mental status (33 patients [77%] vs 41 patients [57%]) and myoclonus (8 patients [19%] vs 8 patients [4%]). Magnetic resonance imaging revealed more frequent thalamic T2 fluid-attenuated inversion recovery hyperintensities in individuals with IS than those without (4 patients [11%] vs 0 patients). Individuals with IS had more severe disease requiring higher rates of intensive care unit admission (26 patients [61%] vs 24 patients [33%]) and mechanical ventilation (24 patients [56%] vs 22 patients [31%]). The 90-day all-cause mortality rate was higher in the patients with IS compared with patients without IS (12 patients [28%] vs 5 patients [7%]), and this difference in mortality persisted after adjusting for Glasgow Coma Scale score (adjusted hazard ratio, 2.22; 95% CI, 1.07-4.27; P = .03). Individuals with IS were more likely to receive intravenous immunoglobulin than individuals without IS (12 individuals [17%] vs 24 individuals [56%]), but its use was not associated with survival (hazard ratio, 1.24; 95% CI, 0.50-3.09; P = .64). Conclusions and Relevance: In this cohort study of individuals with NWNV infection, individuals with IS had a higher risk of disease complications and poor outcomes than individuals without IS, highlighting the need for innovative and effective therapies to improve outcomes in this high-risk population.


Subject(s)
West Nile Fever , West Nile virus , Adult , Animals , Humans , Male , Middle Aged , Adolescent , Female , West Nile Fever/complications , West Nile Fever/epidemiology , Cohort Studies , Retrospective Studies , Mosquito Vectors
20.
Viruses ; 16(3)2024 02 22.
Article in English | MEDLINE | ID: mdl-38543707

ABSTRACT

BACKGROUND: Viral meningitis/encephalitis (ME) is a rare but potentially harmful disease. The prompt identification of the respective virus is important to guide not only treatment but also potential public health countermeasures. However, in about 40% of cases, no virus is identified despite an extensive diagnostic workup. The aim of the present study was to analyze demographic, seasonal, and routine cerebrospinal fluid (CSF) parameters in cases of viral ME and assess their utility for the prediction of the causative virus. METHODS: Demographic data, season, and routine CSF parameters (total leucocytes, CSF cell differentiation, age-adjusted CSF/serum albumin ratio, and total immunoglobulin ratios) were retrospectively assessed in cases of viral ME. RESULTS: In total, 156 cases of acute viral ME (74 female, median age 40.0 years) were treated at a tertiary-care hospital in Germany. Specific viral infections were detected in 93 (59.6%) cases. Of these, 14 (9.0%) cases were caused by herpes simplex virus (HSV), 36 (23.1%) by varicella-zoster virus (VZV), 27 (17.3%) by enteroviruses, 9 (5.8%) by West Nile virus (WNV), and 7 (4.5%) by other specific viruses. Additionally, 64 (41.0%) cases of ME of unknown viral etiology were diagnosed. Cases of WNV ME were older, predominantly male, showed a severe disruption of the blood-CSF-barrier, a high proportion of neutrophils in CSF, and an intrathecal total immunoglobulin M synthesis in the first CSF sample. In a multinominal logistic regression analysis, the accuracy of these CSF parameters together with age and seasonality was best for the prediction of WNV (87.5%), followed by unknown viral etiology (66.7%), VZV (61.8%), and enteroviruses (51.9%). CONCLUSIONS: Cases with WNV ME showed a specific pattern of routine CSF parameters and demographic data that allowed for their identification with good accuracy. These findings might help to guide the diagnostic workup in cases with viral ME, in particular allowing the timely identification of cases with ME due to WNV.


Subject(s)
Encephalitis, Viral , Enterovirus Infections , Meningitis, Viral , Viruses , West Nile Fever , West Nile virus , Male , Humans , Female , Adult , Retrospective Studies , Antibodies, Viral , West Nile Fever/diagnosis , Meningitis, Viral/diagnosis , Herpesvirus 3, Human
SELECTION OF CITATIONS
SEARCH DETAIL
...