Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Sci Rep ; 14(1): 12682, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830978

ABSTRACT

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Subject(s)
Anoxybacillus , Detergents , Whey , alpha-Amylases , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Whey/metabolism , Whey/chemistry , Anoxybacillus/enzymology , Anoxybacillus/genetics , Detergents/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Starch/metabolism , Starch/chemistry , Temperature
2.
Antonie Van Leeuwenhoek ; 117(1): 85, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811466

ABSTRACT

Kars Kashar cheese is an artisanal pasta-filata type cheese and geographically marked in Eastern Anatolia of Turkey. The aims of this research were to determine for the first time thermophilic lactic acid bacteria (LAB) of Kars Kashar cheese and characterize the technological properties of obtained isolates. In our research, a number of 15 samples of whey were collected from the different villages in Kars. These samples were incubated at 45 °C and used as the source material for isolating thermophilic LAB. A total of 250 colonies were isolated from thermophilic whey, and 217 of them were determined to be presumptive LAB based on their Gram staining and catalase test. A total of 170 isolates were characterized by their phenotypic properties and identified using the MALDI-TOF mass spectrometry method. Phenotypic identification of isolates displayed that Enterococcus and Lactobacillus were the predominant microbiota. According to MALDI-TOF MS identification, 89 isolates were identified as Enterococcus (52.35%), 57 isolates as Lactobacillus (33.53%), 23 isolates as Streptococcus (13.53%), and one isolate as Lactococcus (0.59%). All thermophilic LAB isolates were successfully identified to the species level and it has been observed that MALDI-TOF MS can be successfully used for the identification of selected LAB. The acidification and proteolytic activities of the isolated thermophilic LAB were examined, and the isolates designated for use as starter cultures were also genotypically defined.


Subject(s)
Cheese , Lactobacillales , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Cheese/microbiology , Lactobacillales/isolation & purification , Lactobacillales/classification , Lactobacillales/genetics , Lactobacillales/metabolism , Whey/microbiology , Whey/chemistry , Food Microbiology , Turkey , Lactobacillus/isolation & purification , Lactobacillus/genetics , Lactobacillus/classification , Lactobacillus/metabolism , Enterococcus/isolation & purification , Enterococcus/classification , Enterococcus/genetics , Enterococcus/metabolism
3.
Article in English | MEDLINE | ID: mdl-38791776

ABSTRACT

Using whey, a by-product of the cheese-making process, is important for maximizing resource efficiency and promoting sustainable practices in the food industry. Reusing whey can help minimize environmental impact and produce bio-preservatives for foods with high bacterial loads, such as Mexican-style fresh cheeses. This research aims to evaluate the antimicrobial and physicochemical effect of CFS from Lactobacillus casei 21/1 produced in a conventional culture medium (MRS broth) and another medium using whey (WB medium) when applied in Mexican-style fresh cheese inoculated with several indicator bacteria (Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes). The CFSs (MRS or WB) were characterized for organic acids concentration, pH, and titratable acidity. By surface spreading, CFSs were tested on indicator bacteria inoculated in fresh cheese. Microbial counts were performed on inoculated cheeses during and after seven days of storage at 4 ± 1.0 °C. Moreover, pH and color were determined in cheeses with CFS treatment. Lactic and acetic acid were identified as the primary antimicrobial metabolites produced by the Lb. casei 21/1 fermentation in the food application. A longer storage time (7 days) led to significant reductions (p < 0.05) in the microbial population of the indicator bacteria inoculated in the cheese when it was treated with the CFSs (MRS or WB). S. enterica serovar Typhimurium was the most sensitive bacteria, decreasing 1.60 ± 0.04 log10 CFU/g with MRS-CFS, whereas WB-CFS reduced the microbial population of L. monocytogenes to 1.67 log10 CFU/g. E. coli and S. aureus were the most resistant at the end of storage. The cheese's pH with CFSs (MRS or WB) showed a significant reduction (p < 0.05) after CFS treatment, while the application of WB-CFS did not show greater differences in color (ΔE) compared with MRS-CFS. This study highlights the potential of CFS from Lb. casei 21/1 in the WB medium as an ecological bio-preservative for Mexican-style fresh cheese, aligning with the objectives of sustainable food production and guaranteeing food safety.


Subject(s)
Cheese , Lacticaseibacillus casei , Whey , Cheese/microbiology , Cheese/analysis , Lacticaseibacillus casei/metabolism , Whey/chemistry , Whey/microbiology , Food Microbiology , Hydrogen-Ion Concentration , Food Preservation/methods , Mexico , Fermentation
4.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695399

ABSTRACT

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Subject(s)
Buttermilk , Cheese , Goats , Lipidomics , Whey , Animals , Buttermilk/analysis , Cheese/analysis , Whey/chemistry , Phospholipids/analysis , Phospholipids/chemistry , Glycolipids/chemistry , Milk/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Lipids/chemistry , Lipids/analysis
5.
Appl Microbiol Biotechnol ; 108(1): 354, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819482

ABSTRACT

Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.


Subject(s)
Protein Hydrolysates , Whey Proteins , Whey Proteins/metabolism , Protein Hydrolysates/metabolism , Protein Hydrolysates/chemistry , Prebiotics , Humans , Whey/chemistry , Whey/metabolism , Lactose/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/genetics
6.
Food Funct ; 15(11): 5987-5999, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742436

ABSTRACT

The considerable value of whey is evident from its significant potential applications and contributions to the functional food and nutraceutical market. The by-products were individually obtained during functional chhurpi and novel soy chhurpi cheese production using defined lactic acid bacterial strains of Sikkim Himalaya's traditional chhurpi. Hydrolysis of substrate proteins by starter proteinases resulted in a comparable peptide content in whey and soy whey which was associated with antioxidant and ACE inhibition potential. Peptidome analysis of Lactobacillus delbrueckii WS4 whey and soy whey revealed the presence of several bioactive peptides including the multifunctional peptides PVVVPPFLQPE and YQEPVLGPVRGPFPIIV. In silico analyses predicted the antihypertensive potential of whey and soy whey peptides with strong binding affinity for ACE active sites. QSAR models predicted the highest ACE inhibition potential (IC50) for the ß-casein-derived decapeptide PVRGPFPIIV (0.95 µM) and the Kunitz trypsin inhibitor protein-derived nonapeptide KNKPLVVQF (16.64 µM). Chhurpi whey and soy whey can be explored as a valuable source of diverse and novel bioactive peptides for applications in designer functional foods development.


Subject(s)
Lactobacillus delbrueckii , Peptides , Lactobacillus delbrueckii/metabolism , Peptides/chemistry , Peptides/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cheese/microbiology , Cheese/analysis , Whey/chemistry , Functional Food , Antioxidants/pharmacology , Antioxidants/chemistry , Whey Proteins/chemistry
7.
Mol Nutr Food Res ; 68(8): e2300909, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602246

ABSTRACT

SCOPE: In cases where breast milk is unavailable or inadequate, hydrolyzed infant formula is recommended as the primary alternative. The aim of this study is to assess and compare the allergenicity of two partially hydrolyzed whey-based formulas (PHF-Ws) using serum samples from patients with cow's milk allergy (CMA). METHODS AND RESULTS: LC-MS/MS technology is used to investigate the peptide distribution in both samples. The immunoreactivity of two PHF-Ws in 27 serum samples from 50 Chinese infants (02 years) with CMA is analyzed. The results demonstrate that even with a similar a degree of hydrolysis (DH), primary protein sources, peptides with molecular weights <5 kDa, and differences in the number of residual allergenic epitopes in the hydrolyzed peptide segments can lead to varying immune responses. CONCLUSION: The two PHF-Ws have notably high intolerance rates, exceeding 10% among infants with CMA. Therefore, suggesting that PHF-Ws may not be suitable for infants and children with CMA in China.


Subject(s)
Allergens , Infant Formula , Milk Hypersensitivity , Whey Proteins , Humans , Milk Hypersensitivity/immunology , Infant , China , Female , Allergens/immunology , Male , Hydrolysis , Tandem Mass Spectrometry , Whey/chemistry , Animals
8.
Nutrients ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674818

ABSTRACT

This study investigated the characteristics of Lactobacillus helveticus-derived whey-calcium chelate (LHWCC) and its effect on the calcium absorption and bone health of rats. Fourier-transform infrared spectroscopy showed that carboxyl oxygen atoms, amino nitrogen atoms, and phosphate ions were the major binding sites with calcium in LHWCC, which has a sustained release effect in simulated in vitro digestion. LHWCC had beneficial effects on serum biochemical parameters, bone biomechanics, and the morphological indexes of the bones of calcium-deficient rats when fed at a dose of 40 mg Ca/kg BW for 7 weeks. In contrast to the inorganic calcium supplement, LHWCC significantly upregulated the gene expression of transient receptor potential cation V5 (TRPV5), TRPV6, PepT1, calcium-binding protein-D9k (Calbindin-D9k), and a calcium pump (plasma membrane Ca-ATPase, PMCA1b), leading to promotion of the calcium absorption rate, whereas Ca3(PO4)2 only upregulated the TRPV6 channel in vivo. These findings illustrate the potential of LHWCC as an organic calcium supplement.


Subject(s)
Bone and Bones , Calcium , Lactobacillus helveticus , Animals , Rats , Calcium/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Male , Rats, Sprague-Dawley , Whey/chemistry , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Calcium, Dietary/pharmacology , Calcium, Dietary/administration & dosage , Dietary Supplements , Calcium Channels/metabolism , Calcium Chelating Agents/pharmacology
9.
J Dairy Res ; 91(1): 99-107, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38622952

ABSTRACT

The experiments reported in this research paper aimed to evaluate the physico-chemical and sensory characteristics, microbial quality and antioxidant potential of goat's milk paneer during storage (0-12 d, 4 ± 1°C). The juices from five different citrus fruits were used as coagulant (treatments) to make goat's milk paneer. The pH of all paneer samples decreased during storage whereas titratable acidity increased. Ash (%) fat (%) and protein (%) of paneer increased slightly during storage, whereas sensory perception decreased. The juices from all the citrus fruit varieties showed high contents of total phenolics and total flavonoids which ultimately influenced ferric reducing antioxidant power, total antioxidant capacity and radical scavenging activities. As the contents of different juices were also retained in the paneer matrix, so paneer coagulated with citrus juices also showed encouraging results in terms of total phenolic and flavonoid contents, ferric reducing antioxidant power and radical scavenging activities. Amongst all the paneers, the most promising was that coagulated by kinnow juice. In addition, the whey obtained from paneer coagulated by citrus juices also showed appreciable quantities of total phenolic and flavonoid contents, thereby beneficially influencing ferric reducing antioxidant power andradical scavenging activities. It is concluded that citrus juices improve the sensorial quality and antioxidant potential of goat's milk paneer and its whey.


Subject(s)
Antioxidants , Citrus , Flavonoids , Fruit and Vegetable Juices , Goats , Milk , Phenols , Whey , Animals , Citrus/chemistry , Antioxidants/analysis , Fruit and Vegetable Juices/analysis , Flavonoids/analysis , Milk/chemistry , Whey/chemistry , Phenols/analysis , Food Storage , Food Handling/methods
10.
Food Chem ; 448: 139119, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547703

ABSTRACT

Buffalo colostrum is the initial mammary secretion after parturition, consisting of nutritional and bioactive components. In this study, we conducted a proteomic analysis of buffalo colostrum whey to identify bioactive proteins and peptides. A total of 107 differentially expressed proteins (DEPs) were identified in buffalo colostrum whey compared to those in mature milk. Gene Ontology analysis revealed that DEPs were primarily associated with immune response and tissue development. KEGG pathway enrichment suggested that colostrum actively enhances nascent immunity involved in interleukin and interferon signaling pathways. Furthermore, candidate antimicrobial peptides (AMPs) of whey protein hydrolysates from buffalo colostrum were characterized, which exhibits broad-spectrum activity against gram-positive and gram-negative pathogens. Overall, this study improves our understanding of protein variations in buffalo lactation, and contributes to the development of AMPs from buffalo colostrum.


Subject(s)
Antimicrobial Peptides , Buffaloes , Colostrum , Milk , Proteomics , Whey Proteins , Animals , Colostrum/chemistry , Colostrum/metabolism , Female , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/analysis , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/metabolism , Milk/chemistry , Whey Proteins/chemistry , Whey Proteins/metabolism , Whey Proteins/analysis , Whey/chemistry , Whey/metabolism
11.
J Hazard Mater ; 469: 133992, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38460262

ABSTRACT

Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent anthropogenic chemicals that are widely distributed in the environment and pose significant risks to human health. Foam fractionation has emerged as a promising method to recover PFOS/PFOA from water. However, PFOS/PFOA concentrations in wastewater are often inadequate to generate stable foams due to their high critical micelle concentrations and the addition of a cosurfactant is necessary. In this study, we developed whey soy protein (WSP) as a green frother and collector derived from soybean meal (SBM), which is an abundant and cost-effective agro-industrial residue. WSP exhibited excellent foaming properties across a wide pH range and demonstrated strong collection capabilities that enhanced the recovery of PFOS/PFOA. The mechanism underlying this collection ability was elucidated through various methods, revealing the involvement of electrostatic attraction, hydrophobic interaction, and hydrogen bonding. Furthermore, we designed a double plate internal to improve the enrichment of PFOS/PFOA by approximately 2.3 times while reducing water recovery. Under suitable conditions (WSP concentration: 300 mg/L, pH: 6.0, air flowrate: 300 mL/min), we achieved high recovery percentages of 94-98% and enrichment ratios of 7.5-12.8 for PFOS/PFOA concentrations ranging from 5 to 20 mg/L. This foam fractionation process holds great promise for the treatment of PFOS/PFOA and other per- and polyfluoroalkyl substances.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Water , Soybean Proteins , Whey/chemistry , Whey Proteins , Fluorocarbons/analysis , Caprylates/analysis , Alkanesulfonic Acids/analysis , Water Pollutants, Chemical/analysis
12.
J Dairy Res ; 91(1): 108-115, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38494756

ABSTRACT

This research paper addresses the hypotheses that Kluyveromyces marxianus can be cultured with good alcohol production on different whey-derived matrices, and that the fermented product can be used in order to develop alcoholic beverages with acceptable sensory characteristics by mixtures with yeast-fermented fruit-based matrices. Growth and fermentative characteristics of Kluyveromyces marxianus LFIQK1 in different whey-derived matrices were explored by culturing (24 h, 30°C) on reconstituted whey, demineralized whey, heat-treated whey and milk permeate media. High lactose consumption, ethanol production and yield were observed. Reconstituted whey matrix was selected for mixing with orange or strawberry juices fermented using Saccharomyces cerevisiae to obtain alcoholic beverages (W-OR and W-ST, respectively). Consumer evaluation of beverages was performed using acceptability and Check-All-That-Apply (CATA) questions. Good acceptance was observed, significantly higher for W-ST than for W-OR. CATA questions gave information about organoleptic characteristics of beverages. Penalty analysis showed W-R and W-ST were positively associated with smooth/refreshing and fruity/natural, respectively. Liking was represented, accordingly with penalty analysis, by natural/refreshing. A novel alternative for utilization of whey and whey-related matrices by alcoholic beverages production with natural ingredients is presented.


Subject(s)
Alcoholic Beverages , Fermentation , Fruit and Vegetable Juices , Kluyveromyces , Whey , Kluyveromyces/metabolism , Whey/chemistry , Alcoholic Beverages/analysis , Fruit and Vegetable Juices/analysis , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Taste , Humans
13.
Article in English | MEDLINE | ID: mdl-38319919

ABSTRACT

In the category of sports supplements, whey protein powder is one of the popular supplements for muscle building applications. Therefore, verification of the sport supplements as authentic products has become a universal concern. This work aimed to propose vibrational spectroscopy including near infrared (NIR) and infrared (IR) as rapid and non-destructive testing tools for the detection and quantification of maltodextrin, milk powder and milk whey powder in whey protein supplements. Initially, principal component analysis was applied to data for pattern recognition and the results displayed a fine pattern of discrimination. Partial least square discrimination analysis (PLS-DA) and K-nearest neighbours (KNN) were exploited as supervised method modelling classification. This process was done in order to respond to two vital questions whether the sample is adulterated or not and what is the kind of adulteration. PLS-DA showed better classification results rather than KNN according to the figure of merits of the model. Partial least square regression (PLSR) was employed on pre-treated spectra to quantify the amount of adulteration in sport whey supplements. Eventually, it seems vibrational spectroscopy could be implemented as a simple, and low-cost analysis method for the detection and quantification of mentioned adulterants in whey protein supplements.


Subject(s)
Food Contamination , Whey , Whey/chemistry , Whey Proteins/analysis , Powders , Food Contamination/analysis , Spectrum Analysis , Least-Squares Analysis
14.
Environ Res ; 251(Pt 1): 118525, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38408629

ABSTRACT

Cheese whey (CW) and dairy manure (DM) are the main residues from the dairy industry, both of which can led to significant negative environment impacts if not properly managed. However, their combined anaerobic digestion represents an opportunity to obtain bioenergy and a stabilised material as a soil improver on the farm. Biochemical potential of methane (BMP) assays were carried out at psychrophilic conditions (20 °C) to analyse the influence on biomethane production of different CW:DM mixtures (% w/w) at different of inoculum-to-substrate ratios (ISR). Based on the BMP results, a life cycle assessment (LCA) of the cheese manufacturing process was carried out considering two scenarios (i) considering the current process, where propane gas and electricity are used for cheese production (ii) the incorporation of the biogas generated in the cheese production process in the company. BMP results showed that the best mixture between CW and DM was 65:35 (weight basis) at an organic load of 0.6 gVS/L (ISR of X). The LCA showed that CW and DM anaerobic digestion allowed to reduce the cheese manufacturing carbon footprint from through the substitution of propane by the biogas produced, changing from 5.5 to 3.1 kg CO2-eq/kg cheese produced, which indicates that according to the monthly production (633.6 kg) it would stop emitting about 1519 kg CO2-eq, i.e. a saving in terms of emissions of approximately 43,6% of the total currently generated.


Subject(s)
Biofuels , Cheese , Dairying , Manure , Whey , Manure/analysis , Cheese/analysis , Cheese/microbiology , Anaerobiosis , Biofuels/analysis , Whey/chemistry , Methane/analysis , Animals
15.
J Environ Manage ; 351: 119934, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176384

ABSTRACT

HiSorb and solid-phase microextraction (SPME), two environmentally friendly micro-extraction techniques based on the same fundamental principles, were evaluated for their extraction efficiency of volatile organic compounds (VOCs) from goat cheese whey wastewater. For this purpose, a sample preparation method based on the headspace-HiSorb technique was developed and evaluated for its efficiency in terms of the amount of extracted compounds and reproducibility of results. Thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) and GC/MS analytical methods were used to perform the wastewater analysis, respectively. The experimental parameters of HiSorb were evaluated in terms of probe coating, extraction time, stirring speed, sample volume, extraction temperature and salt addition. Under optimal extraction conditions, it was observed that the use of the divinylbenzene/carbon wide range/polydimethylsiloxane (DVB/CWR/PDMS) triple coating for HiSorb and DVB/Carboxen (CAR)/PDMS for SPME, was best suited to extract a broader range of VOCs with higher peak intensities. A total of 34 VOCs were extracted and determined with the DVB/CWR/PDMS HiSorb probe, while only 23 VOCs were determined with the conventional DVB/CAR/PDMS SPME fiber. The DVB/CWR/PDMS HiSorb probe has a higher adsorbent capacity which results in a higher sensitivity for VOCs compared to the DVB/CAR/PDMS SPME fiber. Furthermore, the HiSorb technique exhibits better reproducibility, as indicated by the lower relative standard deviation (RSD) of 3.7% compared to 7.1% for SPME. Therefore, the HiSorb technique is an effective method for detecting VOCs in complex matrices, such as wastewater.


Subject(s)
Cheese , Volatile Organic Compounds , Animals , Volatile Organic Compounds/analysis , Wastewater , Whey/chemistry , Solid Phase Microextraction/methods , Reproducibility of Results , Cheese/analysis , Goats
16.
J Dairy Sci ; 107(2): 683-694, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709016

ABSTRACT

A side effect of the raised consumption of Greek yogurt is the generation of massive amounts of yogurt acid whey (YAW). The dairy industry has tried several methods for handling these quantities, which constitute an environmental problem. Although the protein content of YAW is relatively low, given the huge amounts of produced YAW, the final protein amount in the produced YAW should not be underestimated. Taking into consideration the increased interest for bioactive peptides and the increased demand for dietary proteins, combined with protein and peptides content of YAW, efforts should be made toward reintroducing the latter in the food supply chain. In this context and in view of the prevalent dietary iron deficiency problem, the objective of the present study was the investigation of YAW fractions' effect on Fe bioavailability. With this purpose, an in vitro digest approach, following the INFOGEST protocol, was coupled with the Caco2 cell model. To evaluate whether YAW digest fractions exert positive, negative or neutral effect on Fe bioavailability, they were compared with the ones derived from milk, a well-studied food in this context. Milk and YAW showed the same effectiveness on both Fe bioavailability and the expression of relative genes (DCYTB, DMT1, FPN1, and HEPH). Focusing further on YAW fractions, by comparison with their blank digest control counterparts, it resulted that YAW 3- to 10-kDa digests fraction had a superior effect over the 0- to 3-kDa fraction on Fe-uptake, which was accompanied by a similar effect on the expression of Fe metabolism-related genes (DCYTB, FPN1, and HEPH). Finally, although the 3- to 10-kDa fraction of bovine YAW digests resulted in a nonsignificant increased Fe uptake, compared with the ovine and caprine YAW, the expression of DCYTB and FPN1 genes underlined this difference by showing a similar pattern with statistically significant higher expression of bovine compared with ovine and bovine compared with both ovine and caprine, respectively. The present study deals with the novel concept that YAW may contain factors affecting Fe bioavailability. The results show that it does not exert any negative effect and support the extensive investigation for specific peptides with positive effect as well as that YAW proteins should be further assessed on the prospect that they can be used in human nutrition.


Subject(s)
Iron , Whey , Animals , Sheep , Cattle , Humans , Iron/metabolism , Whey/chemistry , Biological Availability , Yogurt , Caco-2 Cells , Goats/metabolism , Whey Proteins/analysis , Peptides/metabolism
17.
J Dairy Sci ; 107(4): 1903-1915, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37923208

ABSTRACT

Whey butter is the result of the rational use of the whey component, which is cream whey. It is an alternative to milk cream butter. The aim of the presented study was to analyze the effect of storage conditions on water thermodynamics and cholesterol oxidation products as reliable markers of quality and safety. After 4 mo of storage, the water loss (at 3°C and 13°C) and water activity in whey butter (only at 13°C) were reduced. Three-factorial ANOVA showed that the value of water activity was independent of the type of butter in interaction with the storage temperature. The duration of the translational movement of water molecules from the inside of whey butter was definitely longer than in butter and shortened with storage time. This was in contrast to butter. For whey butter stored at 13°C, the kinetics of the movement of water molecules was at the highest speed. In the case of whey butter and butter, the higher storage temperature almost doubled the gloss. Increasing the temperature to 13°C resulted in different yellowness index, chroma, and browning index between whey butter and butter. There were no statistically significant differences in the percentage of fatty acids and triacylglycerols in whey butter and milk cream butter during storage. In whey butter, compared with butter, the cholesterol content was higher, but the amount of cholesterol oxidation products was smaller. However, in whey butter, these amounts increased significantly. The presence of epoxides and their transformation products (i.e., triol cholesterol) was found in storage whey butter.


Subject(s)
Butter , Whey , Animals , Butter/analysis , Whey/chemistry , Temperature , Thermodynamics , Whey Proteins , Cholesterol
18.
Int J Biol Macromol ; 258(Pt 2): 128999, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159692

ABSTRACT

Spirulina platensis, a microalga known for its exceptional nutritional value, especially its bioactive compounds and protein content, holds promise for incorporation into functional food products. Ricotta cheese whey is a byproduct of the production of ricotta cheese that is difficult to use in industries due to its low pH and less favorable processing qualities. This research aimed to create a unique fermented ricotta cheese whey-based beverage supplemented with various Spirulina powder concentrations (0.25 %, 0.5 %, and 0.75 % w/w) cooperated with a mixture of lemon and peppermint juice 10 % and fermented by probiotic (ABT) culture. The physicochemical, rheological, bioactive compounds, microbiological, and sensory properties were evaluated over a storage period of 21 days at cold storage. Spirulina-fermented whey-based beverages with a mixture of lemon and peppermint juice increased the concentration of vitamins, minerals, antioxidants, and total phenolic compounds in the final product. The count of probiotic bacteria in all fermented beverage samples exceeded 7 log CFU/mL throughout storage, indicating that the fermented beverage kept its probiotic properties. The addition of 0.5 % Spirulina significantly improved the final product's structural qualities and sensory acceptance.


Subject(s)
Spirulina , Whey , Whey/chemistry , Spirulina/metabolism , Whey Proteins/chemistry , Fermented Beverages
19.
J Dairy Sci ; 106(12): 8299-8311, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38040197

ABSTRACT

Sweet and, to a lesser extent, acid whey protein ingredients can be used for the formulation of infant nutritional products. Unlike acid whey, sweet whey contains caseinomacropeptide (CMP), a heat-stable peptide liberated from κ-casein during cheese and rennet casein manufacture. Four protein systems-sweet whey (SW) and acid whey (AW), with or without standardization for CMP protein content-were added to skim milk (50/50, wt/wt) and unheated or heated to 85 or 110°C. These 12 samples were assessed for physicochemical stability in the presence of added calcium at pH 6.8. The effect of CMP content on the physicochemical properties of the protein systems was also assessed. Without preheat treatment, mixtures of AW and skim milk (SM) were more heat stable than SW and SM, demonstrating the effect of whey protein type on heat stability. Preheat treatment of the SW in the presence of SM significantly improved the heat stability of the resultant protein systems on subsequent heating. All of the protein systems had significantly lower heat stability with the addition of Ca, although the reduction was significantly smaller for the heated protein systems than the unheated controls. The findings can help identify heating parameters and ingredients for optimizing processing stability and physicochemical characteristics of nutritional beverages such as infant formulations.


Subject(s)
Caseins , Whey , Humans , Animals , Whey Proteins/chemistry , Whey/chemistry , Caseins/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Milk/chemistry , Milk Proteins/analysis
20.
An Acad Bras Cienc ; 95(4): e20200483, 2023.
Article in English | MEDLINE | ID: mdl-37991101

ABSTRACT

The bioconversion of porungo cheese whey to produce ß-galactosidase in batch system was studied. The whey released after curd cutting and precipitation during porungo cheese production was collected in borosilicate flasks. Two strains of Kluyveromyces marxianus, CCT 4086 and CBS 6556, and whey supplementation with different nitrogen sources were evaluated. Different temperatures (30 °C and 37 °C) and pH values (5.0 to 7.0) were investigated to establish the best conditions for enzyme production. The highest enzymatic activity was obtained by K. marxianus CCT 4086 in porungo cheese whey supplemented with yeast extract (16.73 U mL-1). K. marxianus CCT 4086 produced superior ß-galactosidase activity when compared to CBS 6556 for all media tested (ranging from 11.69 to 14.40 U mL-1). Highest ß-galactosidase activity was reached under conditions of pH 7.0 and 30 °C using K. marxianus CCT 4086 in the better media composition. The lowest enzymatic activity was observed at 37 °C for all pH values tested (10.69 U mL-1 to 13.94 U mL-1) and a highest ß-galactosidase activity was reached in pH 7.0 for both two temperatures (11.42 to 15.93 U mL-1). Porungo cheese whey shows potential for industrial ß-galactosidase production by microbial fermentation.


Subject(s)
Cheese , Whey/chemistry , Whey/metabolism , Lactose/analysis , Fermentation , beta-Galactosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...