Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.494
Filter
1.
Glob Chang Biol ; 30(6): e17354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822629

ABSTRACT

Wildfires directly emit 2.1 Pg carbon (C) to the atmosphere annually. The net effect of wildfires on the C cycle, however, involves many interacting source and sink processes beyond these emissions from combustion. Among those, the role of post-fire enhanced soil organic carbon (SOC) erosion as a C sink mechanism remains essentially unquantified. Wildfires can greatly enhance soil erosion due to the loss of protective vegetation cover and changes to soil structure and wettability. Post-fire SOC erosion acts as a C sink when off-site burial and stabilization of C eroded after a fire, together with the on-site recovery of SOC content, exceed the C losses during its post-fire transport. Here we synthesize published data on post-fire SOC erosion and evaluate its overall potential to act as longer-term C sink. To explore its quantitative importance, we also model its magnitude at continental scale using the 2017 wildfire season in Europe. Our estimations show that the C sink ability of SOC water erosion during the first post-fire year could account for around 13% of the C emissions produced by wildland fires. This indicates that post-fire SOC erosion is a quantitatively important process in the overall C balance of fires and highlights the need for more field data to further validate this initial assessment.


Subject(s)
Carbon Cycle , Wildfires , Soil Erosion , Carbon/analysis , Europe , Soil/chemistry , Carbon Sequestration , Fires , Models, Theoretical
2.
J Am Coll Cardiol ; 83(23): 2291-2307, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38839204

ABSTRACT

Environmental stresses are increasingly recognized as significant risk factors for adverse health outcomes. In particular, various forms of pollution and climate change are playing a growing role in promoting noncommunicable diseases, especially cardiovascular disease. Given recent trends, global warming and air pollution are now associated with substantial cardiovascular morbidity and mortality. As a vicious cycle, global warming increases the occurrence, size, and severity of wildfires, which are significant sources of airborne particulate matter. Exposure to wildfire smoke is associated with cardiovascular disease, and these effects are underpinned by mechanisms that include oxidative stress, inflammation, impaired cardiac function, and proatherosclerotic effects in the circulation. In the first part of a 2-part series on pollution and cardiovascular disease, this review provides an overview of the impact of global warming and air pollution, and because of recent events and emerging trends specific attention is paid to air pollution caused by wildfires.


Subject(s)
Air Pollution , Global Warming , Wildfires , Humans , Air Pollution/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Particulate Matter/adverse effects , Smoke/adverse effects
3.
Glob Chang Biol ; 30(6): e17367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840430

ABSTRACT

Wildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under-recognized. We introduce the concept of the lake smoke-day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke-day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke-days a year, with 89.6% of lakes receiving over 30 lake smoke-days, and lakes in some regions experiencing up to 4 months of cumulative smoke-days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.


Subject(s)
Ecosystem , Lakes , Smoke , Wildfires , Smoke/analysis , North America , Environmental Monitoring
4.
JMIR Res Protoc ; 13: e53454, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833279

ABSTRACT

BACKGROUND: Natural hazards are increasing in frequency and intensity due to climate change. Many of these natural disasters cannot be prevented; what may be reduced is the extent of the risk and negative impact on people and property. Research indicates that the 2019-2020 bushfires in Australia (also known as the "Black Summer Bushfires") resulted in significant psychological distress among Australians both directly and indirectly exposed to the fires. Previous intervention research suggests that communities impacted by natural hazards (eg, earthquakes, hurricanes, and floods) can benefit from interventions that integrate mental health and social support components within disaster preparedness frameworks. Research suggests that disaster-affected communities often prefer the support of community leaders, local services, and preexisting relationships over external supports, highlighting that community-based interventions, where knowledge stays within the local community, are highly beneficial. The Community-Based Disaster Mental Health Intervention (CBDMHI) is an evidence-based approach that aims to increase disaster preparedness, resilience, social cohesion, and social support (disaster-related help-seeking), and decrease mental health symptoms, such as depression and anxiety. OBJECTIVE: This research aims to gain insight into rural Australian's recovery needs post natural hazards, and to enhance community resilience in advance of future fires. Specifically, this research aims to adapt the CBDMHI for the rural Australian context and for bushfires and second, to assess the acceptability and feasibility of the adapted CBDMHI in a rural Australian community. METHODS: Phase 1 consists of qualitative interviews (individual or dyads) with members of the target bushfire-affected rural community. Analysis of these data will include identifying themes related to disaster preparedness, social cohesion, and mental health, which will inform the adaptation. An initial consultation phase is a key component of the adaptation process and, therefore, phase 2 will involve additional discussion with key stakeholders and members of the community to further guide adaptation of the CBDMHI to specific community needs, building on phase 1 inputs. Phase 3 includes identifying and training local community leaders in the adapted intervention. Following this, leaders will co-deliver the intervention. The acceptability and feasibility of the adapted CBDMHI within the community will be evaluated by questionnaires and semistructured interviews. Effectiveness will be evaluated by quantifying psychological distress, resilience, community cohesion, psychological preparedness, and help-seeking intentions. RESULTS: This study has received institutional review board approval and commenced phase 1 recruitment in October 2022. CONCLUSIONS: The study will identify if the adapted CBDMHI is viable and acceptable within a village in the Northern Tablelands of New South Wales, Australia. These findings will inform future scale-up in the broader rural Australian context. If this intervention is well received, the CBDMHI may be valuable for future disaster recovery and preparedness efforts in rural Australia. These findings may inform future scale-up in the broader rural Australian context. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/53454.


Subject(s)
Disaster Planning , Feasibility Studies , Rural Population , Wildfires , Humans , Pilot Projects , Australia , Disaster Planning/organization & administration , Disaster Planning/methods , Community Mental Health Services/organization & administration , Community Mental Health Services/methods , Mental Health , Male , Female , Fires/prevention & control
5.
Nat Commun ; 15(1): 4741, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834542

ABSTRACT

Canopy openings are increasing in Europe's forests, yet the contributions of anthropogenic and ecological agents of disturbance to this increase remain debated. Here we attribute the root cause of all stand-replacing canopy disturbances identified for Europe in the period 1986-2020 from Landsat data (417,000 km²), distinguishing between planned and unplanned canopy openings (i.e., disturbance by human land use versus by wind, bark beetles, and wildfire). We show that canopy openings by humans dominate the European forest disturbance regime, accounting for 82% of the area disturbed. Both planned and unplanned canopy openings increased in the early 21st century (+24% and +30% relative to the late 20th century). Their changes are linked, with simultaneous increases in planned and unplanned canopy openings on 68% of Europe's forest area. We conclude that an important direction for tackling disturbance change in policy and management is to break the link between planned and unplanned canopy openings in Europe's forests.


Subject(s)
Forests , Europe , Humans , Conservation of Natural Resources , Animals , Trees , Wildfires/statistics & numerical data , Wind , Coleoptera/physiology , Forestry
6.
Sci Adv ; 10(23): eadl1252, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848356

ABSTRACT

In California, wildfire risk and severity have grown substantially in the last several decades. Research has characterized extensive adverse health impacts from exposure to wildfire-attributable fine particulate matter (PM2.5), but few studies have quantified long-term outcomes, and none have used a wildfire-specific chronic dose-response mortality coefficient. Here, we quantified the mortality burden for PM2.5 exposure from California fires from 2008 to 2018 using Community Multiscale Air Quality modeling system wildland fire PM2.5 estimates. We used a concentration-response function for PM2.5, applying ZIP code-level mortality data and an estimated wildfire-specific dose-response coefficient accounting for the likely toxicity of wildfire smoke. We estimate a total of 52,480 to 55,710 premature deaths are attributable to wildland fire PM2.5 over the 11-year period with respect to two exposure scenarios, equating to an economic impact of $432 to $456 billion. These findings extend evidence on climate-related health impacts, suggesting that wildfires account for a greater mortality and economic burden than indicated by earlier studies.


Subject(s)
Particulate Matter , Wildfires , California , Particulate Matter/adverse effects , Particulate Matter/analysis , Humans , Environmental Exposure/adverse effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Smoke/adverse effects , Mortality/trends
7.
J Ethnobiol Ethnomed ; 20(1): 60, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845008

ABSTRACT

This study examines the convergence between traditional and scientific knowledge regarding the use of fire and its potential to trigger wildfires, with possible impacts on ecosystems and human well-being. The research encompasses three distinct natural regions of Ecuador: the coast, the highlands, and the Amazon. Data on traditional fire use were collected through semi-structured interviews with 791 members from five local communities. These data were compared with climatic variables (rainfall (mm), relative humidity (%), wind speed (km/h), and wind direction) to understand the climatic conditions conducive to wildfires and their relationship with human perceptions. Furthermore, the severity of fires over the past 4 years (2019-2022) was assessed using remote sensing methods, employing the Normalized Burn Ratio (NBR) and the difference between pre-fire and post-fire conditions (NBR Pre-fire-NBR Post-fire). The results revealed a significant alignment between traditional knowledge, climatic data, and many fires, which were of low severity, suggesting potential benefits for ecosystems. These findings not only enable the identification of optimal techniques and timing for traditional burns but also contribute to human well-being by maintaining a harmonious balance between communities and their environment. Additionally, they provide valuable insights for the development of more inclusive and effective integrated fire management strategies in these natural areas of Ecuador.


Subject(s)
Knowledge , Wildfires , Ecuador , Humans , Male , Fires , Female , Adult , Ecosystem , Middle Aged , Aged
8.
Environ Health ; 23(1): 44, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702770

ABSTRACT

BACKGROUND: The forest fires that ravaged parts of Indonesia in 2015 were the most severely polluting of this century but little is known about their effects on health care utilization of the affected population. We estimate their short-term impact on visit rates to primary and hospital care with particular focus on visits for specific smoke-related conditions (respiratory disease, acute respiratory tract infection (ARTI) and common cold). METHOD: We estimate the short-term impact of the 2015 forest fire on visit rates to primary and hospital care by combining satellite data on Aerosol Optical Depth (AOD) with administrative records from Indonesian National Health Insurance Agency (BPJS Kesehatan) from January 2015-April  2016. The 16 months of panel data cover 203 districts in the islands of Sumatra and Kalimantan before, during and after the forest fires. We use the (more efficient) ANCOVA version adaptation of a fixed effects model to compare the trends in healthcare use of affected districts (with AOD value above 0.75) with control districts (AOD value below 0.75). Considering the higher vulnerability of children's lungs, we do this separately for children under 5 and the rest of the population adults (> 5), and for both urban and rural areas, and for both the period during and after the forest fires. RESULTS: We find little effects for adults. For young children we estimate positive effects for care related to respiratory problems in primary health care facilities in urban areas. Hospital care visits in general, on the other hand, are negatively affected in rural areas. We argue that these patterns arise because accessibility of care during fires is more restricted for rural than for urban areas. CONCLUSION: The severity of the fires and the absence of positive impact on health care utilization for adults and children in rural areas indicate large missed opportunities for receiving necessary care. This is particularly worrisome for children, whose lungs are most vulnerable to the effects. Our findings underscore the need to ensure ongoing access to medical services during forest fires and emphasize the necessity of catching up with essential care for children after the fires, particularly in rural areas.


Subject(s)
Smoke , Wildfires , Indonesia/epidemiology , Humans , Smoke/adverse effects , Child, Preschool , Child , Adult , Infant , Adolescent , Air Pollutants/analysis , Young Adult , Patient Acceptance of Health Care/statistics & numerical data , Male , Middle Aged , Female , Respiratory Tract Diseases/epidemiology , Infant, Newborn , Environmental Exposure
9.
Front Public Health ; 12: 1339700, 2024.
Article in English | MEDLINE | ID: mdl-38741908

ABSTRACT

Wildfire events are becoming increasingly common across many areas of the United States, including North Carolina (NC). Wildfires can cause immediate damage to properties, and wildfire smoke conditions can harm the overall health of exposed communities. It is critical to identify communities at increased risk of wildfire events, particularly in areas with that have sociodemographic disparities and low socioeconomic status (SES) that may exacerbate incurred impacts of wildfire events. This study set out to: (1) characterize the distribution of wildfire risk across NC; (2) implement integrative cluster analyses to identify regions that contain communities with increased vulnerability to the impacts of wildfire events due to sociodemographic characteristics; (3) provide summary-level statistics of populations with highest wildfire risk, highlighting SES and housing cost factors; and (4) disseminate wildfire risk information via our online web application, ENVIROSCAN. Wildfire hazard potential (WHP) indices were organized at the census tract-level, and distributions were analyzed for spatial autocorrelation via global and local Moran's tests. Sociodemographic characteristics were analyzed via k-means analysis to identify clusters with distinct SES patterns to characterize regions of similar sociodemographic/socioeconomic disparities. These SES groupings were overlayed with housing and wildfire risk profiles to establish patterns of risk across NC. Resulting geospatial analyses identified areas largely in Southeastern NC with high risk of wildfires that were significantly correlated with neighboring regions with high WHP, highlighting adjacent regions of high risk for future wildfire events. Cluster-based analysis of SES factors resulted in three groups of regions categorized through distinct SES profiling; two of these clusters (Clusters 2 and 3) contained indicators of high SES vulnerability. Cluster 2 contained a higher percentage of younger (<5 years), non-white, Hispanic and/or Latino residents; while Cluster 3 had the highest mean WHP and was characterized by a higher percentage of non-white residents, poverty, and less than a high school education. Counties of particular SES and WHP-combined vulnerability include those with majority non-white residents, tribal communities, and below poverty level households largely located in Southeastern NC. WHP values per census tract were dispersed to the public via the ENVIROSCAN application, alongside other environmentally-relevant data.


Subject(s)
Vulnerable Populations , Wildfires , North Carolina/epidemiology , Humans , Wildfires/statistics & numerical data , Vulnerable Populations/statistics & numerical data , Socioeconomic Factors , Cluster Analysis , Social Justice
11.
Environ Sci Technol ; 58(19): 8169-8181, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690750

ABSTRACT

Climate change-induced stressors are contributing to the emergence of infectious diseases, including those caused by marine bacterial pathogens such as Vibrio spp. These stressors alter Vibrio temporal and geographical distribution, resulting in increased spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Concurrently, wildfires are increasing in size, severity, frequency, and spread in the built environment due to climate change, resulting in the emission of contaminants of emerging concern. This study aimed to understand the potential effects of urban interface wildfire ashes on Vibrio vulnificus (V. vulnificus) growth and gene expression using transcriptomic approaches. V. vulnificus was exposed to structural and vegetation ashes and analyzed to identify differentially expressed genes using the HTSeq-DESeq2 strategy. Exposure to wildfire ash altered V. vulnificus growth and gene expression, depending on the trace metal composition of the ash. The high Fe content of the vegetation ash enhanced bacterial growth, while the high Cu, As, and Cr content of the structural ash suppressed growth. Additionally, the overall pattern of upregulated genes and pathways suggests increased virulence potential due to the selection of metal- and antibiotic-resistant strains. Therefore, mixed fire ashes transported and deposited into coastal zones may lead to the selection of environmental reservoirs of Vibrio strains with enhanced antibiotic resistance profiles, increasing public health risk.


Subject(s)
Vibrio vulnificus , Vibrio vulnificus/genetics , Wildfires , Gene Expression
12.
J Toxicol Environ Health A ; 87(14): 561-578, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38721998

ABSTRACT

Living conditions are an important modifier of individual health outcomes and may lead to higher allostatic load (AL). However, housing-induced cardiovascular and immune effects contributing to altered environmental responsiveness remain understudied. This investigation was conducted to examine the influence of enriched (EH) versus depleted housing (DH) conditions on cardiopulmonary functions, systemic immune responses, and allostatic load in response to a single wildfire smoke (WS) exposure in mice. Male and female C57BL/6J mice were divided into EH or DH for 22 weeks, and cardiopulmonary assessments measured before and after exposures to either one-hr filtered air (FA) or flaming eucalyptus WS exposure. Male and female DH mice exhibited increased heart rate (HR) and left ventricular mass (LVM), as well as reduced stroke volume and end diastolic volume (EDV) one week following exposure to WS. Female DH mice displayed significantly elevated levels of IL-2, IL-17, corticosterone and hemoglobin A1c (HbA1c) following WS, while female in EH mice higher epinephrine levels were detected. Female mice exhibited higher AL than males with DH, which was potentiated post-WS exposure. Thus, DH increased susceptibility to extreme air pollution in a gender-dependent manner suggesting that living conditions need to be evaluated as a modifier of toxicological responses.


Subject(s)
Housing, Animal , Mice, Inbred C57BL , Smoke , Wildfires , Animals , Female , Male , Mice , Smoke/adverse effects , Allostasis , Air Pollutants , Sex Factors , Heart Rate
13.
Sci Rep ; 14(1): 10706, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729979

ABSTRACT

Wildfires, as an environmental filter, are pivotal ecological disturbances that reshape plant communities and soil dynamics, playing a crucial role in regulating biogeographic patterns and ecosystem services. In this study, we aim to explore the effects of wildfires on forest ecosystems, specifically focusing on the plant-soil feedback mechanisms within the northeastern margin of the Qinghai-Tibet Plateau (QTP). Utilizing Partial Least Squares Path Modeling (PLS-PM), we investigated the interrelationships among soil physicochemical properties, enzyme activities, species diversity, and community stability at varying post-fire recovery stages (5, 15, and 23 years). Results indicated that in the early recovery stages, rapid changes in soil properties such as decreased pH (p < 0.001) and increased nutrient availability facilitate the emergence of early successional species with high resource utilization traits. As the ecosystem evolved toward a climax community, the soil and vegetation exhibit increased stability. Furthermore, soil enzyme activities displayed dynamic patterns that corresponded with changes in soil nutrient content, directly influencing the regeneration and diversity of plant communities. Importantly, our study documented a transition in the influence of soil properties on community stability from direct positive effects in initial recovery phases to negative impacts in later stages, while indirect benefits accrue through increased species diversity and enzyme activity. Vegetation composition and structure changed dynamically with recovery time during community succession. Plant nutrient absorption and accumulation affected nutrient dynamics in the soil, influencing plant regeneration, distribution, and diversity. Our results underscore the complex interactions between soil and vegetation that drive the recovery dynamics post-wildfire, highlighting the resilience of forest ecosystems to fire disturbances. This study contributes to the understanding of post-fire recovery processes and offers valuable insights for the management and restoration of fire-affected forest ecosystems.


Subject(s)
Ecosystem , Soil , Wildfires , Soil/chemistry , Tibet , Forests , Biodiversity , Plants/metabolism
14.
BMJ Open ; 14(5): e082381, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719283

ABSTRACT

INTRODUCTION: Wildfires and deforestation potentially have direct effects on multiple health outcomes as well as indirect consequences for climate change. Tropical rainforest areas are characterised by high rainfall, humidity and temperature, and they are predominantly found in low-income and middle-income countries. This study aims to synthesise the methods, data and health outcomes reported in scientific papers on wildfires and deforestation in these locations. METHODS AND ANALYSIS: We will carry out a scoping review according to the Joanna Briggs Institute's (JBI) manual for scoping reviews and the framework proposed by Arksey and O'Malley, and Levac et al. The search for articles was performed on 18 August 2023, in 16 electronic databases using Medical Subject Headings terms and adaptations for each database from database inception. The search for local studies will be complemented by the manual search in the list of references of the studies selected to compose this review. We screened studies written in English, French, Portuguese and Spanish. We included quantitative studies assessing any human disease outcome, hospitalisation and vital statistics in regions of tropical rainforest. We exclude qualitative studies and quantitative studies whose outcomes do not cover those of interest. The text screening was done by two independent reviewers. Subsequently, we will tabulate the data by the origin of the data source used, the methods and the main findings on health impacts of the extracted data. The results will provide descriptive statistics, along with visual representations in diagrams and tables, complemented by narrative summaries as detailed in the JBI guidelines. ETHICS AND DISSEMINATION: The study does not require an ethical review as it is meta-research and uses published, deidentified secondary data sources. The submission of results for publication in a peer-reviewed journal and presentation at scientific and policymakers' conferences is expected. STUDY REGISTRATION: Open Science Framework (https://osf.io/pnqc7/).


Subject(s)
Climate Change , Conservation of Natural Resources , Rainforest , Wildfires , Humans , Tropical Climate , Review Literature as Topic , Research Design
15.
PLoS One ; 19(5): e0302699, 2024.
Article in English | MEDLINE | ID: mdl-38781185

ABSTRACT

In anticipation of growing wildfire management challenges, the Canadian government is investing in WildFireSat, an Earth observation satellite mission designed to collect data in support of Canadian wildfire management. Although costs of the mission can be reasonably estimated, the benefits of such an investment are unknown. Here we forecast the possible benefits of WildFireSat via an avoided cost approach. We consider five socio-economic components: suppression costs (fixed and variable), timber losses, property, asset and infrastructure losses, evacuation costs, and smoke related health costs. Using a Monte Carlo analysis, we evaluated a range of possible changes to these components based on expert opinions. The resulting Net Present Value (NPV) estimates depend on the presumed impact of using WildFireSat decision support data products, with pessimistic and conservative assumptions generating mission costs that typically exceed potential benefits by 1.16 to 1.59 times, while more optimistic assumptions generate benefits in excess of costs by 8.72 to 10.48 times. The analysis here excludes some possibly significant market and non-market impacts expected from WildFireSat due to data limitations; accounting for these additional impacts would likely generate positive NPVs under even cautious impact assumptions.


Subject(s)
Cost-Benefit Analysis , Wildfires , Canada , Humans , Environmental Monitoring/methods , Environmental Monitoring/economics , Monte Carlo Method
17.
Part Fibre Toxicol ; 21(1): 27, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797836

ABSTRACT

BACKGROUND: Rural regions of the western United States have experienced a noticeable surge in both the frequency and severity of acute wildfire events, which brings significant challenges to both public safety and environmental conservation efforts, with impacts felt globally. Identifying factors contributing to immune dysfunction, including endocrinological phenotypes, is essential to understanding how hormones may influence toxicological susceptibility. METHODS: This exploratory study utilized male and female C57BL/6 mice as in vivo models to investigate distinct responses to acute woodsmoke (WS) exposure with a focus on sex-based differences. In a second set of investigations, two groups were established within the female mouse cohort. In one group, mice experienced ovariectomy (OVX) to simulate an ovarian hormone-deficient state similar to surgical menopause, while the other group received Sham surgery as controls, to investigate the mechanistic role of ovarian hormone presence in driving immune dysregulation following acute WS exposure. Each experimental cohort followed a consecutive 2-day protocol with daily 4-h exposure intervals under two conditions: control HEPA-filtered air (FA) and acute WS to simulate an acute wildfire episode. RESULTS: Metals analysis of WS particulate matter (PM) revealed significantly increased levels of 63Cu, 182W, 208Pb, and 238U, compared to filtered air (FA) controls, providing insights into the specific metal components most impacted by the changing dynamics of wildfire occurrences in the region. Male and female mice exhibited diverse patterns in lung mRNA cytokine expression following WS exposure, with males showing downregulation and females displaying upregulation, notably for IL-1ß, TNF-α, CXCL-1, CCL-5, TGF-ß, and IL-6. After acute WS exposure, there were notable differences in the responses of macrophages, neutrophils, and bronchoalveolar lavage (BAL) cytokines IL-10, IL-6, IL-1ß, and TNF-α. Significant diverse alterations were observed in BAL cytokines, specifically IL-1ß, IL-10, IL-6, and TNF-α, as well as in the populations of immune cells, such as macrophages and polymorphonuclear leukocytes, in both Sham and OVX mice, following acute WS exposure. These findings elucidated the profound influence of hormonal changes on inflammatory outcomes, delineating substantial sex-related differences in immune activation and revealing altered immune responses in OVX mice due to ovarian hormone deficiency. In addition, the flow cytometry analysis highlighted the complex interaction between OVX surgery, acute WS exposure, and their collective impact on immune cell populations within the hematopoietic bone marrow niche. CONCLUSIONS: In summary, both male and female mice, alongside females subjected to OVX and those who had sham surgery, exhibit significant variations in the expression of proinflammatory cytokines, chemokines, lung mRNA gene expression, and related functional networks linked to signaling pathways. These differences potentially act as mediators of sex-specific and hormonal influences in the systemic inflammatory response to acute WS exposure during a wildfire event. Understanding the regulatory roles of genes expressed differentially under environmental stressors holds considerable implications, aiding in identifying sex-specific therapeutic targets for addressing acute lung inflammation and injury.


Subject(s)
Inhalation Exposure , Mice, Inbred C57BL , Animals , Female , Male , Inhalation Exposure/adverse effects , Wildfires , Particulate Matter/toxicity , Sex Factors , Cytokines/metabolism , Cytokines/immunology , Lung/immunology , Lung/drug effects , Lung/metabolism , Smoke/adverse effects , Air Pollutants/toxicity , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/chemistry , Ovariectomy , Mice , Ovary/immunology , Ovary/drug effects , Ovary/metabolism
19.
Environ Sci Technol ; 58(22): 9679-9688, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776554

ABSTRACT

Wildfires produce solid residuals that have unique chemical and physical properties compared to unburned materials, which influence their cycling and fate in the natural environment. Visual burn severity assessment is used to evaluate post-fire alterations to the landscape in field-based studies, yet muffle furnace methods are commonly used in laboratory studies to assess molecular scale alterations along a temperature continuum. Here, we examined solid and leachable organic matter characteristics from chars visually characterized as low burn severity that were created either on an open air burn table or from low-temperature muffle furnace burns. We assessed how the different combustion conditions influence solid and dissolved organic matter chemistries and explored the potential influence of these results on the environmental fate and reactivity. Notably, muffle furnace chars produced less leachable carbon and nitrogen than open air chars across land cover types. Organic matter produced from muffle furnace burns was more homogeneous than open air chars. This work highlights chemical heterogeneities that exist within a single burn severity category, potentially influencing our conceptual understanding of pyrogenic organic matter cycling in the natural environment, including transport and processing in watersheds. Therefore, we suggest that open air burn studies are needed to further advance our understanding of pyrogenic organic matter's environmental reactivity and fate.


Subject(s)
Wildfires , Organic Chemicals
20.
Environ Res ; 252(Pt 4): 119094, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723988

ABSTRACT

BACKGROUND: Climate change continues to increase the frequency, intensity, and duration of heat events and wildfires, both of which are associated with adverse pregnancy outcomes. Few studies simultaneously evaluated exposures to these increasingly common exposures. OBJECTIVES: We investigated the relationship between exposure to heat and wildfire smoke and preterm birth (PTB). METHODS: In this time-stratified case-crossover study, participants consisted of 85,806 California singleton PTBs (20-36 gestational weeks) from May through October of 2015-2019. Birthing parent ZIP codes were linked to high-resolution daily weather, PM2.5 from wildfire smoke, and ambient air pollution data. Heat day was defined as a day with apparent temperature >98th percentile within each ZIP code and heat wave was defined as ≥2 consecutive heat days. Wildfire-smoke day was defined as a day with any exposure to wildfire-smoke PM2.5. Conditional logistic regression was used to calculate the odds ratio (OR) and 95% confidence intervals (CI) comparing exposures during a hazard period (lags 0-6) compared to control periods. Analyses were adjusted for relative humidity, fine particles, and ozone. RESULTS: Wildfire-smoke days were associated with 3.0% increased odds of PTB (ORlag0: 1.03, CI: 1.00-1.05). Compared with white participants, associations appeared stronger among Black, Hispanic, Asian, and American Indians/Alaskan Native participants. Heatwave days (ORlag2: 1.07, CI: 1.02-1.13) were positively associated with PTB, with stronger associations among those simultaneously exposed to wildfire smoke days (ORlag2: 1.19, CI: 1.11-1.27). Similar findings were observed for heat days and when other temperature metrics (e.g., maximum, minimum) were used. DISCUSSION: Heat and wildfire increased PTB risk with evidence of synergism. As the occurrence and co-occurrence of these events increase, exposure reduction among pregnant people is critical, especially among racial/ethnic minorities.


Subject(s)
Cross-Over Studies , Hot Temperature , Premature Birth , Wildfires , Humans , Female , Adult , Premature Birth/epidemiology , Pregnancy , Hot Temperature/adverse effects , California/epidemiology , Young Adult , Smoke/adverse effects , Air Pollutants/analysis , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...