Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Glob Chang Biol ; 30(6): e17352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822670

ABSTRACT

The Arctic is the fastest-warming region on the planet, and the lengthening ice-free season is opening Arctic waters to sub-Arctic species such as the killer whale (Orcinus orca). As apex predators, killer whales can cause significant ecosystem-scale changes. Setting conservation priorities for killer whales and their Arctic prey species requires knowledge of their evolutionary history and demographic trajectory. Using whole-genome resequencing of 24 killer whales sampled in the northwest Atlantic, we first explored the population structure and demographic history of Arctic killer whales. To better understand the broader geographic relationship of these Arctic killer whales to other populations, we compared them to a globally sampled dataset. Finally, we assessed threats to Arctic killer whales due to anthropogenic harvest by reviewing the peer-reviewed and gray literature. We found that there are two highly genetically distinct, non-interbreeding populations of killer whales using the eastern Canadian Arctic. These populations appear to be as genetically different from each other as are ecotypes described elsewhere in the killer whale range; however, our data cannot speak to ecological differences between these populations. One population is newly identified as globally genetically distinct, and the second is genetically similar to individuals sampled from Greenland. The effective sizes of both populations recently declined, and both appear vulnerable to inbreeding and reduced adaptive potential. Our survey of human-caused mortalities suggests that harvest poses an ongoing threat to both populations. The dynamic Arctic environment complicates conservation and management efforts, with killer whales adding top-down pressure on Arctic food webs crucial to northern communities' social and economic well-being. While killer whales represent a conservation priority, they also complicate decisions surrounding wildlife conservation and resource management in the Arctic amid the effects of climate change.


Subject(s)
Climate Change , Conservation of Natural Resources , Whale, Killer , Animals , Whale, Killer/physiology , Arctic Regions , Endangered Species , Canada
2.
PLoS One ; 19(5): e0302758, 2024.
Article in English | MEDLINE | ID: mdl-38748652

ABSTRACT

Measuring breathing rates is a means by which oxygen intake and metabolic rates can be estimated to determine food requirements and energy expenditure of killer whales (Orcinus orca) and other cetaceans. This relatively simple measure also allows the energetic consequences of environmental stressors to cetaceans to be understood but requires knowing respiration rates while they are engaged in different behaviours such as resting, travelling and foraging. We calculated respiration rates for different behavioural states of southern and northern resident killer whales using video from UAV drones and concurrent biologging data from animal-borne tags. Behavioural states of dive tracks were predicted using hierarchical hidden Markov models (HHMM) parameterized with time-depth data and with labeled tracks of drone-identified behavioural states (from drone footage that overlapped with the time-depth data). Dive tracks were sequences of dives and surface intervals lasting ≥ 10 minutes cumulative duration. We calculated respiration rates and estimated oxygen consumption rates for the predicted behavioural states of the tracks. We found that juvenile killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to resting (1.2) and foraging (1.5)-and that adult males breathed at a higher rate when travelling (1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were estimated to consume 2.5-18.3 L O2 min-1 compared with 14.3-59.8 L O2 min-1 for adult males across all behaviours based on estimates of mass-specific tidal volume and oxygen extraction. Our findings confirm that killer whales take single breaths between dives and indicate that energy expenditure derived from respirations requires using sex, age, and behavioural-specific respiration rates. These findings can be applied to bioenergetics models on a behavioural-specific basis, and contribute towards obtaining better predictions of dive behaviours, energy expenditure and the food requirements of apex predators.


Subject(s)
Diving , Oxygen Consumption , Respiratory Rate , Whale, Killer , Animals , Whale, Killer/physiology , Whale, Killer/metabolism , Male , Respiratory Rate/physiology , Female , Oxygen Consumption/physiology , Diving/physiology , Energy Metabolism/physiology , Respiration , Feeding Behavior/physiology
3.
Sci Rep ; 13(1): 22580, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114485

ABSTRACT

The northeastern Pacific (NEP) Ocean spans the coast of British Columbia (Canada) and is impacted by anthropogenic activities including oil pipeline developments, maritime fossil fuel tanker traffic, industrial chemical effluents, agricultural and urban emissions in tandem with stormwater and wastewater discharges, and forest wildfires. Such events may expose surrounding marine environments to toxic polycyclic aromatic hydrocarbons (PAHs) and impact critical habitats of threatened killer whales (Orcinus orca). We analyzed skeletal muscle and liver samples from stranded Bigg's killer whales and endangered Southern Resident killer whales (SRKWs) for PAH contamination using LRMS. C3-phenanthrenes/anthracenes (mean: 632 ng/g lw), C4-dibenzothiophenes (mean: 334 ng/g lw), and C4-phenanthrenes/anthracenes (mean: 248 ng/g lw) presented the highest concentrations across all tissue samples. Diagnostic ratios indicated petrogenic-sourced contamination for SRKWs and pyrogenic-sourced burdens for Bigg's killer whales; differences between ecotypes may be attributed to habitat range, prey selection, and metabolism. A mother-fetus skeletal muscle pair provided evidence of PAH maternal transfer; low molecular weight compounds C3-fluorenes, dibenzothiophene, and naphthalene showed efficient and preferential exposure to the fetus. This indicates in-utero exposure of PAH-contamination to the fetus. Our results show that hydrocarbon-related anthropogenic activities are negatively impacting these top predators; preliminary data found here can be used to improve oil spill and other PAH pollution management and regulation efforts, and inform policy to conserve killer whale habitats in the NEP.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Whale, Killer , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Whale, Killer/physiology , British Columbia , Phenanthrenes/metabolism , Anthracenes/metabolism , Environmental Monitoring/methods
4.
PeerJ ; 11: e15635, 2023.
Article in English | MEDLINE | ID: mdl-37456871

ABSTRACT

The fish-eating Southern Resident killer whales (Orcinus orca) of the northeastern Pacific are listed as Endangered in both the USA and Canada. The inland waters of Washington State and British Columbia, a region known as the Salish Sea, are designated as Southern Resident critical habitat by both countries. The whales have historically had regular monthly presence in the Salish Sea, with peak abundance occurring from May through September. In recent years, at least partially in response to shifting prey abundance, habitat usage by the Southern Residents has changed. As conservation measures aim to provide the best possible protection for the whales in their hopeful recovery, it is key that policies are based both on historic trends and current data. To this aim, our study shares 2018-2022 daily occurrence data to build upon and compare to previously published whale presence numbers and to demonstrate more recent habitat shifts. Based on reports from an extensive network of community scientists as well as online streaming hydrophones, every Southern Resident occurrence was confirmed either visually or acoustically. Documented here are the first-ever total absence of the Southern Residents in the Salish Sea in the months of May, June, and August, as well as their continued overall declining presence in the spring and summer, while fall and winter presence remains relatively high. It is key that management efforts consider these shifting presence patterns when setting both seasonal and regional protection measures aimed at supporting population recovery.


Subject(s)
Whale, Killer , Animals , Whale, Killer/physiology , Ecosystem , British Columbia , Washington , Whales
6.
J Theor Biol ; 543: 111123, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35405202

ABSTRACT

Two fundamental questions related to menopause that have not been answered are: (1) why does menopause even occur? And, (2) of the more than six thousand known mammals extant today, why human and four whale females are the only ones that are menopausal? Answers to both of these basic questions are provided here on the basis of evolutionary biology. From observational data, it was found that there are three elemental criteria that all menopausal species must fulfill: first, it has to be long-lived (average female lifespan of the species has to be forty years or more); second, it must live in groups; and third, the average female-male lifespan differential has to be at least thirty percent or more. In addition, a corollary criterion for menopause was also established: for a species' females to be menopausal, the Encephalization Quotient (EQ) for the species has to be 2.5 or more. Though humans do not fulfill the third menopausal criterion currently, it has been shown that when the menopausal mechanism first became common in human ancestors, in all likelihood, that principle was conformed to. Of the multitude of mammals around, only a few species satisfy all three menopausal criteria, and hence are the only ones whose females undergo the menopausal process. Many hitherto unanswered questions with respect to menopause, such as, while long and short-finned pilot whales are close to each other both genetically and physiologically, why short-finned females are menopausal while long-finned females are not, why orca females are menopausal while elephant females are not, in spite of both being long-lived, etc., can be answered on the basis of those three criteria. Why there was no selection pressure for males to undergo advanced-age reproductive cessation in those few menopausal species and why the majority of divorces occur in mid-life (40-to-60s) are also explained from a menopausal perspective.


Subject(s)
Menopause , Whale, Killer , Animals , Biological Evolution , Biology , Female , Humans , Male , Mammals , Menopause/genetics , Whale, Killer/physiology
7.
Sci Rep ; 11(1): 20284, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645878

ABSTRACT

Killer whales (Orcinus orca) are top predators throughout the world's oceans. In the North Pacific, the species is divided into three ecotypes-resident (fish-eating), transient (mammal-eating), and offshore (largely shark-eating)-that are genetically and acoustically distinct and have unique roles in the marine ecosystem. In this study, we examined the year-round distribution of killer whales in the northern Gulf of Alaska from 2016 to 2020 using passive acoustic monitoring. We further described the daily acoustic residency patterns of three killer whale populations (southern Alaska residents, Gulf of Alaska transients, and AT1 transients) for one year of these data. Highest year-round acoustic presence occurred in Montague Strait, with strong seasonal patterns in Hinchinbrook Entrance and Resurrection Bay. Daily acoustic residency times for the southern Alaska residents paralleled seasonal distribution patterns. The majority of Gulf of Alaska transient detections occurred in Hinchinbrook Entrance in spring. The depleted AT1 transient killer whale population was most often identified in Montague Strait. Passive acoustic monitoring revealed that both resident and transient killer whales used these areas much more extensively than previously known and provided novel insights into high use locations and times for each population. These results may be driven by seasonal foraging opportunities and social factors and have management implications for this species.


Subject(s)
Acoustics , Echolocation/physiology , Environmental Monitoring/methods , Transducers , Vocalization, Animal/physiology , Whale, Killer/physiology , Alaska , Animals , Ecotype , Geography , Oceans and Seas , Population Dynamics , Regression Analysis , Seasons , Species Specificity
8.
Sci Rep ; 11(1): 16822, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413356

ABSTRACT

The cumulative effects of non-lethal stressors on the health of biodiversity are a primary concern for conservation, yet difficulties remain regarding their quantification. In mammals, many stressors are processed through a common stress-response pathway, and therefore epigenetic changes in genes of this pathway may provide a powerful tool for quantifying cumulative effects. As a preliminary assessment of this approach, we investigated epigenetic manifestations of stress in two killer whale populations with different levels of exposure to anthropogenic stressors. We used bisulfite amplicon sequencing to compare patterns of DNA methylation at 25 CpG sites found in three genes involved in stress response and identified large differences in the level of methylation at two sites consistent with differential stress exposure between Northern and Southern Resident killer whale populations. DNA methylation patterns could therefore represent a useful method to assess the cumulative effects of non-lethal stressors in wildlife.


Subject(s)
Animals, Wild/genetics , Animals, Wild/physiology , DNA Methylation/genetics , Stress, Physiological/genetics , Whale, Killer/genetics , Whale, Killer/physiology , Aging/physiology , Animals , CpG Islands/genetics , Female , Male , Probability
9.
PLoS One ; 16(4): e0249641, 2021.
Article in English | MEDLINE | ID: mdl-33798257

ABSTRACT

Ecotypes are groups within a species with different ecological adaptations than their conspecifics. Eastern North Pacific (ENP) killer whale (Orcinus orca) ecotypes differ in their diet, behavior, and morphology, but the same is not known for this species in the eastern Canadian Arctic (ECA) and Northwest Atlantic (NWA). Using compound-specific stable isotope analysis (CSIA) of amino acids (AAs), we compared δ15N patterns of the primary trophic and source AA pair, glutamic acid/glutamine (Glx) and phenylalanine (Phe), in dentine collagen of (1) sympatric ENP killer whale ecotypes with well-characterized diet differences and (2) ECA/NWA killer whales with unknown diets. δ15NGlx-Phe was significantly higher in the ENP fish-eating (FE) than mammal-eating (ME) ecotype (19.2 ± 0.4‰ vs. 13.5 ± 0.7‰, respectively). Similar bimodal variation in δ15NGlx-Phe indicated analogous dietary divisions among ECA/NWA killer whales, with two killer whales having higher δ15NGlx-Phe (16.5 ± 0.0‰) than the others (13.5 ± 0.6‰). Inferences of dietary divisions between these killer whales were supported by parallel differences in threonine δ15N (-33.5 ± 1.6‰ and -40.4 ± 1.1‰, respectively), given the negative correlation between δ15NThr and TP across a range of marine consumers. CSIA-AA results for ECA/NWA whales, coupled with differences in tooth wear (a correlate for diet), are consistent with ecotype characteristics reported in ENP and other killer whale populations, thus adding to documented ecological divergence in this species worldwide.


Subject(s)
Amino Acids/analysis , Diet , Ecotype , Feeding Behavior , Nitrogen Isotopes/analysis , Sympatry , Whale, Killer/physiology , Animals , Arctic Regions , Canada
10.
PLoS One ; 16(3): e0247031, 2021.
Article in English | MEDLINE | ID: mdl-33657188

ABSTRACT

Understanding diet is critical for conservation of endangered predators. Southern Resident killer whales (SRKW) (Orcinus orca) are an endangered population occurring primarily along the outer coast and inland waters of Washington and British Columbia. Insufficient prey has been identified as a factor limiting their recovery, so a clear understanding of their seasonal diet is a high conservation priority. Previous studies have shown that their summer diet in inland waters consists primarily of Chinook salmon (Oncorhynchus tshawytscha), despite that species' rarity compared to some other salmonids. During other times of the year, when occurrence patterns include other portions of their range, their diet remains largely unknown. To address this data gap, we collected feces and prey remains from October to May 2004-2017 in both the Salish Sea and outer coast waters. Using visual and genetic species identification for prey remains and genetic approaches for fecal samples, we characterized the diet of the SRKWs in fall, winter, and spring. Chinook salmon were identified as an important prey item year-round, averaging ~50% of their diet in the fall, increasing to 70-80% in the mid-winter/early spring, and increasing to nearly 100% in the spring. Other salmon species and non-salmonid fishes, also made substantial dietary contributions. The relatively high species diversity in winter suggested a possible lack of Chinook salmon, probably due to seasonally lower densities, based on SRKW's proclivity to selectively consume this species in other seasons. A wide diversity of Chinook salmon stocks were consumed, many of which are also at risk. Although outer coast Chinook samples included 14 stocks, four rivers systems accounted for over 90% of samples, predominantly the Columbia River. Increasing the abundance of Chinook salmon stocks that inhabit the whales' winter range may be an effective conservation strategy for this population.


Subject(s)
Animal Feed/analysis , Predatory Behavior/physiology , Salmon/genetics , Salmonidae/genetics , Sequence Analysis, DNA/veterinary , Whale, Killer/physiology , Animals , British Columbia , Conservation of Natural Resources , Endangered Species , Feces/chemistry , High-Throughput Nucleotide Sequencing , Rivers , Salmon/classification , Salmonidae/classification , Seasons , Washington
11.
PLoS One ; 16(2): e0247370, 2021.
Article in English | MEDLINE | ID: mdl-33606847

ABSTRACT

Chinook salmon (Oncorhynchus tshawytscha) populations have experienced widespread declines in abundance and abrupt shifts toward younger and smaller adults returning to spawn in rivers. The causal agents underpinning these shifts are largely unknown. Here we investigate the potential role of late-stage marine mortality, defined as occurring after the first winter at sea, in driving this species' changing age structure. Simulations using a stage-based life cycle model that included additional mortality during after the first winter at sea better reflected observed changes in the age structure of a well-studied and representative population of Chinook salmon from the Yukon River drainage, compared with a model estimating environmentally-driven variation in age-specific survival alone. Although the specific agents of late-stage mortality are not known, our finding is consistent with work reporting predation by salmon sharks (Lamna ditropis) and marine mammals including killer whales (Orcinus orca). Taken as a whole, this work suggests that Pacific salmon mortality after the first winter at sea is likely to be higher than previously thought and highlights the need to investigate selective sources of mortality, such as predation, as major contributors to rapidly changing age structure of spawning adult Chinook salmon.


Subject(s)
Salmon/growth & development , Sharks/physiology , Whale, Killer/physiology , Animals , Female , Life Cycle Stages , Male , Mortality , Oceans and Seas , Population Growth , Predatory Behavior
12.
PLoS One ; 15(12): e0242505, 2020.
Article in English | MEDLINE | ID: mdl-33264305

ABSTRACT

Understanding health and mortality in killer whales (Orcinus orca) is crucial for management and conservation actions. We reviewed pathology reports from 53 animals that stranded in the eastern Pacific Ocean and Hawaii between 2004 and 2013 and used data from 35 animals that stranded from 2001 to 2017 to assess association with morphometrics, blubber thickness, body condition and cause of death. Of the 53 cases, cause of death was determined for 22 (42%) and nine additional animals demonstrated findings of significant importance for population health. Causes of calf mortalities included infectious disease, nutritional, and congenital malformations. Mortalities in sub-adults were due to trauma, malnutrition, and infectious disease and in adults due to bacterial infections, emaciation and blunt force trauma. Death related to human interaction was found in every age class. Important incidental findings included concurrent sarcocystosis and toxoplasmosis, uterine leiomyoma, vertebral periosteal proliferations, cookiecutter shark (Isistius sp.) bite wounds, excessive tooth wear and an ingested fish hook. Blubber thickness increased significantly with body length (all p < 0.001). In contrast, there was no relationship between body length and an index of body condition (BCI). BCI was higher in animals that died from trauma. This study establishes a baseline for understanding health, nutritional status and causes of mortality in stranded killer whales. Given the evidence of direct human interactions on all age classes, in order to be most successful recovery efforts should address the threat of human interactions, especially for small endangered groups of killer whales that occur in close proximity to large human populations, interact with recreational and commercial fishers and transit established shipping lanes.


Subject(s)
Whale, Killer/physiology , Animals , Cause of Death , Hawaii , Pacific Ocean , Reproduction , Skin/pathology , Whale, Killer/anatomy & histology , Whale, Killer/parasitology
13.
PLoS One ; 15(7): e0236749, 2020.
Article in English | MEDLINE | ID: mdl-32730308

ABSTRACT

Each resident-type (R-type) killer whale pod has a set of stereotyped calls that are culturally transmitted from mother to offspring. The functions of particular call types are not yet clearly understood, but it is believed that calls with two independently modulated frequency components (biphonic calls) play an important role in pod communication and cohesion at long ranges. In this study we examined the possible functions of biphonic calls in R-type killer whales. First, we tested the hypothesis that the additional component enhances the potential of a call to identify the family affiliation. We found that the similarity patterns of the lower- and higher frequency components across the families were largely unrelated. Calls were classified more accurately to their respective family when both lower- and higher-frequency components were considered. Second, we tested the long-range detectability of the lower- and higher-frequency components. After adjusting the received levels by the killer whale hearing sensitivity to different frequency ranges, the sensation level of the higher-frequency component was higher than the amplitude of the lower-frequency component. Our results suggest that the higher-frequency component of killer whale biphonic calls varies independently of the lower-frequency component, which enhances the efficiency of these calls as family markers. The acoustic variation of the higher-frequency component allows the recognition of family identity of a caller even if the shape of the lower-frequency component accidentally becomes similar in unrelated families. The higher-frequency component can also facilitate family recognition when the lower-frequency component is masked by low-frequency noise.


Subject(s)
Acoustics , Recognition, Psychology , Social Behavior , Stereotyped Behavior/physiology , Vocalization, Animal/physiology , Whale, Killer/physiology , Animals , Female , Mothers , Noise
14.
Proc Natl Acad Sci U S A ; 117(12): 6590-6598, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32152110

ABSTRACT

The effects of predator intimidation on habitat use and behavior of prey species are rarely quantified for large marine vertebrates over ecologically relevant scales. Using state space movement models followed by a series of step selection functions, we analyzed movement data of concurrently tracked prey, bowhead whales (Balaena mysticetus; n = 7), and predator, killer whales (Orcinus orca; n = 3), in a large (63,000 km2), partially ice-covered gulf in the Canadian Arctic. Our analysis revealed pronounced predator-mediated shifts in prey habitat use and behavior over much larger spatiotemporal scales than previously documented in any marine or terrestrial ecosystem. The striking shift from use of open water (predator-free) to dense sea ice and shorelines (predators present) was exhibited gulf-wide by all tracked bowheads during the entire 3-wk period killer whales were present, constituting a nonconsumptive effect (NCE) with unknown energetic or fitness costs. Sea ice is considered quintessential habitat for bowhead whales, and ice-covered areas have frequently been interpreted as preferred bowhead foraging habitat in analyses that have not assessed predator effects. Given the NCEs of apex predators demonstrated here, however, unbiased assessment of habitat use and distribution of bowhead whales and many marine species may not be possible without explicitly incorporating spatiotemporal distribution of predation risk. The apparent use of sea ice as a predator refuge also has implications for how bowhead whales, and likely other ice-associated Arctic marine mammals, will cope with changes in Arctic sea ice dynamics as historically ice-covered areas become increasingly ice-free during summer.


Subject(s)
Bowhead Whale/physiology , Ecosystem , Ice Cover , Whale, Killer/physiology , Animals , Arctic Regions , Canada , Marine Biology , Models, Biological , Population Dynamics , Predatory Behavior
15.
PLoS One ; 14(12): e0226206, 2019.
Article in English | MEDLINE | ID: mdl-31841529

ABSTRACT

Since the work of Tower in the 1950s, we have come to expect lower neuron density in the cerebral cortex of larger brains. We studied dolphin brains varying from 783 to 6215g. As expected, average neuron density in four areas of cortex decreased from the smallest to the largest brain. Despite having a lower neuron density than smaller dolphins, the killer whale has more gray matter and more cortical neurons than any mammal, including humans. To begin a study of non-dolphin toothed whales, we measured a 596g brain of a pygmy sperm whale and a 2004g brain of a Cuvier's beaked whale. We compared neuron density of Nissl stained cortex of these two brains with those of the dolphins. Non-dolphin brains had lower neuron densities compared to all of the dolphins, even the 6215g brain. The beaked whale and pygmy sperm whale we studied dive deeper and for much longer periods than the dolphins. For example, the beaked whale may dive for more than an hour, and the pygmy sperm whale more than a half hour. In contrast, the dolphins we studied limit dives to five or 10 minutes. Brain metabolism may be one feature limiting dolphin dives. The brain consumes an oversized share of oxygen available to the body. The most oxygen is used by the cortex and cerebellar gray matter. The dolphins have larger brains, larger cerebellums, and greater numbers of cortex neurons than would be expected given their body size. Smaller brains, smaller cerebellums and fewer cortical neurons potentially allow the beaked whale and pygmy sperm whale to dive longer and deeper than the dolphins. Although more gray matter, more neurons, and a larger cerebellum may limit dolphins to shorter, shallower dives, these features must give them some advantage. For example, they may be able to catch more elusive individual high-calorie prey in the upper ocean.


Subject(s)
Cerebellum/anatomy & histology , Cerebral Cortex/pathology , Diving/physiology , Dolphins/physiology , Neurons/pathology , Whales/physiology , Animals , Autopsy/veterinary , Brain Mapping/veterinary , Cell Count , Cerebellum/pathology , Dolphins/anatomy & histology , Organ Size , Positron-Emission Tomography/veterinary , Time Factors , Whale, Killer/anatomy & histology , Whale, Killer/physiology , Whales/anatomy & histology
16.
Sci Rep ; 9(1): 14951, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628371

ABSTRACT

Behavioral data can be important for effective management of endangered marine predators, but can be challenging to obtain. We utilized suction cup-attached biologging tags equipped with stereo hydrophones, triaxial accelerometers, triaxial magnetometers, pressure and temperature sensors, to characterize the subsurface behavior of an endangered population of killer whales (Orcinus orca). Tags recorded depth, acoustic and movement behavior on fish-eating killer whales in the Salish Sea between 2010-2014. We tested the hypotheses that (a) distinct behavioral states can be characterized by integrating movement and acoustic variables, (b) subsurface foraging occurs in bouts, with distinct periods of searching and capture temporally separated from travel, and (c) the probabilities of transitioning between behavioral states differ by sex. Using Hidden Markov modeling of two acoustic and four movement variables, we identified five temporally distinct behavioral states. Persistence in the same state on a subsequent dive had the greatest likelihood, with the exception of deep prey pursuit, indicating that behavior was clustered in time. Additionally, females spent more time at the surface than males, and engaged in less foraging behavior. These results reveal significant complexity and sex differences in subsurface foraging behavior, and underscore the importance of incorporating behavior into the design of conservation strategies.


Subject(s)
Behavior, Animal , Diving , Feeding Behavior , Sex Characteristics , Whale, Killer/physiology , Accelerometry , Acoustics , Animals , Biological Evolution , Female , Male , Markov Chains , Movement , Probability , Regression Analysis , Temperature
17.
J Therm Biol ; 84: 292-310, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31466767

ABSTRACT

There is currently a growing interest in the area of drag reduction. In this work, the thermal effects of body color of some species of aquatics like Orcas and Dusky dolphins are investigated with respect to their swimming routes and geometric and behavioral characteristics. Considering the marine and atmospheric characteristics of these aquatics' routes, a thermal analysis is performed. The surrounding fluxes including the water flux, sun irradiation, and core temperature are considered in an energy balance to determine the skin temperature of the top side of the animal/organism's body. To study the effects of color on the surface temperature of the aquatic species, an experiment is carried out in the water on a flat plate with black and white color. Applying a turbulent analytical solution for heated boundary layers, it will be shown that the black color on the top of the bodies of these marine organisms is very efficient in terms of skin drag reduction. Moreover, to investigate the effects of the temperature on underwater skin friction drag reduction, the turbulent flow is simulated around a flat plate and a 2- dimensional modeled Killer whale at different temperatures. The results show that the top black body color of Orca and Dusky dolphin decreases their skin friction drag by 7%. This study will also provide the reason for this evolution of color scheme of other extremely fast marine animals, such as billfish, whales, and sharks. This method of drag reduction can be considered as one of the effective factors in skin drag reduction of underwater robots.


Subject(s)
Dolphins/physiology , Fishes/physiology , Skin Pigmentation , Skin Temperature , Swimming , Whale, Killer/physiology , Animals
18.
J Exp Biol ; 222(Pt 13)2019 07 11.
Article in English | MEDLINE | ID: mdl-31296536

ABSTRACT

Southern right whales (Eubalaena australis) invest substantial amounts of energy in their calves, while facing the risk of having them predated upon by eavesdropping killer whales (Orcinus orca). We tested the hypothesis that southern right whale mother-calf pairs employ acoustic crypsis to reduce acoustic detectability by such predators. Specifically, we deployed multi-sensor DTAGs on nine lactating whales for a total of 62.9 h in a Western Australian breeding ground, and used a SoundTrap to estimate the concomitant acoustic background noise. Vocalisations were recorded at low rates of <10 calls h-1 (1 call per dive) and at low received levels between 123±8 and 134±10 dB re. 1 µPa RMS depending on call type. We conclude that such acoustic crypsis in southern right whales and other baleen whales decreases the risk of alerting potential predators and hence jeopardizing a substantial energetic investment by the mother.


Subject(s)
Food Chain , Vocalization, Animal , Whale, Killer/physiology , Whales/physiology , Acoustics , Animals , Female , Mothers , Noise , Predatory Behavior , Western Australia
19.
Sci Rep ; 9(1): 10997, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358873

ABSTRACT

Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis - particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository - the Orchive - comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species.


Subject(s)
Vocalization, Animal , Whale, Killer/physiology , Acoustics , Animals , Deep Learning , Female , Male , Neural Networks, Computer , Sound , Sound Spectrography/methods
20.
Zoo Biol ; 38(4): 323-333, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31215081

ABSTRACT

The management of socially complex species in captivity is challenging. Research on their social behavior improves our understanding of interactions in captive animals and captive-group management. We conducted a detailed analysis of social relationships shown by the orcas kept at Loro Parque zoo and their tendency to reconcile after aggressive episodes. Affiliative interactions were the most frequent social activities compared to agonistic or sexual interactions. Within affiliative behaviors, we documented the pattern "gentle tongue bite", where an animal touches the other's tongue with his teeth but does not bite it. Affiliative interactions between a specific pair of orcas occurred significantly more often than expected by chance, and together with low levels of agonistic interactions, indicated particular affinity between some individuals. The most frequently observed low-level agonistic relationship was that of the two older males (Tekoa-Keto); however, they also showed frequent sexual and affiliative interactions. Sexual-like behaviors (pursuit, mount, and penis between males) were found in both sexes. Finally, the observed corrected conciliatory tendency (31.57%) was within the range described for other primate and cetacean species. This study provides a systematic way to assess social interactions as well as conflict management strategies in cetaceans housed in zoos and zoo-like facilities and may help to improve animal welfare and management of animals in controlled environments.


Subject(s)
Behavior, Animal/physiology , Social Behavior , Whale, Killer/physiology , Animals , Animals, Zoo , Female , Male , Whale, Killer/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...