Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Nat Commun ; 15(1): 4741, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834542

ABSTRACT

Canopy openings are increasing in Europe's forests, yet the contributions of anthropogenic and ecological agents of disturbance to this increase remain debated. Here we attribute the root cause of all stand-replacing canopy disturbances identified for Europe in the period 1986-2020 from Landsat data (417,000 km²), distinguishing between planned and unplanned canopy openings (i.e., disturbance by human land use versus by wind, bark beetles, and wildfire). We show that canopy openings by humans dominate the European forest disturbance regime, accounting for 82% of the area disturbed. Both planned and unplanned canopy openings increased in the early 21st century (+24% and +30% relative to the late 20th century). Their changes are linked, with simultaneous increases in planned and unplanned canopy openings on 68% of Europe's forest area. We conclude that an important direction for tackling disturbance change in policy and management is to break the link between planned and unplanned canopy openings in Europe's forests.


Subject(s)
Forests , Europe , Humans , Conservation of Natural Resources , Animals , Trees , Wildfires/statistics & numerical data , Wind , Coleoptera/physiology , Forestry
2.
Front Public Health ; 12: 1339700, 2024.
Article in English | MEDLINE | ID: mdl-38741908

ABSTRACT

Wildfire events are becoming increasingly common across many areas of the United States, including North Carolina (NC). Wildfires can cause immediate damage to properties, and wildfire smoke conditions can harm the overall health of exposed communities. It is critical to identify communities at increased risk of wildfire events, particularly in areas with that have sociodemographic disparities and low socioeconomic status (SES) that may exacerbate incurred impacts of wildfire events. This study set out to: (1) characterize the distribution of wildfire risk across NC; (2) implement integrative cluster analyses to identify regions that contain communities with increased vulnerability to the impacts of wildfire events due to sociodemographic characteristics; (3) provide summary-level statistics of populations with highest wildfire risk, highlighting SES and housing cost factors; and (4) disseminate wildfire risk information via our online web application, ENVIROSCAN. Wildfire hazard potential (WHP) indices were organized at the census tract-level, and distributions were analyzed for spatial autocorrelation via global and local Moran's tests. Sociodemographic characteristics were analyzed via k-means analysis to identify clusters with distinct SES patterns to characterize regions of similar sociodemographic/socioeconomic disparities. These SES groupings were overlayed with housing and wildfire risk profiles to establish patterns of risk across NC. Resulting geospatial analyses identified areas largely in Southeastern NC with high risk of wildfires that were significantly correlated with neighboring regions with high WHP, highlighting adjacent regions of high risk for future wildfire events. Cluster-based analysis of SES factors resulted in three groups of regions categorized through distinct SES profiling; two of these clusters (Clusters 2 and 3) contained indicators of high SES vulnerability. Cluster 2 contained a higher percentage of younger (<5 years), non-white, Hispanic and/or Latino residents; while Cluster 3 had the highest mean WHP and was characterized by a higher percentage of non-white residents, poverty, and less than a high school education. Counties of particular SES and WHP-combined vulnerability include those with majority non-white residents, tribal communities, and below poverty level households largely located in Southeastern NC. WHP values per census tract were dispersed to the public via the ENVIROSCAN application, alongside other environmentally-relevant data.


Subject(s)
Vulnerable Populations , Wildfires , North Carolina/epidemiology , Humans , Wildfires/statistics & numerical data , Vulnerable Populations/statistics & numerical data , Socioeconomic Factors , Cluster Analysis , Social Justice
4.
Ying Yong Sheng Tai Xue Bao ; 35(2): 354-362, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523092

ABSTRACT

Forest fires have a significant impact on human life, property safety, and ecological environment. Deve-loping high-quality forest fire risk maps is beneficial for preventing forest fires, guiding resource allocation for firefighting, assisting in fire suppression efforts, and supporting decision-making. With a multi-criteria decision analysis (MCDA) method based on geographic information systems (GIS) and literature review, we assessed the main factors influencing the occurrences of forest fires in Youxi County, Fujian Province. We analyzed the importance of each fire risk factor using the analytic network process (ANP) and assigned weights, and evaluated the sub-standard weights using fuzzy logic assessment. Using ArcGIS aggregation functions, we generated a forest fire risk map and validated it with satellite fire points. The results showed that the areas classified as level 4 or higher fire risk accounted for a considerable proportion in Youxi County, and that the central and northern regions were at higher risk. The overall fire risk situation in the county was severe. The fuzzy ANP model demonstrated a high accuracy of 85.8%. The introduction of this novel MCDA method could effectively improve the accuracy of forest fire risk mapping at a small scale, providing a basis for early fire warning and the planning and allocation of firefighting resources.


Subject(s)
Fuzzy Logic , Wildfires , Humans , Fires/prevention & control , Forests , Geographic Information Systems , Trees , Wildfires/statistics & numerical data
5.
Environ Int ; 186: 108583, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521046

ABSTRACT

BACKGROUND: Wildfires in the Western United States are a growing and significant source of air pollution that is eroding decades of progress in air pollution reduction. The effects on preterm birth during critical periods of pregnancy are unknown. METHODS: We assessed associations between prenatal exposure to wildland fire smoke and risk of preterm birth (gestational age < 37 weeks). We assigned smoke exposure to geocoded residence at birth for all live singleton births in California conceived 2007-2018, using weekly average concentrations of particulate matter ≤ 2.5 µm (PM2.5) attributable to wildland fires from United States Environmental Protection Agency's Community Multiscale Air Quality Model. Logistic regression yielded odds ratio (OR) for preterm birth in relation to increases in average exposure across the whole pregnancy, each trimester, and each week of pregnancy. Models adjusted for season, age, education, race/ethnicity, medical insurance, and smoking of the birthing parent. RESULTS: For the 5,155,026 births, higher wildland fire PM2.5 exposure averaged across pregnancy, or any trimester, was associated with higher odds of preterm birth. The OR for an increase of 1 µg/m3 of average wildland fire PM2.5 during pregnancy was 1.013 (95 % CI:1.008,1.017). Wildland fire PM2.5 during most weeks of pregnancy was associated with higher odds. Strongest estimates were observed in weeks in the second and third trimesters. A 10 µg/m3 increase in average wildland fire PM2·5 in gestational week 23 was associated with OR = 1.034; 95 % CI: 1.019, 1.049 for preterm birth. CONCLUSIONS: Preterm birth is sensitive to wildland fire PM2.5; therefore, we must reduce exposure during pregnancy.


Subject(s)
Air Pollutants , Maternal Exposure , Particulate Matter , Premature Birth , Smoke , Wildfires , Female , Pregnancy , Humans , Premature Birth/epidemiology , California/epidemiology , Particulate Matter/analysis , Adult , Maternal Exposure/statistics & numerical data , Smoke/analysis , Smoke/adverse effects , Air Pollutants/analysis , Wildfires/statistics & numerical data , Young Adult , Air Pollution/statistics & numerical data , Infant, Newborn
6.
Environ Sci Technol ; 58(12): 5210-5219, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483184

ABSTRACT

Wildfires are a significant threat to human health, in part through degraded air quality. Prescribed burning can reduce wildfire severity but can also lead to an increase in air pollution. The complexities of fires and atmospheric processes lead to uncertainties when predicting the air quality impacts of fire and make it difficult to fully assess the costs and benefits of an expansion of prescribed fire. By modeling differences in emissions, surface conditions, and meteorology between wildfire and prescribed burns, we present a novel comparison of the air quality impacts of these fire types under specific scenarios. One wildfire and two prescribed burn scenarios were considered, with one prescribed burn scenario optimized for potential smoke exposure. We found that PM2.5 emissions were reduced by 52%, from 0.27 to 0.14 Tg, when fires burned under prescribed burn conditions, considerably reducing PM2.5 concentrations. Excess short-term mortality from PM2.5 exposure was 40 deaths for fires under wildfire conditions and 39 and 15 deaths for fires under the default and optimized prescribed burn scenarios, respectively. Our findings suggest prescribed burns, particularly when planned during conditions that minimize smoke exposure, could be a net benefit for the impacts of wildfires on air quality and health.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Wildfires , Humans , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , California , Fires , Particulate Matter/analysis , Smoke/analysis , Wildfires/statistics & numerical data
7.
Nature ; 627(8003): 321-327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480963

ABSTRACT

Overnight fires are emerging in North America with previously unknown drivers and implications. This notable phenomenon challenges the traditional understanding of the 'active day, quiet night' model of the diurnal fire cycle1-3 and current fire management practices4,5. Here we demonstrate that drought conditions promote overnight burning, which is a key mechanism fostering large active fires. We examined the hourly diurnal cycle of 23,557 fires and identified 1,095 overnight burning events (OBEs, each defined as a night when a fire burned through the night) in North America during 2017-2020 using geostationary satellite data and terrestrial fire records. A total of 99% of OBEs were associated with large fires (>1,000 ha) and at least one OBE was identified in 20% of these large fires. OBEs were early onset after ignition and OBE frequency was positively correlated with fire size. Although warming is weakening the climatological barrier to night-time fires6, we found that the main driver of recent OBEs in large fires was the accumulated fuel dryness and availability (that is, drought conditions), which tended to lead to consecutive OBEs in a single wildfire for several days and even weeks. Critically, we show that daytime drought indicators can predict whether an OBE will occur the following night, which could facilitate early detection and management of night-time fires. We also observed increases in fire weather conditions conducive to OBEs over recent decades, suggesting an accelerated disruption of the diurnal fire cycle.


Subject(s)
Darkness , Droughts , Wildfires , Droughts/statistics & numerical data , Ecosystem , North America , Wildfires/statistics & numerical data
9.
Nature ; 626(7999): 555-564, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356065

ABSTRACT

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Subject(s)
Forests , Global Warming , Trees , Droughts/statistics & numerical data , Feedback , Global Warming/prevention & control , Global Warming/statistics & numerical data , Trees/growth & development , Wildfires/statistics & numerical data , Uncertainty , Environmental Restoration and Remediation/trends
10.
Nature ; 621(7979): 521-529, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730866

ABSTRACT

Wildfires are thought to be increasing in severity and frequency as a result of climate change1-5. Air pollution from landscape fires can negatively affect human health4-6, but human exposure to landscape fire-sourced (LFS) air pollution has not been well characterized at the global scale7-23. Here, we estimate global daily LFS outdoor fine particulate matter (PM2.5) and surface ozone concentrations at 0.25° × 0.25° resolution during the period 2000-2019 with the help of machine learning and chemical transport models. We found that overall population-weighted average LFS PM2.5 and ozone concentrations were 2.5 µg m-3 (6.1% of all-source PM2.5) and 3.2 µg m-3 (3.6% of all-source ozone), respectively, in 2010-2019, with a slight increase for PM2.5, but not for ozone, compared with 2000-2009. Central Africa, Southeast Asia, South America and Siberia experienced the highest LFS PM2.5 and ozone concentrations. The concentrations of LFS PM2.5 and ozone were about four times higher in low-income countries than in high-income countries. During the period 2010-2019, 2.18 billion people were exposed to at least 1 day of substantial LFS air pollution per year, with each person in the world having, on average, 9.9 days of exposure per year. These two metrics increased by 6.8% and 2.1%, respectively, compared with 2000-2009. Overall, we find that the global population is increasingly exposed to LFS air pollution, with socioeconomic disparities.


Subject(s)
Air Pollution , Fires , Ozone , Particulate Matter , Humans , Air Pollution/analysis , Air Pollution/statistics & numerical data , Fires/statistics & numerical data , Ozone/analysis , Ozone/supply & distribution , Particulate Matter/analysis , Particulate Matter/supply & distribution , Wildfires/statistics & numerical data , Socioeconomic Disparities in Health
11.
Nature ; 622(7984): 761-766, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37730996

ABSTRACT

Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 µm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Wildfires , Humans , Air Pollutants/analysis , Air Pollutants/chemistry , Air Pollution/analysis , Air Pollution/legislation & jurisprudence , Air Pollution/statistics & numerical data , Global Warming/statistics & numerical data , Particulate Matter/analysis , Particulate Matter/chemistry , Smoke/analysis , United States , Wildfires/statistics & numerical data , Environmental Policy/legislation & jurisprudence , Environmental Policy/trends
13.
Nature ; 621(7980): 760-766, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648863

ABSTRACT

California has experienced enhanced extreme wildfire behaviour in recent years1-3, leading to substantial loss of life and property4,5. Some portion of the change in wildfire behaviour is attributable to anthropogenic climate warming, but formally quantifying this contribution is difficult because of numerous confounding factors6,7 and because wildfires are below the grid scale of global climate models. Here we use machine learning to quantify empirical relationships between temperature (as well as the influence of temperature on aridity) and the risk of extreme daily wildfire growth (>10,000 acres) in California and find that the influence of temperature on the risk is primarily mediated through its influence on fuel moisture. We use the uncovered relationships to estimate the changes in extreme daily wildfire growth risk under anthropogenic warming by subjecting historical fires from 2003 to 2020 to differing background climatological temperatures and aridity conditions. We find that the influence of anthropogenic warming on the risk of extreme daily wildfire growth varies appreciably on a fire-by-fire and day-by-day basis, depending on whether or not climate warming pushes conditions over certain thresholds of aridity, such as 1.5 kPa of vapour-pressure deficit and 10% dead fuel moisture. So far, anthropogenic warming has enhanced the aggregate expected frequency of extreme daily wildfire growth by 25% (5-95 range of 14-36%), on average, relative to preindustrial conditions. But for some fires, there was approximately no change, and for other fires, the enhancement has been as much as 461%. When historical fires are subjected to a range of projected end-of-century conditions, the aggregate expected frequency of extreme daily wildfire growth events increases by 59% (5-95 range of 47-71%) under a low SSP1-2.6 emissions scenario compared with an increase of 172% (5-95 range of 156-188%) under a very high SSP5-8.5 emissions scenario, relative to preindustrial conditions.


Subject(s)
Global Warming , Temperature , Wildfires , California , Climate Models , Droughts/statistics & numerical data , Global Warming/statistics & numerical data , Human Activities , Humidity , Machine Learning , Risk Assessment , Wildfires/statistics & numerical data , Humans
15.
Nature ; 621(7978): 318-323, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612502

ABSTRACT

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1-4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year-1 in 2010-2018 to 0.44 ± 0.10 PgC year-1 in 2019 and 0.52 ± 0.10 PgC year-1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010-2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019-2020 were comparable with those of the record warm El Niño (2015-2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010-2018 mean and 2019-2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019-2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.


Subject(s)
Carbon Dioxide , Carbon Sequestration , Conservation of Natural Resources , Environmental Policy , Law Enforcement , Rainforest , Biomass , Brazil , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Environmental Policy/legislation & jurisprudence , Atmosphere/chemistry , Wildfires/statistics & numerical data , Conservation of Natural Resources/statistics & numerical data , El Nino-Southern Oscillation , Droughts/statistics & numerical data
16.
Nature ; 621(7977): 94-99, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37468636

ABSTRACT

The wildland-urban interface (WUI) is where buildings and wildland vegetation meet or intermingle1,2. It is where human-environmental conflicts and risks can be concentrated, including the loss of houses and lives to wildfire, habitat loss and fragmentation and the spread of zoonotic diseases3. However, a global analysis of the WUI has been lacking. Here, we present a global map of the 2020 WUI at 10 m resolution using a globally consistent and validated approach based on remote sensing-derived datasets of building area4 and wildland vegetation5. We show that the WUI is a global phenomenon, identify many previously undocumented WUI hotspots and highlight the wide range of population density, land cover types and biomass levels in different parts of the global WUI. The WUI covers only 4.7% of the land surface but is home to nearly half its population (3.5 billion). The WUI is especially widespread in Europe (15% of the land area) and the temperate broadleaf and mixed forests biome (18%). Of all people living near 2003-2020 wildfires (0.4 billion), two thirds have their home in the WUI, most of them in Africa (150 million). Given that wildfire activity is predicted to increase because of climate change in many regions6, there is a need to understand housing growth and vegetation patterns as drivers of WUI change.


Subject(s)
Biomass , Cities , Geographic Mapping , Population Density , Wilderness , Humans , Forests , Wildfires/prevention & control , Wildfires/statistics & numerical data , Urbanization , Cities/statistics & numerical data , Africa , Europe , Housing/supply & distribution , Housing/trends , Climate Change
17.
Environ Pollut ; 334: 122170, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37451590

ABSTRACT

Due to global warming, an increased number of open fires is becoming a major contributor to PM2.5 pollution and thus a threat to public health. However, the burden of stillbirths attributable to fire-sourced PM2.5 is unknown. In low- and middle-income countries (LMICs), there is a co-occurrence of high baseline stillbirth rates and frequent firestorms, which may lead to a geographic disparity. Across 54 LMICs, we conducted a self-matched case-control study, making stillbirths comparable to the corresponding livebirths in terms of time-invariant characteristics (e.g., genetics) and duration of gestational exposure. We established a joint-exposure-response function (JERF) by simultaneously associating stillbirth with fire- and non-fire-sourced PM2.5 concentrations, which were estimated by fusing multi-source data, such as chemical transport model simulations and satellite observations. During 2000-2014, 35,590 pregnancies were selected from multiple Demographic and Health Surveys. In each mother, a case of stillbirth was compared to her livebirth(s) based on gestational exposure to fire-sourced PM2.5. We further applied the JERF to assess stillbirths attributable to fire-sourced PM2.5 in 136 non-Western countries. The disparity was evaluated using the Gini index. The risk of stillbirth increased by 17.4% (95% confidence interval [CI]: 1.6-35.7%) per 10 µg/m3 increase in fire-sourced PM2.5. In 2014, referring to a minimum-risk exposure level of 10 µg/m3, total and fire-sourced PM2.5 contributed to 922,860 (95% CI: 578,451-1,183,720) and 49,951 (95% CI: 3,634-92,629) stillbirths, of which 10% were clustered within the 6.4% and 0.6% highest-exposure pregnancies, respectively. The Gini index of stillbirths attributable to fire-sourced PM2.5 was 0.65, much higher than for total PM2.5 (0.28). Protecting pregnant women against PM2.5 exposure during wildfires is critical to avoid stillbirths, as the burden of fire-associated stillbirths leads to a geographic disparity in maternal health.


Subject(s)
Air Pollution , Stillbirth , Wildfires , Female , Humans , Pregnancy , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Case-Control Studies , Fires , Particulate Matter/analysis , Stillbirth/epidemiology , Wildfires/statistics & numerical data
19.
Environ Pollut ; 304: 119213, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35351594

ABSTRACT

Wildfires emit smoke particles and gaseous pollutants that greatly aggravate air quality and cause adverse health impacts in the western US (WUS). This study evaluates how wildfire impacts on air pollutants and air toxics evolve from the present climate to the future climate under a high anthropogenic emission scenario at regional and city scales. Through employing multiple climate and chemical transport models, small changes in domain-averaged air pollutant concentrations by wildfires are simulated over WUS. However, such changes significantly increase future city-scale pollutant concentrations by up to 53 ppb for benzene, 158 ppb for formaldehyde, 655 µg/m3 for fine particulate matter (PM2.5), and 102 ppb for ozone, whereas that for the present climate are 104 ppb for benzene, 332 ppb for formaldehyde, 1,378 µg/m3 for PM2.5, and 140 ppb for ozone. Despite wildfires induce smaller changes in the future, the wildfire contribution ratios can increase by more than tenfold compared to the present climate, indicating wildfires become a more critical contributor to future air pollution in WUS. In addition, additional 6 exceedance days/year for formaldehyde and additional 3 exceedance days/year for ozone suggest increasing health impacts by wildfires in the future.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Wildfires , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Benzene , Climate Change , Formaldehyde/toxicity , Ozone/analysis , Particulate Matter/analysis , Particulate Matter/toxicity , United States , Wildfires/statistics & numerical data
20.
Nature ; 602(7897): 442-448, 2022 02.
Article in English | MEDLINE | ID: mdl-35173342

ABSTRACT

Night-time provides a critical window for slowing or extinguishing fires owing to the lower temperature and the lower vapour pressure deficit (VPD). However, fire danger is most often assessed based on daytime conditions1,2, capturing what promotes fire spread rather than what impedes fire. Although it is well appreciated that changing daytime weather conditions are exacerbating fire, potential changes in night-time conditions-and their associated role as fire reducers-are less understood. Here we show that night-time fire intensity has increased, which is linked to hotter and drier nights. Our findings are based on global satellite observations of daytime and night-time fire detections and corresponding hourly climate data, from which we determine landcover-specific thresholds of VPD (VPDt), below which fire detections are very rare (less than 95 per cent modelled chance). Globally, daily minimum VPD increased by 25 per cent from 1979 to 2020. Across burnable lands, the annual number of flammable night-time hours-when VPD exceeds VPDt-increased by 110 hours, allowing five additional nights when flammability never ceases. Across nearly one-fifth of burnable lands, flammable nights increased by at least one week across this period. Globally, night fires have become 7.2 per cent more intense from 2003 to 2020, measured via a satellite record. These results reinforce the lack of night-time relief that wildfire suppression teams have experienced in recent years. We expect that continued night-time warming owing to anthropogenic climate change will promote more intense, longer-lasting and larger fires.


Subject(s)
Darkness , Global Warming , Wildfires , Global Warming/statistics & numerical data , Weather , Wildfires/prevention & control , Wildfires/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...