Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 587
Filter
1.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793694

ABSTRACT

White spot syndrome virus (WSSV) is marked as one of the most economically devastating pathogens in shrimp aquaculture worldwide. Infection of cultured shrimp can lead to mass mortality (up to 100%). Although progress has been made, our understanding of WSSV's infection process and the virus-host-environment interaction is far from complete. This in turn hinders the development of effective mitigation strategies against WSSV. Infection models occupy a crucial first step in the research flow that tries to elucidate the infectious disease process to develop new antiviral treatments. Moreover, since the establishment of continuous shrimp cell lines is a work in progress, the development and use of standardized in vivo infection models that reflect the host-pathogen interaction in shrimp is a necessity. This review critically examines key aspects of in vivo WSSV infection model development that are often overlooked, such as standardization, (post)larval quality, inoculum type and choice of inoculation procedure, housing conditions, and shrimp welfare considerations. Furthermore, the usefulness of experimental infection models for different lines of WSSV research will be discussed with the aim to aid researchers when choosing a suitable model for their research needs.


Subject(s)
Aquaculture , Host-Pathogen Interactions , Penaeidae , White spot syndrome virus 1 , White spot syndrome virus 1/physiology , White spot syndrome virus 1/pathogenicity , Animals , Penaeidae/virology , Disease Models, Animal
2.
Fish Shellfish Immunol ; 150: 109638, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754650

ABSTRACT

C-type lectins (CTLs) are glycan-binding pattern recognition receptors (PRRs) that can bind to carbohydrates on pathogen surfaces, triggering immune responses in shrimp innate immunity. In this study, a unique Ca2+-inhibited CTL named FcLec was identified and characterized in Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA sequence of FcLec was 976 bp (GenBank accession number KU361826), with a 615 bp open reading frame (ORF) encoding 204 amino acids. FcLec possesses a C-type lectin-like domain (CTLD) containing four conserved cysteines (Cys105, Cys174, Cys192, and Cys200) and two sugar-binding site structures (QPD and LNP). The tertiary structure of FcLec deduced revealed three α-helices and eight ß-pleated sheets. The mRNA expression levels of FcLec in hemocytes and the hepatopancreas were markedly elevated after stimulation with Vibrio anguillarum and white spot syndrome virus (WSSV). The recombinant FcLec protein exhibited Ca2+-independent hemagglutination and bacterial agglutination, but these activities were observed only in the presence of EDTA to chelate metal ions. These findings suggest that FcLec plays important and functionally distinct roles in the shrimp's innate immune response to bacteria and viruses, enriching the current understanding of the relationship between CTL activity and Ca2+ in invertebrates.


Subject(s)
Amino Acid Sequence , Arthropod Proteins , Immunity, Innate , Lectins, C-Type , Penaeidae , Phylogeny , Sequence Alignment , Vibrio , White spot syndrome virus 1 , Animals , Penaeidae/immunology , Penaeidae/genetics , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Lectins, C-Type/chemistry , Immunity, Innate/genetics , Vibrio/physiology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Sequence Alignment/veterinary , White spot syndrome virus 1/physiology , Base Sequence , Calcium/metabolism , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary
3.
Int J Biol Macromol ; 271(Pt 1): 132482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763244

ABSTRACT

White spot syndrome virus (WSSV) is known to upregulate glycolysis to supply biomolecules and energy for the virus's replication. At the viral genome replication stage, lactate dehydrogenase (LDH), a glycolytic enzyme, shows increased activity without any increase in expression. In the present study, yeast 2-hybrid screening was used to identify WSSV proteins that interacted with LvLDH isoform 1 and 2, and these included the WSSV early protein WSSV004. The interaction between WSSV004 and LvLDH1/2 was confirmed by co-immunoprecipitation. Immunofluorescence showed that WSSV004 co-localized with LvLDH1/2 in the cytoplasm. dsRNA silencing experiments showed that WSSV004 was crucial for WSSV replication. However, although WSSV004 silencing led to the suppression of total LvLDH gene expression during the viral late stage, there was nevertheless a significant increase in LvLDH activity at this time. We also used affinity purification-mass spectrometry to identify cellular proteins that interact with WSSV004, and found a total of 108 host proteins and 3 WSSV proteins with which it potentially interacts. Bioinformatics analysis revealed that WSSV004 and its interacting proteins might be responsible for various biological pathways during infection, including vesicular transport machinery and RNA-related functions. Collectively, our study suggests that WSSV004 serves as a multifunctional modulator to facilitate WSSV replication.


Subject(s)
L-Lactate Dehydrogenase , Viral Proteins , Virus Replication , White spot syndrome virus 1 , White spot syndrome virus 1/physiology , Viral Proteins/metabolism , Viral Proteins/genetics , L-Lactate Dehydrogenase/metabolism , Animals , Host-Pathogen Interactions , Protein Binding
4.
PLoS Pathog ; 20(5): e1012228, 2024 May.
Article in English | MEDLINE | ID: mdl-38739679

ABSTRACT

The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.


Subject(s)
Animal Shells , Lipid Metabolism , Penaeidae , White spot syndrome virus 1 , Animals , Penaeidae/virology , Penaeidae/metabolism , Animal Shells/metabolism , Animal Shells/virology , White spot syndrome virus 1/physiology , Lipid Metabolism/physiology , Host-Pathogen Interactions , Lipogenesis/physiology
5.
Fish Shellfish Immunol ; 149: 109548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588870

ABSTRACT

Pentraxins (PTXs) are a family of pattern recognition proteins (PRPs) that play a role in pathogen recognition during infection via pathogen-associated molecular patterns (PAMPs). Here, we characterized a short-chained pentraxin isolated from kuruma shrimp (Marsupenaeus japonicus) hemocytes (MjPTX). MjPTX contains the pentraxin signature HxCxS/TWxS (where x can be any amino acid), although the second conserved residue of this signature differed slightly (L instead of C). In the phylogenetic analysis, MjPTX clustered closely with predicted sequences from crustaceans (shrimp, lobster, and crayfish) displaying high sequence identities exceeding 52.67 %. In contrast, MjPTX showed minimal sequence identity when compared to functionally similar proteins in other animals, with sequence identities ranging from 20.42 % (mouse) to 28.14 % (horseshoe crab). MjPTX mRNA transcript levels increased significantly after artificial infection with Vibrio parahaemolyticus (48 h), White Spot Syndrome Virus (72 h) and Yellow Head Virus (24 and 48 h). Assays done in vitro revealed that recombinant MjPTX (rMjPTX) has an ability to agglutinate Gram-negative and Gram-positive bacteria and to bind microbial polysaccharides and bacterial suspensions in the presence of Ca2+. Taken together, our results suggest that MjPTX functions as a classical pattern recognition protein in the presence of calcium ions, that is capable of binding to specific moieties present on the surface of microorganisms and facilitating their clearance.


Subject(s)
Amino Acid Sequence , Arthropod Proteins , Hemocytes , Penaeidae , Phylogeny , Vibrio parahaemolyticus , Animals , Penaeidae/genetics , Penaeidae/immunology , Hemocytes/immunology , Arthropod Proteins/genetics , Arthropod Proteins/chemistry , Arthropod Proteins/immunology , Vibrio parahaemolyticus/physiology , Immunity, Innate/genetics , Sequence Alignment/veterinary , C-Reactive Protein/genetics , C-Reactive Protein/chemistry , C-Reactive Protein/immunology , Gene Expression Regulation/immunology , Roniviridae/physiology , White spot syndrome virus 1/physiology , Gene Expression Profiling/veterinary , Base Sequence
6.
Dev Comp Immunol ; 156: 105160, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38485065

ABSTRACT

The lacking of stable and susceptible cell lines has hampered research on pathogenic mechanism of crustacean white spot syndrome virus (WSSV). To look for the suitable cell line which can sustain WSSV infection, we performed the studies on WSSV infection in the Spodoptera frugiperda (Sf9) insect cells. In consistent with our previous study in vitro in crayfish hematopoietic tissue cells, the WSSV envelope was detached from nucleocapsid around 2 hpi in Sf9 cells, which was accompanied with the cytoplasmic transport of nucleocapsid toward the cell nucleus within 3 hpi. Furthermore, the expression profile of both gene and protein of WSSV was determined in Sf9 cells after viral infection, in which a viral immediate early gene IE1 and an envelope protein VP28 exhibited gradually increased presence from 3 to 24 hpi. Similarly, the significant increase of WSSV genome replication was found at 3-48 hpi in Sf9 cells after infection with WSSV, indicating that Sf9 cells supported WSSV genome replication. Unfortunately, no assembled progeny virion was observed at 24 and 48 hpi in Sf9 cell nuclei as determined by transmission electron microscope, suggesting that WSSV progeny could not be assembled in Sf9 cell line as the viral structural proteins could not be transported into cell nuclei. Collectively, these findings provide a cell model for comparative analysis of WSSV infection mechanism with crustacean cells.


Subject(s)
Spodoptera , Virion , Virus Assembly , Virus Replication , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Spodoptera/virology , Sf9 Cells , Virion/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Nucleocapsid/metabolism , Nucleocapsid/genetics , DNA Virus Infections/immunology , DNA Virus Infections/virology , Cell Nucleus/metabolism , Cell Nucleus/virology , Genome, Viral , Cell Line
7.
Fish Shellfish Immunol ; 148: 109503, 2024 May.
Article in English | MEDLINE | ID: mdl-38479567

ABSTRACT

Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes ß-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.


Subject(s)
Thymosin , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Astacoidea , Seafood , Antiviral Agents
8.
Article in English | MEDLINE | ID: mdl-38340389

ABSTRACT

As the most important cultural crustacean species worldwide, studies about Pacific white shrimp (Litopenaeus vannamei) have received more attention. It has been well-documented that various pathogens could infect L. vannamei, resulting in huge economic losses. The studies about the responding mechanism of L. vannamei to sole pathogens such as Vibrio parahaemolyticus and white spot virus (WSSV) have been extensively reported, while the studies about the differently responding mechanisms remain unclear. In the present study, we identified the differently expressed genes (DEGs) of L. vannamei hemocytes post V. parahaemolyticus and WSSV infection with RNA-seq technology and compared the DEGs between the two groups. The results showed 2672 DEGs post the V. parahaemolyticus challenge (1079 up-regulated and 1593 down-regulated genes), while 1146 DEGs post the WSSV challenge (1067 up-regulated and 513 down-regulated genes). In addition, we screened the genes that simultaneously respond to WSSV and V. parahaemolyticus (434), solely respond to WSSV (1146), and V. parahaemolyticus challenge (2238), respectively. Six DEGs involved in innate immunity were quantified to validate the RNA-seq results, and the results confirmed the high consistency of both methods. Furthermore, we found plenty of innate immunity-related genes that responded to V. parahaemolyticus and WSSV infection, including pattern recognition receptors (PRRs), the proPO activating system, antimicrobial peptides (AMPs), and other immunity-related proteins. The results revealed that they were differently expressed after different pathogen challenges, demonstrating the complex and specific recognition systems involved in defending against the invasion of different pathogens in the environment. The present study improved our understanding of the molecular response of hemocytes of L. vannamei to V. parahaemolyticus and WSSV stimulation.


Subject(s)
Hemocytes , Penaeidae , Transcriptome , Vibrio parahaemolyticus , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Penaeidae/genetics , Penaeidae/virology , Penaeidae/immunology , Penaeidae/microbiology , Gene Expression Profiling , Arthropod Proteins/genetics , Arthropod Proteins/immunology
9.
mBio ; 15(3): e0313623, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38358252

ABSTRACT

Disease emergence is the consequence of host-pathogen-environment interactions. Ammonia is a key stress factor in aquatic environments that usually increases the risk of pathogenic diseases in aquatic animals. However, the molecular regulatory mechanisms underlying the enhancement of viral infection following ammonia stress remain largely unknown. Here, we found that ammonia stress enhances white spot syndrome virus infection in kuruma shrimp (Marsupenaeus japonicus) by targeting the antiviral interferon-like system through heat shock factor 1 (Hsf1). Hsf1 is an ammonia-induced transcription factor. It regulates the expression of Cactus and Socs2, which encode negative regulators of NF-κB signaling and Jak/Stat signaling, respectively. By inhibiting these two pathways, ammonia-induced Hsf1 suppressed the production and function of MjVago-L, an arthropod interferon analog. Therefore, this study revealed that Hsf1 is a central regulator of suppressed antiviral immunity after ammonia stress and provides new insights into the molecular regulation of immunity in stressful environments. IMPORTANCE: Ammonia is the end product of protein catabolism and is derived from feces and unconsumed foods. It threatens the health and growth of aquatic animals. In this study, we demonstrated that ammonia stress suppresses shrimp antiviral immunity by targeting the shrimp interferon-like system and that heat shock factor 1 (Hsf1) is a central regulator of this process. When shrimp are stressed by ammonia, they activate Hsf1 for stress relief and well-being. Hsf1 upregulates the expression of negative regulators that inhibit the production and function of interferon analogs in shrimp, thereby enhancing white spot syndrome viral infection. Therefore, this study, from a molecular perspective, explains the problem in the aquaculture industry that animals living in stressed environments are more susceptible to pathogens than those living in unstressed conditions. Moreover, this study provides new insights into the side effects of heat shock responses and highlights the complexity of achieving cellular homeostasis under stressful conditions.


Subject(s)
Penaeidae , Virus Diseases , White spot syndrome virus 1 , Animals , Interferons/metabolism , White spot syndrome virus 1/physiology , Ammonia/metabolism , Heat-Shock Response
10.
Fish Shellfish Immunol ; 146: 109432, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331056

ABSTRACT

White Spot Disease is one of the most harmful diseases of the red tail shrimp, which can cause devastating economic losses due to the highest mortality up to 100% within a few days. MicroRNAs (miRNAs) are large class of small noncoding RNAs with the ability to post-transcriptionally repress the translation of target mRNAs. MiRNAs are considered to have a significant role in the innate immune response of crustaceans, particularly in relation to antiviral defense mechanisms. Numerous crustacean miRNAs have been verified to be required in host immune defense against viral infection, however, till present, the miRNAs functions of F. penicillatus defense WSSV infection have not been studied yet. Here in this study, for the first time, miRNAs involved in the F. penicillatus immune defense against WSSV infection were identified using high-throughput sequencing platform. A total of 432 miRNAs were obtained including 402 conserved miRNAs and 30 novel predicted miRNAs. Comparative analysis between the WSSV-challenged group and the control group revealed differential expression of 159 microRNAs in response to WSSV infection. Among these, 48 were up-regulated and 111 were down-regulated. Ten candidate MicroRNAs associated with immune activities were randomly selected for qRT-PCR analysis, which confirming the expression profiling observed in the MicroRNA sequencing data. As a result, most differentially expressed miRNAs were down-regulated lead to increase the expression of various target genes that mediated immune reaction defense WSSV infection, including genes related to signal transduction, Complement and coagulation cascade, Phagocytosis, and Apoptosis. Furthermore, the genes expression of the key members in Toll and Imd signaling pathways and apoptotic signaling were mediated by microRNAs to activate host immune responses including apoptosis against WSSV infection. These results will help to understand molecular defense mechanism against WSSV infection in F. penicillatus and to develop an effective WSSV defensive strategy in shrimp farming.


Subject(s)
MicroRNAs , Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Hepatopancreas , MicroRNAs/metabolism , Immunity, Innate/genetics , Phagocytosis
11.
J Anim Breed Genet ; 141(4): 390-402, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38240192

ABSTRACT

The objective of this study was to define desired genetic gains from economically important traits of Pacific white shrimp (Litopenaeus vannamei) using participatory approaches. Two questionnaires were sent out to 100 Pacific white shrimp farmers in all five Iranian shrimp farming provinces. Questionnaire A (Q-A) includes management factors and farming environments. Moreover, in this questionnaire, farmers were asked to rank the fourth most important traits in shrimp among 10 economic traits in the list for genetic improvement. In questionnaire B (Q-B), priorities of the four traits with the highest value were obtained using pairwise comparison. The results showed that the four most important traits were white spot syndrome virus resistance (WSSV), growth rate before 4 months (GR), acute hepatopancreatic necrosis disease resistance (AHPND), and female total weight at ablation (FTW). Medians of the best individual preference values were WSSV (0.222), GR (0.173), AHPND (0.157), and FTW (0.053). Most disagreements were found between the social group preference values in the commercial products and water salinity categories. Desired genetic gains were 1.71%, 1.57%, 0.53% and 0.31% for GR, AHPND, WSSV and FTW, respectively. This study highlighted that despite environmental and management differences, participatory approaches can achieve desired genetic results for Pacific white shrimp breeding programme.


Subject(s)
Aquaculture , Breeding , Penaeidae , Animals , Penaeidae/genetics , Penaeidae/virology , Penaeidae/growth & development , Aquaculture/methods , Disease Resistance/genetics , Female , Surveys and Questionnaires , White spot syndrome virus 1/physiology
12.
J Virol ; 98(2): e0140823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38189252

ABSTRACT

Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.


Subject(s)
Astacoidea , Autophagy , White spot syndrome virus 1 , Animals , Astacoidea/metabolism , Autophagosomes/metabolism , Qb-SNARE Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins , White spot syndrome virus 1/physiology
13.
Fish Shellfish Immunol ; 146: 109379, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242264

ABSTRACT

Cathepsin C is a cysteine protease widely found in invertebrates and vertebrates, and has the important physiological role participating in proteolysis in vivo and activating various functional proteases in immune/inflammatory cells in the animals. In order to study the role of cathepsin C in the disease resistance of shrimp, we cloned cathepsin C gene (MjcathC) from Marsupenaeus japonicus, analyzed its expression patterns in various tissues, performed MjcathC-knockdown, and finally challenged experimental shrimps with Vibrio alginolyticus and WSSV. The results have shown the full length of MjcathC is 1782 bp, containing an open reading frame of 1350 bp encoding 449 amino acids. Homology analysis revealed that the predicted amino acid sequence of MjcathC shared respectively 88.42 %, 87.36 % and 87.58 % similarity with Penaeus monodon, Fenneropenaeus penicillatus and Litopenaeus vannamei. The expression levels of MjcathC in various tissues of healthy M. japonicus are the highest in the liver, followed by the gills and heart, and the lowest in the stomach. The expression levels of MjcathC were significantly up-regulated in all examined tissues of shrimp challenged with WSSV or V. alginolyticus. After knockdown-MjcathC using RNAi technology in M. japonicus, the expression levels of lectin and heat shock protein 70 in MjcathC-knockdown shrimp were significantly down-regulated, and the mortality of MjcathC-knockdown shrimp challenged by WSSV and V. alginolyticus significantly increased. Knockdown of the MjcathC reduced the resistance of M. japonicus to WSSV and V. alginolyticus. The above results have indicated that cathepsin C may play an important role in the antibacterial and antiviral innate immunity of M. japonicus.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Cathepsin C/genetics , Base Sequence , Gene Expression Regulation , Arthropod Proteins , Cloning, Molecular , Phylogeny , Immunity, Innate/genetics , Disease Resistance/genetics
14.
Fish Shellfish Immunol ; 144: 109286, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097095

ABSTRACT

The forkhead box transcription factor O family protein (FOXO) acts as a transcription factor that regulates biological processes regarding DNA repair, immunity, cell cycle regulation, and other biological processes. In this study, EcFOXO was identified from the ridgetail white prawn, Exopalaemon carinicauda. EcFOXO protein contains multiple low-complexity regions and a forkhead (FH) domain. Phylogenetic tree showed that EcFOXO is clustered with crustacean FOXOs. The amino acid sequences of its FH domain are highly similar to the FH domain of FOXOs from other crustaceans. The expression of EcFOXO is altered after white spot syndrome virus (WSSV) stimulation in hepatopancreas and gills. The relationship between EcFOXO and EcRelish was explored by RNA interference (RNAi). Results showed that EcFOXO and EcRelish could positively regulate each other's expression. The expression levels of various antimicrobial peptides (AMPs) significantly reduced after interfering with EcFOXO or EcRelish. These results suggest a positive regulatory loop between EcFOXO and EcRelish, which participates in the innate immunity of ridgetail white prawn by regulating the expression of AMPs during WSSV infection. This study enriches the knowledge about the regulatory mechanism of FOXO in the innate immunity of crustaceans.


Subject(s)
Palaemonidae , White spot syndrome virus 1 , Animals , Base Sequence , Antimicrobial Peptides , White spot syndrome virus 1/physiology , Phylogeny , Amino Acid Sequence
15.
Fish Shellfish Immunol ; 144: 109299, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104700

ABSTRACT

Cyclophilin A (CypA) or peptidylprolyl isomerase A, plays an important role in protein folding, trafficking, environmental stress, cell signaling and apoptosis etc. In shrimp, the mRNA expression level of PmCypA was stimulated by LPS. In this study, all three types of shrimp hemocytes: hyaline cell, granulocyte and semi-granulocyte expressed the PmCypA protein. The mRNA expression level of PmCypA was found to be up-regulate to four-fold in white spot syndrome virus (WSSV) infected hemocytes at 48 h. Interestingly, PmCypA protein was only detected extracellularly in shrimp plasma at 24 h post WSSV infection. To find out the function of extracellular PmCypA, the recombinant PmCypA (rPmCypA) was produced and administrated in shrimp primary hemocyte cell culture to observe the antiviral properties. In rPmCypA-administrated hemocyte cell culture, the mRNA transcripts of WSSV intermediate early gene, ie1 and early gene, wsv477 were significantly decreased but not that of late gene, vp28. To explore the antiviral mechanism of PmCypA, the expression of PmCypA in shrimp hemocytes was silenced and the expression of immune-related genes were investigated. Surprisingly, the suppression of PmCypA affected other gene expression, decreasing of penaeidin, PmHHAP and PmCaspase and increasing of C-type lectin. Our results suggested that the PmCypA might plays important role in anti-WSSV via apoptosis pathway. Further studies of PmCypA underlying antiviral mechanism are underway to show its biological function in shrimp immunity.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Cyclophilin A/genetics , RNA, Messenger/metabolism , Antiviral Agents/metabolism , Hemocytes
16.
Fish Shellfish Immunol ; 145: 109303, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104694

ABSTRACT

In this study, we examined the impact of geniposide on the innate immunity of the mud crab Scylla paramamosain, specifically in relation to WSSV infection. Through the use of in vitro cell culture experiments, we assessed the effects of geniposide on various parameters of hemocyte activity in S. paramamosain. Our findings revealed that high doses of geniposide inhibited hemocyte growth, with an optimal dose of 100 mg/kg determined. Additionally, we observed that geniposide increased the total hemocyte counts in S. paramamosain following WSSV infection. Geniposide also enhanced the enzymatic activities in hemolymph following treatment. The enzymes affected by geniposide encompassed ACP (acid phosphatase), POD (phenol oxidase catalase), PO (phenoloxidase), SOD (superoxide dismutase), CAT (catalase), and LZM (lysozyme). Furthermore, the activities of ACP, POD, PO, and LZM were also observed to increase subsequent to infection with WSSV. Notably, geniposide was found to enhance the phagocytosis of V. alginolyticus within the hemocytes. Geniposide can reduce hemocyte apoptosis rates after treatment, as well as hemocytes infected with WSSV. Furthermore, geniposide treatment significantly up-regulated the expression level of Myosin, but expression levels of Astakine, C-type lectin (CTL), STAT, JAK, proPO, minichromosome maintenance protein (MCM7), caspase-3 and crustin were down-regulated in the hemocytes. Additionally, geniposide treatment inhibited WSSV replication in hemocytes of S. paramamosain, and enhanced the survival rates of mud crabs following WSSV infection. These experimental results provide evidence that geniposide can improve the immune response by regulating humoral immunity and cellular immunity, and enhance pathogen resistance in S. paramamosain.


Subject(s)
Brachyura , Iridoids , White spot syndrome virus 1 , Animals , Catalase , White spot syndrome virus 1/physiology , Arthropod Proteins/genetics , Immunity, Innate/genetics , Hemocytes , Antiviral Agents
17.
Fish Shellfish Immunol ; 145: 109317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142020

ABSTRACT

Long noncoding RNA (lncRNA) is a potential regulator of biological processes, including immunity, reproduction, and development. Although several transcriptome studies have focused on responses of viral infections in several organisms, the role of lncRNAs in viral responses in shrimp is still unclear. Therefore, this work aimed to identify putative lncRNAs and study their role in white spot syndrome virus (WSSV) infection in white shrimp. The hepatopancreas transcriptome from WSSV infected shrimp was analyzed in silico to identify putative lncRNAs. Among 221,347 unigenes of the de novo assembled transcriptome, 44,539 putative lncRNAs were identified, 32 of which were differentially expressed between WSSV-infected and control shrimp. Five candidate lncRNAs were validated for their expressions in shrimp tissues and in response to WSSV infection. Lnc164 was chosen for further investigation of its role in WSSV infection. Knockdown of lnc164 prolonged survival of shrimp when challenged with WSSV, suggesting a role in shrimp immunity. In addition, lnc164 was not directly involved in the control of total hemocytes and viral loads in hemolymph of WSSV-infected shrimp. A set of lnc164-regulated genes was obtained by RNA sequencing among which 251 transcripts were differentially expressed between lnc164 knockdown and control shrimp. Six immune-related genes were validated for their expression profiles. Our work sheds light on lncRNA profiles in L. vannamei in response to WSSV infection and paves the way to a functional study of lnc164 in host antiviral response.


Subject(s)
Penaeidae , RNA, Long Noncoding , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Hepatopancreas , Transcriptome , Crustacea/genetics
18.
Fish Shellfish Immunol ; 145: 109328, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142022

ABSTRACT

In WSSV pathogenesis, the molecular mechanisms and the key host factors that regulate the viral replication and morphogenesis remain unclear. However, like most viruses, WSSV is known to induce metabolic reprogramming in several metabolic pathways including the host glutamine metabolism, and several recent reports have suggested that the sirtuins SIRT3, SIRT4, and SIRT5, which belong to a family of NAD+-dependent deacetylases, play an important role in this regulation. Here we focus on characterizing LvSIRT4 from Litopenaeus vannamei and investigate its role in regulating glutamine dehydrogenase (GDH), an important enzyme that promotes glutaminolysis and viral replication. We found that LvSIRT4 silencing led to significant decreases in both WSSV gene expression and the number of viral genome copies. Conversely, overexpression of LvSIRT4 led to significant increases in the expression of WSSV genes and the WSSV genome copy number. Immunostaining in Sf9 insect cells confirmed the presence of LvSIRT4 in the mitochondria and the co-localization of LvSIRT4 and LvGDH in the same cellular locations. In vivo gene silencing of LvSIRT4 significantly reduced the gene expression of LvGDH whereas LvSIRT4 overexpression had no effect. However, neither silencing nor overexpression had any effect on the protein expression levels of LvGDH. Lastly, although GDH activity in uninfected shrimp was unchanged, the GDH enzyme activity in WSSV-infected shrimp was significantly increased after both LvSIRT4 silencing and overexpression. This suggests that although there may be no direct regulation, LvSIRT4 might still be able to indirectly regulate LvGDH via the mediation of one or more WSSV proteins that have yet to be identified.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , Glutamine/metabolism , White spot syndrome virus 1/physiology , Genome, Viral , Gene Silencing , Penaeidae/genetics , Virus Replication
19.
Fish Shellfish Immunol ; 142: 109171, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37858788

ABSTRACT

Protein-protein interactions (PPIs) are essential for understanding cell physiology in normal and pathological conditions, as they might involve in all cellular processes. PPIs have been widely used to elucidate the pathobiology of human and plant diseases. Therefore, they can also be used to unveil the pathobiology of infectious diseases in shrimp, which is one of the high-risk factors influencing the success or failure of shrimp production. PPI network analysis, specifically host-pathogen PPI (HP-PPI), provides insights into the molecular interactions between the shrimp and pathogens. This review quantitatively analyzed the research trends within this field through bibliometric analysis using specific keywords, countries, authors, organizations, journals, and documents. This analysis has screened 206 records from the Scopus database for determining eligibility, resulting in 179 papers that were retrieved for bibliometric analysis. The analysis revealed that China and Thailand were the driving forces behind this specific field of research and frequently collaborated with the United States. Aquaculture and Diseases of Aquatic Organisms were the prominent sources for publications in this field. The main keywords identified included "white spot syndrome virus," "WSSV," and "shrimp." We discovered that studies on HP-PPI are currently quite scarce. As a result, we further discussed the significance of HP-PPI by highlighting various approaches that have been previously adopted. These findings not only emphasize the importance of HP-PPI but also pave the way for future researchers to explore the pathogenesis of infectious diseases in shrimp. By doing so, preventative measures and enhanced treatment strategies can be identified.


Subject(s)
Communicable Diseases , Penaeidae , White spot syndrome virus 1 , Animals , Humans , Bibliometrics , China , Thailand , White spot syndrome virus 1/physiology , Host-Pathogen Interactions
20.
Fish Shellfish Immunol ; 142: 109123, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813154

ABSTRACT

The NF-κB pathway plays an important role in immune regulation. Basigin, an immunoglobulin superfamily membrane protein, is involved in the activation of NF-κB. However, its role in NF-κB signaling in response to pathogen infection remains unclear. In this study, we identified the Basigin gene from Pacific white shrimp, Penaeus vannamei, a representative species for studying the innate immune system of invertebrates. Basigin promoted the degradation of the IκB homolog Cactus, facilitated the nuclear translocation of the NF-κB family member Dorsal, and positively regulated the expression of Dorsal pathway downstream antimicrobial peptide genes. Interestingly, recombinant Basigin protein could bind a variety of Gram-positive and Gram-negative bacteria. Silencing of Basigin inhibited the Dorsal signaling activated by V. parahaemolyticus infection and significantly decreased the survival rate of V. parahaemolyticus-infected shrimp. The expression levels of the antimicrobial peptides ALF1 and ALF2 were downregulated, and the phagocytosis of hemocytes was attenuated in Basigin-silenced shrimp. Similar results were observed in shrimp treated with a recombinant extracellular region of the Basigin protein that was able to compete with endogenous Basigin. Therefore, to the best of our knowledge, this study is the first to demonstrate the function of Basigin as a pathogen recognition receptor that activates NF-κB signaling for antibacterial immunity in shrimp.


Subject(s)
Penaeidae , Vibrio parahaemolyticus , White spot syndrome virus 1 , Animals , NF-kappa B/metabolism , Basigin , Anti-Bacterial Agents , Arthropod Proteins , Gram-Negative Bacteria , Gram-Positive Bacteria , Immunity, Innate/genetics , Vibrio parahaemolyticus/physiology , White spot syndrome virus 1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...