Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.397
Filter
1.
Sci Rep ; 14(1): 13138, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849509

ABSTRACT

Colorectal cancer (CRC) is a global health concern, and the incidence of early onset (EO) CRC, has an upward trend. This study delves into the genomic landscape of EO-CRC, specifically focusing on pediatric (PED) and young adult (YA) patients, comparing them with adult (AD) CRC. In this retrospective monocentric investigation, we performed targeted next-generation sequencing to compare the mutational profile of 38 EO-CRCs patients (eight PED and 30 YA) to those of a 'control group' consisting of 56 AD-CRCs. Our findings reveal distinct molecular profiles in EO-CRC, notably in the WNT and PI3K-AKT pathways. In pediatrics, we observed a significantly higher frequency of RNF43 mutations, whereas APC mutations were more prevalent in adult cases. These observations suggest age-related differences in the activation of the WNT pathway. Pathway and copy number variation analysis reveal that AD-CRC and YA-CRC have more similarities than the pediatric patients. PED shows a peculiar profile with CDK6 amplification and the enrichment of lysine degradation pathway. These findings may open doors for personalized therapies, such as PI3K-AKT pathway inhibitors or CDK6 inhibitors for pediatric patients. Additionally, the distinct molecular signatures of EO-CRC underscore the need for age-specific treatment strategies and precision medicine. This study emphasizes the importance of comprehensive molecular investigations in EO-CRCs, which can potentially improve diagnostic accuracy, prognosis, and therapeutic decisions for these patients. Collaboration between the pediatric and adult oncology community is fundamental to improve oncological outcomes for this rare and challenging pediatric tumor.


Subject(s)
Colorectal Neoplasms , Mutation , Humans , Colorectal Neoplasms/genetics , Male , Female , Child , Young Adult , Adolescent , Adult , Retrospective Studies , Child, Preschool , DNA Copy Number Variations , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Wnt Signaling Pathway/genetics
2.
Oncol Res ; 32(6): 1079-1091, 2024.
Article in English | MEDLINE | ID: mdl-38827318

ABSTRACT

Approximately 30%-40% of growth hormone-secreting pituitary adenomas (GHPAs) harbor somatic activating mutations in GNAS (α subunit of stimulatory G protein). Mutations in GNAS are associated with clinical features of smaller and less invasive tumors. However, the role of GNAS mutations in the invasiveness of GHPAs is unclear. GNAS mutations were detected in GHPAs using a standard polymerase chain reaction (PCR) sequencing procedure. The expression of mutation-associated maternally expressed gene 3 (MEG3) was evaluated with RT-qPCR. MEG3 was manipulated in GH3 cells using a lentiviral expression system. Cell invasion ability was measured using a Transwell assay, and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by immunofluorescence and western blotting. Finally, a tumor cell xenograft mouse model was used to verify the effect of MEG3 on tumor growth and invasiveness. The invasiveness of GHPAs was significantly decreased in mice with mutated GNAS compared with that in mice with wild-type GNAS. Consistently, the invasiveness of mutant GNAS-expressing GH3 cells decreased. MEG3 is uniquely expressed at high levels in GHPAs harboring mutated GNAS. Accordingly, MEG3 upregulation inhibited tumor cell invasion, and conversely, MEG3 downregulation increased tumor cell invasion. Mechanistically, GNAS mutations inhibit EMT in GHPAs. MEG3 in mutated GNAS cells prevented cell invasion through the inactivation of the Wnt/ß-catenin signaling pathway, which was further validated in vivo. Our data suggest that GNAS mutations may suppress cell invasion in GHPAs by regulating EMT through the activation of the MEG3/Wnt/ß-catenin signaling pathway.


Subject(s)
Chromogranins , Epithelial-Mesenchymal Transition , GTP-Binding Protein alpha Subunits, Gs , Growth Hormone-Secreting Pituitary Adenoma , Mutation , Neoplasm Invasiveness , RNA, Long Noncoding , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Animals , Humans , Growth Hormone-Secreting Pituitary Adenoma/genetics , Growth Hormone-Secreting Pituitary Adenoma/pathology , Growth Hormone-Secreting Pituitary Adenoma/metabolism , Mice , Chromogranins/genetics , Chromogranins/metabolism , Epithelial-Mesenchymal Transition/genetics , RNA, Long Noncoding/genetics , Female , Male , Cell Line, Tumor , Adenoma/genetics , Adenoma/pathology , Adenoma/metabolism , Middle Aged , Adult , Cell Proliferation/genetics , Xenograft Model Antitumor Assays , Wnt Signaling Pathway/genetics , Gene Expression Regulation, Neoplastic
3.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38702075

ABSTRACT

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Subject(s)
Adipocytes , Adipogenesis , Body Fat Distribution , Humans , Adipocytes/metabolism , Male , Female , Adipogenesis/genetics , Body Mass Index , Adult , Gene Regulatory Networks , Middle Aged , Bayes Theorem , Waist-Hip Ratio , Adipose Tissue/metabolism , Wnt Signaling Pathway/genetics , Gene Expression Regulation/genetics , Systems Biology/methods
4.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722330

ABSTRACT

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Subject(s)
Apoptosis , Cell Proliferation , Homeodomain Proteins , Wnt Signaling Pathway , Humans , Male , Apoptosis/genetics , Cell Proliferation/genetics , Wnt Signaling Pathway/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Spermatogonia/metabolism , Spermatogonia/cytology , Spermatogenesis/genetics , Adult Germline Stem Cells/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Testis/metabolism , Testis/cytology , Thiolester Hydrolases
5.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814866

ABSTRACT

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Transformation, Neoplastic , Erlotinib Hydrochloride , Lung Neoplasms , Humans , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Mice , Erlotinib Hydrochloride/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics , Wnt Signaling Pathway/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Transcription, Genetic , Histocompatibility Antigens , Histone-Lysine N-Methyltransferase
6.
Exp Cell Res ; 439(1): 114074, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38710403

ABSTRACT

Ferroptosis inhibits tumor progression in pancreatic cancer cells, while PITX2 is known to function as a pro-oncogenic factor in various tumor types, protecting them from ferroptosis and thereby promoting tumor progression. In this study, we sought to investigate the regulatory role of PITX2 in tumor cell ferroptosis within the context of pancreatic cancer. We conducted PITX2 knockdown experiments using lentiviral infection in two pancreatic cancer cell lines, namely PANC-1 and BxPC-3. We assessed protein expression through immunoblotting and mRNA expression through RT-PCR. To confirm PITX2 as a transcription factor for GPX4, we employed Chromatin Immunoprecipitation (ChIP) and Dual-luciferase assays. Furthermore, we used flow cytometry to measure reactive oxygen species (ROS), lipid peroxidation, and apoptosis and employed confocal microscopy to assess mitochondrial membrane potential. Additionally, electron microscopy was used to observe mitochondrial structural changes and evaluate PITX2's regulation of ferroptosis in pancreatic cancer cells. Our findings demonstrated that PITX2, functioning as a transcription factor for GPX4, promoted GPX4 expression, thereby exerting an inhibitory effect on ferroptosis in pancreatic cancer cells and consequently promoting tumor progression. Moreover, PITX2 enhanced the invasive and migratory capabilities of pancreatic cancer cells by activating the WNT signaling pathway. Knockdown of PITX2 increased ferroptosis and inhibited the proliferation of PANC-1 and BxPC-3 cells. Notably, the inhibitory effect on ferroptosis resulting from PITX2 overexpression in these cells could be countered using RSL3, an inhibitor of GPX4. Overall, our study established PITX2 as a transcriptional regulator of GPX4 that could promote tumor progression in pancreatic cancer by reducing ferroptosis. These findings suggest that PITX2 may serve as a potential therapeutic target for combating ferroptosis in pancreatic cancer.


Subject(s)
Ferroptosis , Gene Expression Regulation, Neoplastic , Homeobox Protein PITX2 , Homeodomain Proteins , Pancreatic Neoplasms , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , Transcription Factors , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Ferroptosis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Animals , Mice , Wnt Signaling Pathway/genetics , Cell Movement/genetics , Lipid Peroxidation , Mice, Nude , Mitochondria/metabolism , Mitochondria/genetics , Membrane Potential, Mitochondrial/genetics
7.
Mol Biol Rep ; 51(1): 691, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796671

ABSTRACT

BACKGROUND: Altered glycosylation plays a role in carcinogenesis. GALNT14 promotes cancer stem-like properties and drug resistance. GDF-15 is known to induces drug resistance and stemness markers for maintenance of breast cancer (BC) stem-like cell state. Currently there is lack of data on association of GDF-15 and GALNTs. In this study, the expression and interaction of GALNT14 and GDF-15 with stemness (OCT4 and SOX2) and drug resistance (ABCC5) markers were evaluated in BC. METHODS: We investigated tumour tissue from 30 BC patients and adjacent non-tumour tissues. Expression of serum GALNT14 from BC patients and matched healthy controls was evaluated. Expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and ß-catenin in BC tissue was determined by RT-PCR. Knockdown of GALNT14 and GDF-15 in the MCF-7 cell line was done through siRNA, gene expression and protein expression of ß-catenin by western blot were determined. RESULTS: A significant increase in the expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and ß-catenin was observed in BC tumour tissues compared to adjacent non-tumour tissues. The serum level of GALNT14 was significantly high in BC patients (80.7 ± 65.3 pg/ml) compared to healthy controls (12.2 ± 9.12 pg/ml) (p < 0.000). To further analyse the signalling pathway involved in BC stemness and drug resistance, GALNT14 and GDF-15 were knocked down in the MCF-7 cell line, and it was observed that after knockdown, the expression level of OCT4, SOX2, ABCC5, and ß-catenin was decreased, and co-knockdown with GALNT14 and GDF-15 further decreased the expression of genes. CONCLUSION: It can be concluded that GALNT14, in association with GDF-15, promotes stemness and intrinsic drug resistance in BC, possibly through the ß-catenin signalling pathway.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Growth Differentiation Factor 15 , N-Acetylgalactosaminyltransferases , Neoplastic Stem Cells , beta Catenin , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Drug Resistance, Neoplasm/genetics , beta Catenin/metabolism , beta Catenin/genetics , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , MCF-7 Cells , Middle Aged , Neoplastic Stem Cells/metabolism , Gene Expression Regulation, Neoplastic , Adult , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Signal Transduction , Wnt Signaling Pathway/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Cell Line, Tumor , Aged
8.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791218

ABSTRACT

KCTD1 plays crucial roles in regulating both the SHH and WNT/ß-catenin signaling pathways, which are essential for tooth development. The objective of this study was to investigate if genetic variants in KCTD1 might also be associated with isolated dental anomalies. We clinically and radiographically investigated 362 patients affected with isolated dental anomalies. Whole exome sequencing identified two unrelated families with rare (p.Arg241Gln) or novel (p.Pro243Ser) variants in KCTD1. The variants segregated with the dental anomalies in all nine patients from the two families. Clinical findings of the patients included taurodontism, unseparated roots, long roots, tooth agenesis, a supernumerary tooth, torus palatinus, and torus mandibularis. The role of Kctd1 in root development is supported by our immunohistochemical study showing high expression of Kctd1 in Hertwig epithelial root sheath. The KCTD1 variants in our patients are the first variants found to be located in the C-terminal domain, which might disrupt protein-protein interactions and/or SUMOylation and subsequently result in aberrant WNT-SHH-BMP signaling and isolated dental anomalies. Functional studies on the p.Arg241Gln variant are consistent with an impact on ß-catenin levels and canonical WNT signaling. This is the first report of the association of KCTD1 variants and isolated dental anomalies.


Subject(s)
Tooth Abnormalities , Humans , Tooth Abnormalities/genetics , Female , Male , Wnt Signaling Pathway/genetics , Pedigree , Child , Exome Sequencing , Adolescent , Genetic Variation , beta Catenin/genetics , beta Catenin/metabolism , Adult , Co-Repressor Proteins
9.
Cell Cycle ; 23(5): 588-601, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38743408

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with a poor prognosis, yet the underlying mechanism needs further exploration. Non-SMC condensin I complex subunit D2 (NCAPD2) is a widely expressed protein in OSCC, but its role in tumor development is unclear. This study aimed to explore NCAPD2 expression and its biological function in OSCC. NCAPD2 expression in OSCC cell lines and tissue specimens was analyzed using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Cancer cell growth was evaluated using cell proliferation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, and colony formation assays. Cell migration was evaluated using wound healing and Transwell assays. Apoptosis was detected using flow cytometry. The influence of NCAPD2 on tumor growth in vivo was evaluated in a mouse xenograft model. NCAPD2 expression was significantly higher in OSCC than that in normal oral tissue. In vitro, the knockdown of NCAPD2 inhibited OSCC cell proliferation and promoted apoptosis. NCAPD2 depletion also significantly inhibited the migration of OSCC cells. Moreover, NCAPD2 overexpression induced inverse effects on OSCC cell phenotypes. In vivo, we demonstrated that downregulating NCAPD2 could inhibit the tumorigenicity of OSCC cells. Mechanically, OSCC regulation by NCAPD2 involved the Wnt/ß-catenin signaling pathway. These results suggest NCAPD2 as a novel oncogene with an important role in OSCC development and a candidate therapeutic target for OSCC.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Mouth Neoplasms , Wnt Signaling Pathway , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Animals , Wnt Signaling Pathway/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Mice , Mice, Nude , Disease Progression , Female , Male , Gene Expression Regulation, Neoplastic , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice, Inbred BALB C , beta Catenin/metabolism
10.
Cancer Lett ; 592: 216922, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704137

ABSTRACT

Lung adenocarcinoma (LUAD), a type of non-small cell lung cancer (NSCLC), originates from not only bronchial epithelial cells but also alveolar type 2 (AT2) cells, which could differentiate into AT2-like cells. AT2-like cells function as cancer stem cells (CSCs) of LUAD tumorigenesis to give rise to adenocarcinoma. However, the mechanism underlying AT2 cell differentiation into AT2-like cells in LUAD remains unknown. We analyze genes differentially expressed and genes with significantly different survival curves in LUAD, and the combination of these two analyses yields 147 differential genes, in which 14 differentially expressed genes were enriched in cell cycle pathway. We next analyze the protein levels of these genes in LUAD and find that Cyclin-A2 (CCNA2) is closely associated with LUAD tumorigenesis. Unexpectedly, high CCNA2 expression in LUAD is restrictedly associated with smoking and independent of other driver mutations. Single-cell sequencing analyses reveal that CCNA2 is predominantly involved in AT2-like cell differentiation, while inhibition of CCNA2 significantly reverses smoking-induced AT2-like cell differentiation. Mechanistically, CCNA2 binding to CDK2 phosphorylates the AXIN1 complex, which in turn induces ubiquitination-dependent degradation of ß-catenin and inhibits the WNT signaling pathway, thereby failing AT2 cell maintenance. These results uncover smoking-induced CCNA2 overexpression and subsequent WNT/ß-catenin signaling inactivation as a hitherto uncharacterized mechanism controlling AT2 cell differentiation and LUAD tumorigenesis.


Subject(s)
Adenocarcinoma of Lung , Carcinogenesis , Cell Differentiation , Cyclin A2 , Lung Neoplasms , Smoking , Animals , Female , Humans , Male , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , beta Catenin/metabolism , beta Catenin/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cyclin A2/genetics , Cyclin A2/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Smoking/adverse effects , Wnt Signaling Pathway/genetics , Rats
11.
J Transl Med ; 22(1): 509, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802858

ABSTRACT

BACKGROUND: Several studies have suggested secreted frizzled-related protein 2 (SFRP2) gene as a potential clinical biomarker in colorectal cancer (CRC). However, its diagnostic role remains unclear. In this study, we aimed to investigate the significance of SFRP2 methylation levels in a large cohort of biological specimens (including blood, adipose and colonic tissues) from patients with CRC, thereby potentially identifying new biomarker utility. METHODS: We examined the expression (by qPCR) and methylation status (by 450 K DNA array and DNA pyrosequencing) of the SFRP2 gene in healthy participants (N = 110, aged as 53.7 (14.2), 48/62 males/females) and patients with CRC (N = 85, aged 67.7 (10.5), 61/24 males/females), across different biological tissues, and assessing its potential as a biomarker for CRC. Additionally, we investigated the effect of recombinant human SFRP2 (rhSFRP2) as a therapeutic target, on cell proliferation, migration, and the expression of key genes related to carcinogenesis and the Wnt pathway. RESULTS: Our findings revealed that SFRP2 promoter methylation in whole blood could predict cancer stage (I + II vs. III + IV) (AUC = 0.653), lymph node invasion (AUC = 0.692), and CRC recurrence (AUC = 0.699) in patients with CRC (all with p < 0.05). Furthermore, we observed a global hypomethylation of SFRP2 in tumors compared to the adjacent area (p < 0.001). This observation was validated in the TCGA-COAD and TCGA-READ cohorts, demonstrating overall hypermethylation (both with p < 0.001) and low expression (p < 0.001), as shown in publicly available scRNA-Seq data. Notably, neoadjuvant-treated CRC patients exhibited lower SFRP2 methylation levels compared to untreated patients (p < 0.05) and low promoter SFRP2 methylation in untreated patients was associated with poor overall survival (p < 0.05), when compared to high methylation. Finally, treatment with 5 µg of rhSFRP2 treatment in CRC cells (HCT116 cells) inhibited cell proliferation (p < 0.001) and migration (p < 0.05), and downregulated the expression of AXIN2 (p < 0.01), a gene involved in Wnt signaling pathway. CONCLUSIONS: These findings establish promoter methylation of the SFRP2 gene as a prognostic candidate in CRC when assessed in blood, and as a therapeutic prognostic candidate in tumors, potentially valuable in clinical practice. SFRP2 also emerges as a therapeutic option, providing new clinical and therapeutical avenues.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , Membrane Proteins , Promoter Regions, Genetic , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Male , DNA Methylation/genetics , Membrane Proteins/genetics , Female , Middle Aged , Biomarkers, Tumor/genetics , Aged , Promoter Regions, Genetic/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Wnt Signaling Pathway/genetics , Cell Line, Tumor
12.
Anim Biotechnol ; 35(1): 2356110, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38804592

ABSTRACT

The inducing activation event of secondary hair follicle (SHF)-stem cells is considered a key biological process in the SHF regeneration, and the morphogenesis of cashmere fiber in cashmere goats. The miR-361-5p was essentially implicated in the induced activation of SHF-stem cells of cashmere goats, but its functional mechanisms are unclear. Here, we confirmed miR-361-5p was significantly downregulated in anagen SHF bugle of cashmere goats compared with that at telogen, and miR-361-5p expression was significantly lower in SHF-stem cells after activation than its counterpart before activation. Further, we found that miR-361-5p could negatively regulate the induced activation event of SHF-stem cells in cashmere goats. Mechanistically, through dual-luciferase reporter assays, miR-361-5p specifically bound with FOXM1 mRNA in SHF-stem cells of cashmere goats and negatively regulated the expression of FOXM1 gene. Also, through overexpression/knockdown analysis of FOXM1 gene, our results indicated that FOXM1 upregulated the expression of Wnt/ß-catenin pathway related genes in SHF-stem cells. Moreover, based on TOP/FOP-flash Wnt report assays, the knockdown of miR-361-5p promotes the Wnt/ß-catenin pathway activation through upregulating the FOXM1 expression in SHF-stem cells. Finally, we demonstrated that miR-361-5p negatively regulated the induced activation of SHF-stem cells through FOXM1 mediated Wnt/ß-catenin pathway in cashmere goats.


Subject(s)
Forkhead Box Protein M1 , Goats , Hair Follicle , MicroRNAs , Stem Cells , Wnt Signaling Pathway , Animals , Goats/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Wnt Signaling Pathway/genetics , Hair Follicle/metabolism , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Stem Cells/physiology , Stem Cells/metabolism , Gene Knockdown Techniques
13.
Cell Death Dis ; 15(4): 288, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654006

ABSTRACT

Cancer stem cells (CSCs) are believed to be responsible for cancer metastasis and recurrence due to their self-renewal ability and resistance to treatment. However, the mechanisms that regulate the stemness of CSCs remain poorly understood. Recently, evidence has emerged suggesting that long non-coding RNAs (lncRNAs) play a crucial role in regulating cancer cell function in different types of malignancies, including gastric cancer (GC). However, the specific means by which lncRNAs regulate the function of gastric cancer stem cells (GCSCs) are yet to be fully understood. In this study, we investigated a lncRNA known as HNF1A-AS1, which is highly expressed in GCSC s and serves as a critical regulator of GCSC stemness and tumorigenesis. Our experiments, both in vitro and in vivo, demonstrated that HNF1A-AS1 maintained the stemness of GC cells. Further analysis revealed that HNF1A-AS1, transcriptionally activated by CMYC, functioned as a competing endogenous RNA by binding to miR-150-5p to upregulate ß-catenin expression. This in turn facilitated the entry of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway and promote CMYC expression, thereby forming a positive feedback loop that sustained the stemness of GCSCs. We also found that blocking the Wnt/ß-catenin pathway effectively inhibited the function of HNF1A-AS1, ultimately resulting in the inhibition of GCSC stemness. Taken together, our results demonstrated that HNF1A-AS1 is a regulator of the stemness of GCSCs and could serve as a potential marker for targeted GC therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells , RNA, Long Noncoding , Stomach Neoplasms , Animals , Humans , Mice , beta Catenin/metabolism , Cell Line, Tumor , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Wnt Signaling Pathway/genetics
14.
Sci Rep ; 14(1): 7853, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570592

ABSTRACT

Thyroid cancer is the most common endocrine carcinoma and, among its different subtypes, the papillary subtype (PTC) is the most frequent. Generally, PTCs are well differentiated, but a minor percentage of PTCs are characterized by a worse prognosis and more aggressive behavior. Phytochemicals, naturally found in plant products, represent a heterogeneous group of bioactive compounds that can interfere with cell proliferation and the regulation of the cell cycle, taking part in multiple signaling pathways that are often disrupted in tumor initiation, proliferation, and progression. In this work, we focused on 15,16-dihydrotanshinone I (DHT), a tanshinone isolated from Salvia miltiorrhiza Bunge (Danshen). We first evaluated DHT biological effect on PTC cells regarding cell viability, colony formation ability, and migration capacity. All of these parameters were downregulated by DHT treatment. We then investigated gene expression changes after DHT treatment by performing RNA-seq. The analysis revealed that DHT significantly reduced the Wnt signaling pathway, which plays a role in various diseases, including cancer. Finally, we demonstrate that DHT treatment decreases protein levels of ß-catenin, a final effector of canonical Wnt signaling pathway. Overall, our data suggest a possible use of this nutraceutical as an adjuvant in the treatment of aggressive papillary thyroid carcinoma.


Subject(s)
Carcinoma, Papillary , Furans , Phenanthrenes , Quinones , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/pathology , beta Catenin/genetics , beta Catenin/metabolism , Down-Regulation , Carcinoma, Papillary/drug therapy , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Cell Line, Tumor , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Wnt Signaling Pathway/genetics , Cell Proliferation/physiology , Cell Movement/genetics
15.
Cells ; 13(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38607047

ABSTRACT

Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of ß-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.


Subject(s)
Cohesins , Heterocyclic Compounds, 3-Ring , Maleimides , Neoplasms , Humans , Synthetic Lethal Mutations/genetics , Wnt Signaling Pathway/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Glycogen Synthase Kinase 3/metabolism , Neoplasms/genetics , Neoplasms/pathology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
16.
Cancer Med ; 13(7): e7148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558536

ABSTRACT

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
17.
Curr Med Sci ; 44(2): 406-418, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619681

ABSTRACT

OBJECTIVE: Uterine corpus endometrial carcinoma (UCEC), a kind of gynecologic malignancy, poses a significant risk to women's health. The precise mechanism underlying the development of UCEC remains elusive. Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein superfamily, was reported to be dysregulated in various illnesses, including malignant tumors. This study aimed to examine the involvement of ZNF554 in the development of UCEC. METHODS: The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay. Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection. CCK-8, wound healing, and Transwell invasion assays were employed to assess cell proliferation, migration, and invasion. Propidium iodide (PI) staining combined with fluorescence-activated cell sorting (FACS) flow cytometer was utilized to detect cell cycle distribution. qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels. Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5 (RBM5). RESULTS: The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines. Decreased expression of ZNF554 was associated with higher tumor stage, decreased overall survival, and reduced disease-free survival in UCEC. ZNF554 overexpression suppressed cell proliferation, migration, and invasion, while also inducing cell cycle arrest. In contrast, a decrease in ZNF554 expression resulted in the opposite effect. Mechanistically, ZNF554 transcriptionally regulated RBM5, leading to the deactivation of the Wingless (WNT)/ß-catenin signaling pathway. Moreover, the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression on ß-catenin and p-glycogen synthase kinase-3ß (p-GSK-3ß). Similarly, the deliberate activation of RBM5 reduced the increase in ß-catenin and p-GSK-3ß caused by the suppression of ZNF554. In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown. Additionally, when RBM5 was overexpressed, it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels. CONCLUSION: ZNF554 functions as a tumor suppressor in UCEC. Furthermore, ZNF554 regulates UCEC progression through the RBM5/WNT/ß-catenin signaling pathway. ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC.


Subject(s)
Endometrial Neoplasms , Wnt Signaling Pathway , Female , Humans , beta Catenin/genetics , beta Catenin/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Endometrial Neoplasms/genetics , Glycogen Synthase Kinase 3 beta/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway/genetics
18.
Cell Commun Signal ; 22(1): 242, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664733

ABSTRACT

BACKGROUND: Paired box 1 (PAX1) is a transcription factor and essential for the development of pharyngeal pouches-derived tissues, including thymus. PAX1 mutations are identified in Severe Combined Immunodeficiency (SCID) patients with Otofaciocervical Syndrome Type 2 (OTFCS2). However, despite the critical roles of PAX1 in embryonic development and diseases, detailed insights into its molecular mode of action are critically missing. METHODS: The repressing roles of PAX1 and SCID associated mutants on Wnt signaling pathway were investigated by luciferase reporter assays, qRT-PCR and in situ hybridization in HEK293FT, HCT116 cells and zebrafish embryos, respectively. Co-immunoprecipitation (co-IP) and western blotting assays were carried out to identify the molecular mechanisms underlying PAX1's role on Wnt signaling pathway. hESC based endoderm differentiation, flow cytometry, high-throughput sequencing data analysis, and qRT-PCR assays were utilized to determine the roles of PAX1 during endoderm differentiation. RESULTS: Here, we show that PAX1 represses canonical Wnt signaling pathway in vertebrate cells. Mechanically, PAX1 competes with SUMO E3 ligase PIASy to bind to TCF7L2, thus perturbing TCF7L2 SUMOylation level, further reducing its transcriptional activity and protein stability. Moreover, we reveal that PAX1 plays dual roles in hESC-derived definitive and foregut/pharyngeal endoderm cells, which give rise to the thymus epithelium, by inhibiting Wnt signaling. Importantly, our data show PAX1 mutations found in SCID patients significantly compromise the suppressing ability of PAX1 on Wnt signaling. CONCLUSIONS: Our study presents a novel molecular mode of action of PAX1 in regulation of canonical Wnt signaling and endoderm differentiation, thus providing insights for the molecular basis of PAX1 associated SCID, offering better understanding of the behavior of PAX1 in embryogenesis.


Subject(s)
Cell Differentiation , Endoderm , Wnt Signaling Pathway , Zebrafish , Humans , Wnt Signaling Pathway/genetics , Cell Differentiation/genetics , Endoderm/metabolism , Endoderm/cytology , Animals , Zebrafish/genetics , HEK293 Cells , Transcription Factor 7-Like 2 Protein/metabolism , Transcription Factor 7-Like 2 Protein/genetics , HCT116 Cells , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics
19.
Nat Genet ; 56(5): 953-969, 2024 May.
Article in English | MEDLINE | ID: mdl-38627598

ABSTRACT

The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/ß-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.


Subject(s)
Homeostasis , Liver Regeneration , Liver , Wnt Signaling Pathway , Animals , Liver Regeneration/genetics , Mice , Liver/metabolism , Wnt Signaling Pathway/genetics , Hepatocytes/metabolism , Hepatocytes/cytology , Cell Proliferation/genetics , Single-Cell Analysis , Gene Regulatory Networks , Gene Expression Profiling/methods , Transcriptome , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Male
20.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669183

ABSTRACT

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Subject(s)
Carrier Proteins , Cell Polarity , Membrane Proteins , Spine , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Humans , Mice , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Spine/abnormalities , Spine/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Wnt Signaling Pathway/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...